
THE ALGEBRA OF K-INVARIANT VECTOR FIELDSON A SYMMETRIC SPACE G=KILKA AGRICOLA AND ROE GOODMANAbstra
t. When G is a 
omplex redu
tive algebrai
 group and G=K is a redu
tive symmet-ri
 spa
e, the de
omposition of C[G=K℄ as a K-module was obtained (in a non-
onstru
tiveway) by Ri
hardson, generalizing the 
elebrated result of Kostant-Rallis for the linearizedproblem (the harmoni
 de
omposition of the isotropy representation). To obtain a 
onstru
-tive version of Ri
hardson's results, this paper studies the in�nite dimensional Lie algebraX(G=K)K of K-invariant regular algebrai
 ve
tor �elds using the geometry of G=K and theK-spheri
al representations of G. Assume G is semisimple and simply-
onne
ted and letJ be the algebra of K biinvariant fun
tions on G. An expli
it set of free generators forthe lo
alization X(G=K)K is 
onstru
ted for a suitable  2 J . A 
ommutator formula isobtained for K-invariant ve
tor �elds in terms of the 
orresponding K-
ovariant maps fromG to the isotropy representation of G=K. Ve
tor �elds on G=K whose horizontal lifts toG are tangent to the Cartan embedding of G=K into G are 
alled 
at. When G is simpleand simply 
onne
ted, it is shown that every element of X(G=K)K is 
at if and only if Kis semisimple. The gradients of the fundamental 
hara
ters of G are shown to generate all
onjugation-invariant ve
tor �elds on G. These results are applied in the 
ase of the adjointrepresentation of G = SL(2;C) to 
onstru
t a 
onjugation invariant di�erential operatorwhose kernel furnishes a harmoni
 de
omposition of C[G℄.1. Introdu
tionIn this paper we study the in�nite dimensional Lie algebra of K-invariant ve
tor �elds on a re-du
tive symmetri
 spa
e G=K. Our motivation was the investigation of the algebra of invariantdi�erential operators for non transitive group a
tions on smooth aÆne varieties, and in parti
-ular the abstra
t Howe duality theorem one has for this situation (see for example [Agr01, Satz2.2℄). Correspondingly, we shall work in the algebrai
 
ategory, i. e. G is a 
omplex 
onne
tedredu
tive linear algebrai
 group and K is the �xed points of an involutory automorphism � ofG (thus G=K is the 
omplexi�
ation of a Riemannian symmetri
 spa
e).There is a 
anoni
al G-module isomorphism between the spa
e X(G=K) of regular algebrai
ve
tor �elds on G=K and the algebrai
ally indu
ed representation IndGK(�), where � is theisotropy representation of K. In parti
ular, the spa
e X(G=K)K of K-invariant ve
tor �eldson G=K 
orresponds to the K-�xed ve
tors in the indu
ed representation. When G is simpleand simply 
onne
ted, Ri
hardson's results [Ri
82℄ imply that X(G=K) is a free module overthe algebra J of K-biinvariant fun
tions on G. In Theorem 2.2 we obtain an expli
it set of freegenerators for a lo
alization X(G=K)K , for some  2 J .We next study X(G=K)K as a Lie algebra in Se
tion 3 and obtain a formula for the 
ommu-tator of K-invariant ve
tor �elds in terms of the asso
iated K-
ovariant mappings. The Cartanembedding G=K �! P � G given by gK 7! g�(g)�1 is a fundamental tool in the study ofsymmetri
 spa
es, and it is natural to use it to study X(G=K)K . Invariant ve
tor �elds onG=K whose horizontal lifts to G are tangent to P are 
alled 
at (in fa
t, the Cartan embeddingindu
es a priori two di�erent notions of 
atness, whi
h we show to be equivalent). We obtainDate: 31st Mar
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2 ILKA AGRICOLA AND ROE GOODMANa 
ommutator formula with no 
urvature term for the a
tion on P of these ve
tor �elds. For Gsimple and simply 
onne
ted, we prove (Theorem 3.1) that every element of X(G=K)K is 
atif and only if K is semisimple (i.e. G=K is not the 
omplexi�
ation of a hermitian symmetri
spa
e).In Se
tion 4 we study the 
onjugation a
tion of a semisimple group G on itself. This is anexample of the Cartan embedding of a symmetri
 spa
e for the group G � G and involution�(g; h) = (h; g). In this 
ase all 
onjugation-invariant ve
tor �elds on G are 
at. Assuming Gis simply-
onne
ted, we show that the gradients of the 
hara
ters of the fundamental represen-tations of G give a free basis for the 
onjugation-invariant ve
tor �elds on all of G, with nolo
alization needed (Theorem 4.1). In the spe
ial 
ase of SL(n;C) we 
al
ulate the 
ommuta-tors of an expli
it basis of 
onjugation-invariant ve
tor �elds. When G = SL(2;C) we 
onstru
ta C-basis for X2 = X(G)AdG and 
ompute the 
ommutators and the a
tion on invariants ofthis basis. We show that X2 is isomorphi
 to a subalgebra of the Witt algebra (Theorem 4.5)and we �nd the highest weight ve
tors inside C[SL(2;C)℄.Se
tion 5 establishes a separation of variables theorem for SL(2;C). More pre
isely, usingthe pre
eding results, we 
onstru
t expli
itly a 
onjugation-invariant di�erential operator onSL(2;C) su
h that its kernel H realizes the isomorphismC[SL(2;C)℄ �= C[SL(2;C)℄AdSL(2;C) 
H :This result (Theorem 5.3) is the global version of the separation of variables in the isotropyrepresentation going ba
k to Kostant and Kostant-Rallis ([Kos63℄, [KR71℄). However, our proofrequires extensive representation-theoreti
 
al
ulations and does not seem to extend to arbitrary
onjugation a
tions or symmetri
 spa
es in any obvious way.A preliminary version of some of the results in this arti
le (in parti
ular, Theorem 5.3)appeared in the �rst author's dissertation ([Agr00℄). While writing this paper, the �rst authorlearned from P. Mi
hor (Vienna) that he and B. Kostant had obtained results 
on
erningthe 
onjugation a
tion of an algebrai
 redu
tive group G on itself. In the preprint [KM01℄,
onjugation-equivariant maps and their properties are studied using an approa
h somewhatsimilar to our des
ription via spheri
al representations. They also obtain an expli
it algebrai
separation of variables theorem for SL(n;C).Thanks. We thank Thomas Friedri
h (Humboldt-Universit�at zu Berlin) for many valuabledis
ussions on the topi
 of this paper. We also thank Siddhartha Sahi (Rutgers University) forhis insights and suggestions 
on
erning spheri
al representations and Friedri
h Knop (RutgersUniversity) for helpful 
omments 
on
erning di�erential forms and quotient varieties.2. K-Invariant ve
tor fields on G=K2.1. Ve
tor �elds on G and G=K. Let G be a 
onne
ted 
omplex redu
tive linear algebrai
group and let � be an involutive automorphism of G. Let K be the �xed point set G�. Wedenote the de
omposition of the Lie algebra g into the �1-eigenspa
es of � by g = k + p.Sin
e G=K is an aÆne variety, we 
an identify the regular fun
tions on G=K with the rightK-invariant regular fun
tions on G.We denote by X(G) (respe
tively X(G=K)) the regular (algebrai
) ve
tor �elds on G (re-spe
tively G=K). We �x a trivialization of the tangent bundle T G �= G � g so that a regularve
tor �eld X on G 
orresponds to a regular map � : G ! g and a left-invariant ve
tor �eld
orresponds to a 
onstant map. The relation between X and � is given by(1) Xf(g) = ddtf(g(1 + t�(g)))����t=0for all f 2 C[G℄ (we may assume G � GL(n;C); then f is the restri
tion to G of a regularfun
tion on GL(n;C) so the right side makes sense, with the sums and produ
ts being matrixoperations).



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 3Proposition 2.1. Let � be the isotropy representation of K on p, and let IndGK(�) be the spa
eof regular mappings � : G! p satisfying the right K-
ovarian
e 
ondition(2) �(gk) = �(k)�1�(g) for all k 2 K and g 2 G.Let G a
t by left translations on IndGK(�). Then X(G=K) �= IndGK(�) as a G-module, where theve
tor �eld X 2 X(G=K) 
orresponding to � 2 IndGK(�) a
ts by formula (1) on f 2 C[G=K℄.In parti
ular, the K-invariant regular ve
tor �elds on G=K 
orrespond to the K-�xed elementsin IndGK(�).Proof. The in
lusion C[G=K℄ � C[G℄ and the bundle isomorphismT (G=K) �= G�K pimply that a regular ve
tor �eld X on G=K 
an be identi�ed with a map � 2 IndGK(�) byformula (1). The 
ovarian
e 
ondition (2) on � implies that Xf 2 C[G=K℄ for all f 2 C[G=K℄;the assumption that � has values in p then makes the 
orresponden
e � 7�! X bije
tive. �2.2. Some �niteness results. Let J = C[G=K℄K be the algebra of K-biinvariant regularfun
tions on G. Then X(G=K) and IndGK(�) are J -modules under pointwise multipli
ation.Furthermore, if X 2 X(G=K) 
orresponds to the map � : G ! p, then, for f 2 J , the ve
tor�eld fX 
orresponds to the map g 7! f(g)�(g).Fix a maximal �-anisotropi
 algebrai
 torus A � G with Lie algebra a. Let M be the
entralizer of A in K, and M 0 the normalizer of A in K. Let W = M 0=M be the \little Weylgroup". Then under the restri
tion map J �= C[A℄W (see [Ri
82, Cor. 11.5℄).Theorem 2.1. Let G be semisimple. Assume that C[A℄W is a polynomial algebra (this isalways true if G is simply 
onne
ted). Then the spa
e X(G=K)K of K-invariant ve
tor �eldson G=K is a free J -module of rank dim(pM ).Proof. We have X(G=K)K �= IndGK(�)K as a J -module. ButIndGK(�)K = MorK(KnG; p);the spa
e of K-equivariant regular maps from the right 
oset spa
e KnG to p. By [Ri
82, The-orems 12.3 and 14.3℄, there is a K-stable ve
tor subspa
e E of C[KnG℄ so that the pointwisemultipli
ation map J 
E ! C[KnG℄ is a ve
tor spa
e isomorphism. Furthermore, the multi-pli
ity of the isotropy representation � in E is q = dim(pM ). Sin
e K is redu
tive, it followsthat there are maps �1; : : : ;�q from KnG to p that are linearly independent over J and spanMorK(KnG) as an J -module. �Remark 2.1. In [Ri
82, Se
tion 15℄ Ri
hardson indi
ates how to determine all pairs (G; �)with G semisimple, su
h that C[A℄W is a polynomial algebra.2.3. K-invariant ve
tor �elds and spheri
al fun
tions. Given  2 J , we use the trivi-alization of the tangent bundle of G from Se
tion 2.1 to identify the di�erential of  with themap d : G! g� de�ned byd (g)(X) = ddt (g(1 + tX))����t=0 for X 2 g:Sin
e d (g)(X) = 0 for X 2 k, we 
an view g 7! d (g) as a map from G to p�. From theK-biinvarian
e of  it is 
lear that(3) d (kgk0)(X) = d (g)(Ad (k0)X) for k; k0 2 K.We �x a bilinear form on g invariant under AdG and �. This de�nes an isomorphism p �= p�as a K-module, and we let grad (g) 2 p be the element 
orresponding to d (g) 2 p�. From(3) we see that grad 2 IndGK(�)K . Hen
e by Proposition 2.1 grad determines a K-invariantregular ve
tor �eld X on G=K.



4 ILKA AGRICOLA AND ROE GOODMANIf (��; V�) is a �nite-dimensional irredu
ible K-spheri
al representation of G with highestweight �, then the dual representation (���; V �� ) is also K-spheri
al. We �x v� 2 V K� andv�� 2 V �K� , normalized so that hv�; v��i = 1, and let �(g) = h��(g)v�; v��ibe the 
orresponding spheri
al fun
tion on G. Then  � 2 J and hen
e it determines a K-invariant regular ve
tor �eld that we denote by X�. Re
all that when g is simple and (g; k) isa symmetri
 pair, then k is either semisimple or else has a one-dimensional 
enter ([Hel78℄).Theorem 2.2. Assume that G is simply 
onne
ted, g is simple, and G=K has rank r. Let'1; : : : ; 'r be algebrai
ally independent generators for J , and let X1; : : : ; Xr be the 
orrespond-ing K-invariant ve
tor �elds on G=K. Then there is a nonzero fun
tion  2 J so that thefollowing holds (where J and X(G=K)K denote lo
alizations at  ):(i) If the Lie algebra k is semisimple, X1; : : : ; Xr generate the J -module X(G=K)K .(ii) If the 
enter of k is non-zero and has basis J with (adJ)2 = �1, let Yi be the ve
tor �eld
orresponding to the map g 7! (adJ)grad'i(g). Then X1; : : : ; Xr; Y1; : : : ; Yr generatethe J -module X(G=K)K .Proof. We use a modi�
ation of arguments from [Ste65, Theorem 8.1℄, [Sli-B89℄ and [Sol63℄.We �rst observe that(4) grad'(A) � a for all ' 2 J :This is a 
onsequen
e of the KAK polar 
oordinate de
omposition of G, and holds for anyredu
tive G. For the sake of 
ompleteness, we give a proof. Consider the restri
ted root spa
ede
omposition g = m+ a+X� g� ;where m = Lie(M). We 
laim that(5) d'(a)(X) = 0 for all a 2 A and X 2 g�.To prove this, observe that X + �X 2 k, so d'(a)(X + �(X)) = 0. The left K-invarian
e of 'gives 0 = ddt'(a+ t(X + �X)a)jt=0 = d'(a)(Ad (a)�1(X + �X))= d'(a)(a��X + a��X):Sin
e we already know that d'(a)(a�X + a��X) = 0, we 
on
lude that(a� � a��)d'(a)(X) = 0:Thus (5) holds on the dense open set in A where a� 6= a��, and hen
e it holds on all of A. But(5) implies that grad'(A) � (m+ a) \ p = a, proving assertion (4).Now assume G is simply 
onne
ted. Then the set �+ of K-spheri
al highest weights is a freemonoid generated by dominant weights �1; : : : ; �r in a�. Let � = Z�1+ � � �+Z�r be the latti
egenerated by these weights. For � 2 �+, de�ne the monomial symmetri
 fun
tion m� 2 C[A℄Wby m�(a) = X�2W �� a�:Put a partial order� on � by � � � if ��� is a sum of positive restri
ted roots with nonnegative
oeÆ
ients. If � 2 �+, the spheri
al fun
tion  � is given on A by a 
hara
ter sum of the form(6)  �(a) = 
0m�(a) + X�2�+��� 
�m�(a);



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 5where 
0 6= 0 ([Vre76℄; see also [Hel94, Prop. 9.4℄). When � = �i, we write  � =  i. Let !i bethe 
hara
ter !i(a) = a�i of A. Then
 = d!1!1 ^ � � � ^ d!r!ris a nowhere vanishing top-degree di�erential form on A. By formula (4) we 
an write(7) d 1 ^ � � � ^ d rjA = f 
;where f is a regular fun
tion on A that we 
an 
al
ulate using the di�erentials of  ijA. Set� = �1 + � � �+ �r. From formula (6) we see thatf(a) = 
a� +X�2���� 
�a�;with 
 6= 0. Hen
e f 6= 0, so we 
on
lude from formulas (3) and (7) that fd 1; : : : ; d rg islinearly independent on a dense open set in G. Nowd'1 ^ � � � ^ d'r = �('1; : : : ; 'r)�( 1; : : : ;  r)d 1 ^ � � � ^ d r :Sin
e '1; : : : ; 'r are assumed to generate J , the Ja
obian fa
tor is nonzero. Hen
e the di�er-entials d'1; : : : ; d'r are also linearly independent on a dense open set in G.When k is semisimple, p is an irredu
ibleK-module and pM = a has dimension r by [Ban-J90,Prop. 5.14℄. Let fZ1; : : : ; Zrg be a set of free generators for X(G=K)K given by Theorem 2.1.Then there are fun
tions  ij 2 J su
h thatXj =Xi  ij Zi :Set  = det[ ij ℄. Then  6= 0, sin
e the ve
tor �elds X1; : : : ; Xr are linearly independent on adense open set of G=K. This implies statement (i) of the theorem.Now assume k has 
enter CJ with ad(J)2 = �1. The ve
tor �elds Yi in statement (ii) ofthe theorem are K-invariant. Sin
e pM = a� ad(J)a by [Ban-J90, Lemma 5.7 and Prop. 5.14℄,the ve
tor �elds X1; : : : ; Xr; Y1; : : : ; Yr are linearly independent on a dense open set of G=K bythe argument above. Hen
e statement (ii) of the theorem follows from Theorem 2.1 and theargument used for statement (i). �3. Lie algebra stru
ture3.1. Commutator formula on G=K. The symmetri
 spa
e G=K is the base of a holomorphi
prin
ipal K-�bre bundle with total spa
e G. The 
anoni
al 
onne
tion Z : TG ! k on G hashorizontal spa
eT hg G = fX 2 TgG : Z(X) = 0g = fX 2 TgG : dLg�1(X) 2 pg = dLg(p)at the point g 2 G. Sin
e we are working in the 
ontext of linear algebrai
 groups, we 
antake the di�erential of left and right translation as usual matrix multipli
ation; thus we writedLg(X) = g �X (matrix produ
t) for g 2 G and X 2 g.Let X;Y be ve
tor �elds on G=K 
orresponding to maps �;	 in IndGK(�), and let X�; Y �be their horizontal lifts to ve
tor �elds on G. It is 
lear from the de�nition of the 
anoni
al
onne
tion Z that the horizontal lift X� of X to a ve
tor �eld on G is given by formula (1). Iff is any regular fun
tion on G, we have by de�nition(X�Y �f)(g) = d2ds dtf�(g + sg�(g))(1 + t	(g + sg�(g)))�����s=t=0 :



6 ILKA AGRICOLA AND ROE GOODMANTaking a �rst-order Taylor expansion of 	 to determine the 
oeÆ
ient of st in the argument off on the right side of this equation, we �nd that(X�Y �f)(g) = ddr f�g(1 + rH(g))�����r=0 ;where H(g) = �(g)	(g) + d	g(g�(g)). Using the same formula again with the order of X andY inter
hanged, we 
on
lude that for any regular fun
tion f on G,(8) [X�; Y �℄f(g) = ddr f�g(1 + r[�(g);	(g)℄ + r�~	(g))�����r=0 ;where we have set(9) �~	(g) := d	g(g�(g))� d�g(g	(g)):In formula (8) the term [�(g);	(g)℄ is in k and arises from the 
urvature of the 
anoni
al
onne
tion. When f is right K-invariant, however, this term 
an be omitted and we obtain the
ommutator of X and Y as ve
tor �elds on G=K. Thus we have proved the following.Proposition 3.1. Let X and Y be ve
tor �elds on G=K 
orresponding to the maps � and 	in IndGK(�), respe
tively. Then the 
ommutator [X;Y ℄ 
orresponds to the map � ~ 	 de�nedin formula (9).Remark 3.1. Ea
h term on the right side of (9) satis�es the right K-
ovarian
e 
ondition (2).Indeed, if x 2 p, thend�gk(gkx) = ddt��gk(1 + tx)�����t=0 = ddt��g(1 + tAd (k)x)k�����t=0= Ad (k�1)d�g(gAd (k)x)by the K-
ovarian
e property of �. Hen
ed�gk(gk	(gk)) = Ad (k�1)d�g(gAd (k)	(gk)) = Ad (k�1)d�g(g	(g))as 
laimed. Likewise, if � and 	 are left K-invariant, then so is the map g 7�! d�g(g	(g)).Remark 3.2. The 
ommutator formula (9) 
an also be obtained from Cartan's stru
turalequation for the 
anoni
al 
onne
tion, using the fa
t that this 
onne
tion is torsion free.3.2. Cartan embedding and 
at ve
tor �elds. The Cartan embedding of the symmetri
spa
e G=K into G furnishes an alternate des
ription of ve
tor �elds on G=K. This will allow usto dis
uss the properties of Lie algebra X(G=K)K in more detail in some 
ases. The algebrai
group version of this embedding is treated in [Ri
82℄ (see also [GW97, Se
tion 11.2.3℄). Wesummarize the results as follows.Proposition 3.2 (Cartan embedding). For g; y 2 G the formula g ? y = gy�(g)�1 de�nes ana
tion of G on itself. The orbit of the identity P = G ? e = fg �(g)�1 : g 2 Gg is a 
losedirredu
ible subset of G isomorphi
 to G=K as a G-spa
e (relative to this a
tion).This embedding will be denoted by j : G=K �! P � G; gK 7�! g �(g)�1. Thus we have a
ommutative diagram G=K����G - Pj?where the map G ! P is g 7! g�(g)�1 and the map G ! G=K is g 7! gK. The ?-a
tion ofK on P is the usual 
onjugation a
tion. By abuse of notation, we shall often write Ad g bothfor the 
onjugation a
tion of G on G as well as the adjoint representation of G on g. We alsodenote by � the involution on g as well as on G. At any point y of P , one has the in
lusion of



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 7tangent spa
es TyP � TyG. Set �y = (Ad y)�1�. This is an involution on g, and we de�ne kyand py to be the �1-eigenspa
es of �y:ky = fX 2 g : �yX = +Xg; py = fX 2 g : �yX = �Xg :Let �y and �y be the proje
tions on these spa
es:�y = 12(1 + �y); �y = 12(1� �y) :Then py is exa
tly the tangent spa
e TyP , viewed as a subspa
e of g via left translation by y�1[GW97, Se
tion 11.2.7℄, and may be realized asTyP = py = fAd y�1X � �(X) : X 2 gg :The group K permutes the subspa
es py, leaving pe is invariant. More pre
isely, Ad k maps pyto pkyk�1 in an equivariant way, as follows.Lemma 3.1. The following diagram is 
ommutative:pe �y - pypeAd k ? �kyk�1- pkyk�1Ad k?Proof. If X is in py and Y = Ad kX , then�(Y ) = �(Ad kX) = Ad �(k) �(X) = �Ad kAd yX= �Ad (kyk�1)Ad kX = �Ad (kyk�1)Y:Hen
e Ad k maps py to pkyk�1 , as 
laimed. The 
ommutativity of the diagram is as easilyveri�ed. �If � : P ! g is any regular map, then we 
an de�ne a regular ve
tor �eld ~� on P by~�f(y) = ddtf(y + ty�y�(y))����t=0for f 2 C[P ℄ and y 2 P . Now assume that �(y) 2 p for all y 2 P . Sin
e �(�(y)) = ��(y) inthis 
ase, we 
an writey�y�(y) = 12(y�(y) + yAd (y�1)�(y)) = fy;�(y)g;where fa; bg = (1=2)(ab + ba) is the (normalized) anti-
ommutator of the matri
es a; b. Thisgives the alternate formula(10) ~�f(y) = ddtf(y + tfy;�(y)g)����t=0for maps � with values in p. If we assume that � is K-equivariant:�(kyk�1) = Ad (k)�(y) for all k 2 K and y 2 P ;then a brief 
al
ulation (using Lemma 3.1) shows that ~� is a K-invariant ve
tor �eld on P .De�nition 3.1. The ve
tor �eld ~� is said to be 
at if(i) � : P ! p is K-equivariant(ii) Ad (y)�(y) = �(y) for all y 2 P .Sin
e fy;�(y)g = y�(y) for a 
at �eld, formula (10) be
omes(11) ~�f(y) = ddtf(y + ty�(y))����t=0in this 
ase.



8 ILKA AGRICOLA AND ROE GOODMANLemma 3.2. Let � : P ! p be a regular, K-equivariant map. The following are equivalent:(i) ~� is 
at;(ii) ~�y 2 Ty(P ) for all y 2 P ;(iii) �(A) � a.Proof. (i) () (ii): From the identi�
ation of TyP with a subspa
e of g, 
ondition (ii) isequivalent to �y�(y) = �(y) for all y 2 P .But �(y) 2 p when y 2 P , so ��(y) = ��(y), and hen
e�y�(y) = 12(1 + Ad (y))�(y) :This gives the equivalen
e of (i) and (ii).(i) =) (iii): Let a 2 A be a regular element. Then �(a) 2 a if and only if Ad (a)�(a) = �(a).In parti
ular, (i) implies that � maps the regular elements of A into a. Sin
e the regular elementsare dense in A, this implies (iii).(iii) =) (i): Let a 2 A and k 2 K. Set y = kak�1. Then �(y) = Ad (k)�(a) by theK-
ovarian
e properties of �, so Ad (y)�(y) = Ad (k)Ad (a)�(a). Now use (iii) and the K-
ovarian
e again to obtain Ad (y)�(y) = Ad (k)�(a) = �(y) :Sin
e Ad (K)A is dense in P , this equation holds everywhere on P , and hen
e ~� is 
at. �Proposition 3.3. Let X(P )K
at be the set of all 
at ve
tor �elds on P .(i) X(P )K
at is a J -submodule of X(P )K .(ii) If X;Y 2 X(P )K
at 
orrespond to the maps �;	 respe
tively, then [X;Y ℄ = Z, whereZ is the 
at ve
tor �eld 
orresponding to the map � ~ 	. Hen
e X(P )K
at is a Liesubalgebra of X(P )K .Proof. (i): This is obvious from the de�nition.(ii): If � and 	 are any regular maps from P to p, then a straightforward 
al
ulation as inthe proof of formula (8) shows that [~�; ~	℄ =℄�#	, where �#	 : P ! g is de�ned by(12) �#	(y) = d	y(fy;�(y)g)� d�y(fy;	(y)g) + 12[�(y);	(y)℄ :Note however that �#	 has values in g rather than p, in general, so formula (12) does notde�ne a Lie algebra stru
ture on the set of regular maps from P to p. The proje
tion onto TyPof the k 
omponent 12 [�(y);	(y)℄ in formula (12) is the 
urvature term.Now assume that � and 	 
orrespond to 
at ve
tor �elds X and Y . Let a 2 A. Then thepointwise 
ommutator [	(a);�(a)℄ = 0 by 
ondition (iii) of Lemma 3.2. Hen
e[	(kak�1);�(kak�1℄ = Ad (k)[	(a);�(a)℄ = 0 for k 2 Kby K-
ovarian
e. Sin
e Ad (K)A is dense in P , it follows that [	(y);�(y)℄ = 0 for all y 2 P .Hen
e the 
urvature term is zero, fy;�(y)g = y�(y), and �#	 = �~	. It is 
lear that �~	satis�es 
ondition (iii) of Lemma 3.2, so [X;Y ℄ is a 
at ve
tor �eld. �De�nition 3.2. Let X 2 X(G=K)K and let X� be the horizontal lift of X to a ve
tor �eld onG. The ve
tor �eld X is said to be horizontally 
at if X�y 2 Ty(P ) for all y 2 P .If X is a horizontally 
at K-invariant ve
tor �eld on G=K and f is a regular fun
tion on Gthat vanishes on P , then X�f jP = 0 also. Hen
e X� restri
ts to a well-de�ned ve
tor �eld onP that we denote by X\. If X is de�ned by a map � 2 IndGK(�)K , we see from formulas (1)and (11) that X\ = ~�. We note that � is uniquely determined by its restri
tion to P , sin
e KPis dense in G, so X is determined by X\ when X is horizontally 
at. Also �(kyk�1) = �(y)for k 2 K and y 2 P . Thus, by Lemma 3.2, the 
atness of X is equivalent to the 
ondition�(A) � a. In this 
ase, X\ 2 X(P )K
at.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 9Proposition 3.4. Let ' 2 J . Then X' is a horizontally 
at ve
tor �eld.Proof. This follows from formula (4), Lemma 3.2, and the remarks just made. �Let j� : C[P ℄! C[G=K℄ be the algebra isomorphism obtained from the Cartan embedding(j�f = f Æ j for f 2 C[P ℄). De�ne the push-forward ve
tor �eld j�(X) = j��1 Æ X Æ j�for X 2 X(G=K). Then j� gives an isomorphism between X[G=K℄K and X[P ℄K . SupposeX 2 X(G=K)K is de�ned by a map � : G! p. The left K-invarian
e of � and the isomorphismG=K �= P given by the Cartan embedding imply the existen
e of a regular map 	 : G! p su
hthat 2�(g) = 	(�(g)�1g) for all g 2 G.Let f 2 C[P ℄ and y 2 P . Sin
e j�1(y2) = y for y 2 P , we havej�(X)f(y2) = X(j�f)(y) = ddtf�y(1 + t�(y))2y�����t=0(13) = ddtf�y2(1 + t(Ad y)�1	(y2))�����t=0(note that t 7! (1+ t�(y))�(1+ t�(y))�1 is tangent to t 7! 1+2t�(y) at t = 0). Equation (13)uniquely determines j�(X), sin
e the map y 7! y2 is surje
tive on P .When X 2 X(G=K)K is horizontally 
at, it determines two ve
tor �elds on P , namely X\and j�(X). It is evident from equation (13) that these ve
tor �elds are not the same. However,the two notions of 
atness are related as follows.Lemma 3.3. Let X 2 X(G=K)K. Then X is horizontally 
at if and only if j�(X) 2 X(P )K
at.Proof. Suppose j�(X) 2 X(P )K
at. Then j�(X) = ~	, where 	 : P ! p is a regular K-
ovariantmap su
h that Ad (y)	(y) = 	(y) for y 2 P . From equation (13) we see that2�(y) = 	(y2) for all y 2 P .It follows that Ad (y)�(y) = �(y) for y 2 P , so X is horizontally 
at by Lemma 3.2.Conversely, if X is horizontally 
at, then Ad (y)�(y) = �(y) for all y 2 P . Let the map 	be as in equation (13). Sin
e Ad (y)	(y2) = 	(y2) for all y 2 P , we see that j�(X) = ~	 byequation (13). The right K-
ovarian
e of � and the surje
tivity of the map y 7! y2 on P implythat 	(kyk�1) = Ad (k)	(y) for k 2 K and y 2 P .Thus ~	 2 X(P )K
at. �In light of Lemma 3.3, we shall simply use the term 
at in the rest of the paper to refereither to a horizontally 
at ve
tor �eld X 2 X(G=K)K or to an element in X(P )K
at.Theorem 3.1. Assume that G is simply 
onne
ted and g is simple. The following are equiva-lent:(i) k is semisimple.(ii) Every K-invariant regular ve
tor �eld on G=K is 
at.Furthermore, when (ii) holds, then X(P )K = X(P )K
at.Proof. Let '1; : : : ; 'r be a set of algebrai
ally independent generators for J . If k is semisimple,the K-invariant ve
tor �elds 
orresponding to grad'1; : : : ; grad'r are a J -module basis forX(G=K)K by Theorem 2.2. These ve
tor �elds are 
at by Proposition 3.4. Hen
e all K-invariant ve
tor �elds on G=K are 
at by Proposition 3.3 (the property of 
atness is invariantunder lo
alization). On the other hand, if k is not semisimple, then ad(J)grad'i(A) 6� a, sothe 
orresponding ve
tor �eld Yi is not 
at by Lemma 3.2. The last statement follows fromLemma 3.3. �



10 ILKA AGRICOLA AND ROE GOODMANRemark 3.3. When k is not semisimple, the spa
e G=K is the 
omplexi�
ation of a hermitiansymmetri
 spa
e. From Theorem 2.2 we have a dire
t sum de
ompositionX(G=K)K = X+Y;where X is the Lie algebra of 
at rational ve
tor �elds generated over J by the gradient�elds Xi, while Y is generated over J by the (non
at) �elds Yi. We have not determined the
ommutation relations between Xi and Yj .We �nish this se
tion with an easy example where the K-a
tion is trivial, yielding the Wittalgebra of algebrai
 ve
tor �elds on the one-sphere.Example 3.1 (Witt algebra). The (
omplexi�ed) one-sphere C� is, in Cartan's 
lassi�
ation,a symmetri
 spa
e of type BDI with the following involution,C� = SO(2;C)=S(O(1;C)�O(1;C)) ; � � a b�b a � = � a �bb a � :One 
he
ks that K = f1;�1g, P = SO(2;C) and thus g = p = so(2;C) �= C. Sin
e theK-a
tion on P is by 
onjugation, it is trivial, so any regular map P �= C� ! p �= C indu
esa K-invariant ve
tor �eld on the sphere. Those are spanned by fn(x) = xn for n 2 Z, withdi�erential (dfn)x(a) = naxn�1. Sin
e the proje
tion �x is trivial, the 
ommutator formula (9)givesfn ~ fm(x) = (dfm)x(x � fn(x)) � (dfn)x(x � fm(x)) = (m� n)xn+m = (m� n)fm+n(x) :This is the well-known 
ommutator relation of the Witt algebra. The linear 
ombinationskn = fn � f�n and pn = pn + p�n satisfy the relationskn ~ km = (m� n)kn+m � (n+m)km�n; pn ~ pm = (n�m)kn+m + (n+m)kn�m;pn ~ km = (n�m)pn+m � (n+m)pn�m :The Witt algebra thus 
arries a Z2-graduation whi
h we shall en
ounter again later (Theorem4.5). 4. The 
onjugation a
tion4.1. Conjugation-invariant ve
tor �elds. Consider the 
onjugation a
tion of a 
onne
tedredu
tive algebrai
 group G on itself. It �ts into the general s
heme by 
hoosing �G = G � Gwith the involution �(g; h) = (h; g). Then K = f(g; g) : g 2 Gg is the diagonal embedding of Gin G�G, and the Cartan embeddingj : �G=K = (G�G)=G �! G�G; (g; h)K 7�! (g; h)�(g; h)�1 = (gh�1; hg�1)realizes P as f(g; g�1) : g 2 Gg, to whi
h there 
orresponds p = f(X;�X) : X 2 gg on the Liealgebra side. The regular fun
tions on �G=K are of the form '(g; h) = f(gh�1), where f 2 C[G℄.In parti
ular, on P the fun
tion ' is given by '(g; g�1) = f(g2) (
f. the proof of Lemma 3.3).The K a
tion on P is by 
onjugation in ea
h 
omponent, so that we may restri
t attention tothe �rst 
omponent. Thus C[G℄ �= C[P ℄, where f 2 C[G℄ gives the fun
tion F (g; g�1) = f(g).Conjugation-invariant algebrai
 ve
tor �elds then 
orrespond to 
onjugation-equivariant regularmaps from G to g, and we denote them by X(G)AdG. With this identi�
ation, the spheri
alfun
tions be
ome the irredu
ible 
hara
ters of G and the representation � be
omes the adjointrepresentation of G on g. The algebra J 
onsists of the regular 
lass fun
tions on G.Theorem 4.1. Assume G is simply 
onne
ted and g is semisimple of rank r. Let '1; : : : ; 'rbe the 
hara
ters of the fundamental representations of G. Then the ve
tor �elds X1; : : : ; Xron G 
orresponding to grad'1; : : : ; grad'r are a J -module basis for X(G)AdG. Furthermore,all 
onjugation-invariant ve
tor �elds are 
at.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 11Proof. Let T � G be a maximal torus. We may takeA = f(t; t�1) : t 2 Tg; M = f(t; t) : t 2 Tg:The a
tion of M on p is equivalent to the adjoint a
tion of T on g, hen
e dim pM = dim T = r.By [Ste65, Theorem 8.1℄ the ve
tor �elds X1; : : : ; Xr are linearly independent on the set ofregular elements of G. Hen
e the fun
tion  in Theorem 2.2 never vanishes on the set ofregular elements, so its zero set is 
ontained in the set Q of irregular elements of G. But Qis a Zariski 
losed set of 
odimension 3 by [Ste65, Theorem 1.3℄. Hen
e  must be 
onstant.For � : G ! g a 
onjugation equivariant map, we have Ad (y)�(y) = �(y2y�1) = �(y) for ally 2 G. Thus the ve
tor �eld ~� is 
at. �Remark 4.1. Let N �= Cr be the 
ross-se
tion for the set of regular elements of G 
onstru
tedin [Ste65, Theorem 1.4℄. Then Theorem 4.1 applies to any set f'1; : : : ; 'rg of generators for Jif it is known that fd'1; : : : ; d'rg is linearly independent at every point of N .4.2. Invariant ve
tor �elds on SL(n;C). We now apply some of our general results toSL(n;C). The same method applies to other 
lassi
al groups and symmetri
 spa
es usingTheorems 2.2 and 3.1 and the generators for the invariant polynomials given in [GW97, Se
tion12.4.2℄.Theorem 4.2. Let G = SL(n;C). De�ne maps �k : G! g by�k(g) = gk � (1=n) tr(gk) � 1 for g 2 G:Then X(G)AdG is generated (as a module over C[G℄AdG) by the ve
tor �elds ~�1; : : : ; ~�n�1.Proof. De�ne 'k(g) = (1=k) tr(gk) for g 2 G. Then for X 2 g we 
al
ulate thatd'k(g)(X) = ddt'k(g(1 + tX))����t=0 = tr(gkX) = tr(�k(g)X):Using the tra
e form to identify g with g�, we see that grad'k = �k. The restri
tion of 'k tothe diagonal is a multiple of the power sum of degree k, so '1; : : : ; 'n�1 generate the G-invariantregular fun
tions. The matri
esX = 2666664 
1 �
2 � � � (�1)n�2
n�1 (�1)n�11 0 � � � 0 00 1 � � � 0 0... ... . . . ... ...0 0 � � � 1 0
3777775give a 
ross-se
tion N for the regular elements of G as [
1; 
2; : : : ; 
n�1℄ ranges over Cn�1[Ste65, Se
tion 7.4℄. It is easy to see that X;X2; : : : ; Xn�1 are linearly independent. Hen
e themaps �1; : : : ;�n�1 are linearly independent at all points of N . The result now follows fromRemark 4.1. �We 
ompute the 
ommutators of the ve
tor �elds in Theorem 4.2. Sin
e all the 
onjugationinvariant ve
tor �elds are 
at (by Theorem 4.1), it suÆ
es by Proposition 3.3 to 
al
ulate themaps �k ~ �l.Theorem 4.3. The maps �k satisfy the 
ommutation relations�k ~ �l(g) = (l � k) � �k+l(g) + kn � tr(gl) �k(g)� ln � tr(gk) �l(g) :Proof. One obtains for the di�erential(d�k)g(X) = Xgk�1 + gXgk�2 + � � �+ gk�1X � kn tr(Xgk�1) ;



12 ILKA AGRICOLA AND ROE GOODMANwhi
h implies(d�k)g�g � �l(g)� = k�gl+1 � 1n tr(gl) g� gk�1 � kn tr��gl+1 � 1n tr(gl)g�gk�1�= k�gk+l � 1n tr(gk+l) �� kn tr(gl)�gk � 1n tr(gk)�= k � �k+l � kn tr(gl)�k :Now apply formula (9). �In parti
ular, the relation�1 ~ ��1(g) = 1n�tr(g) ��1(g) + tr(g�1) �1(g)�shows that �1 and ��1 generate a �nite Lie ring over the ring of invariants.4.3. Invariant ve
tor �elds on SL(2;C). We 
onsider the 
ase G = SL(2;C) in more detail.Theorem 4.4. Every 
onjugation invariant map 	 : G = SL(2;C) ! g = sl(2;C) is amultiple of the map 	1 : g 7! g � g�1 by an element of C[G℄AdG.Proof. The representation of G on C2 is self-dual, so its 
hara
ter � satis�es2�(g) = tr(g + g�1)Hen
e 2d� = 	1 by the 
al
ulation in the proof of Theorem 4.2. The result now follows fromTheorem 4.1. �In order to get a C-basis of the spa
e X�SL(2;C)�AdSL(2;C) = X2, it thus suÆ
es to 
hooseany 
onvenient basis of the spa
e of invariants. The tra
es on symmetri
 tensor powers of thefundamental representation V of G turned out to yield the simplest formulas.Proposition 4.1. Let g be an element of G = SL(2;C) and denote by SkV the (k + 1)-dimensional irredu
ible representation of G. Thengk+1 � g�k�1 = tr(g)��SkV � (g � g�1):Furthermore, tr(g)��SkV = tr(gk) + tr(gk�2) + � � �+� 1 k eventr(g) k odd:Proof. We �rst prove the se
ond formula on the maximal torus T of G, 
hosen as before. Forh = diag(x; 1=x) 2 T , one hastr(h)��SkV = xk + xk�2 + � � �+ x2�k + x�k :Sin
e tr(hn) = xn + x�n, the formula follows immediately on T . The 
ase distin
tion for thelast term depends on whether the number of summands is even or odd. Sin
e the tra
e is
onjugation invariant, the formula is valid on the dense set of all 
onjugates of T , and thereforealso holds on G. For the �rst formula, we note that� a b
 d �+ � d �b�
 a � = (a+ d) � 1implies gn + g�n = tr(gn) � 1, so the algebrai
 identitygk+1 � g�k�1 = (gk + gk�2 + � � �+ g2�k + g�k) � (g � g�1)�nishes the proof. �Corollary 4.1. The ve
tor �elds de�ned by the maps 	k(g) = gk � g�k for k � 1 are a basisfor X2 as a ve
tor spa
e over C.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 13We 
ompute the 
ommutation relations for this basis. For notational simpli
ity, we write 	kfor the 
onjugation invariant ve
tor �eld de�ned by the map g 7! 	k(g).Theorem 4.5. The ve
tor �elds 	k satisfy the 
ommutator relations[	k;	l℄ = (l � k)	k+l � (k + l)	l�k :In parti
ular, the algebra X2 of 
onjugation invariant ve
tor �elds on SL(2;C) is isomorphi
to a subalgebra of the Witt algebra, and the ve
tor �elds with even index f	2kgk�1 span asubalgebra of X2.Proof. We 
ompute the di�erential(d	k)g(X) = Xgk�1 + gXgk�2 + � � �+ gk�1X+ g�1Xg�k + g�2Xg�k+1 + � � �+ g�kXg�1 ;from whi
h we obtain(d	k)g�g �	l(g)� = k � (gk+l � g�k�l + gl�k � gk�l) = k � (	k+l(g) + 	l�k(g)) :The 
ommutator formula (9) and Proposition 3.3 then imply the result. �The a
tion of the ve
tor �elds 	k on the invariants is of parti
ular interest. The three mostimportant bases for the invariant fun
tions are:�m(g) = tr(g)��SmV ; Im(g) = tr(gm); Jm(g) = tr(g)m:Only the a
tion of 	k on the power sum Im is given by a simple formula. For this reason, werestri
t our attention to k = 1 in the other two 
ases.Theorem 4.6. The ve
tor �eld 	k a
ts on invariants in C[SL(2;C)℄AdSL(2;C) as follows:	k(Im) = m(Im+k � Im�k);	1 (�m) = m�m+1 � (m+ 2)�m�1; 	1(Jm) = m (Jm+1 � 4 Jm�1) :Proof. For the invariant Im, the 
omputation is straightforward using formula (1)	k(Im) = ddt Im(g + tg	k(g))����t=0 = ddt tr�(g + t(g1+k � g1�k))m�����t=0= ddt tr�gm + tm gm�1(g1+k � g1�k) + � � � �����t=0= ddt tr�gm + tm(gm+k � gm�k)�����t=0= m �tr(gm+k)� tr(gm�k)� = m(Im+k � Im�k) :Sin
e �m = Im+Im�2+� � � by Proposition 4.1, the se
ond formula is easily proved by indu
tion.The last formula is shown with a similar argument than the �rst and requires at one stage theidentity tr(g2) = tr(g)2 � 2, whi
h is immediately veri�ed on matri
es. �From the point of representation theory, the in�nite dimensional Lie algebra X2 
omes withtwo natural representations (and in fa
t many more, see Se
tion 5). The 
ommutator formula(Theorem 4.5) des
ribes the stru
ture of the adjoint representation of X2 and shows in parti
ularthat it has no (non-trivial) �nite-dimensional subalgebras. The a
tion on invariants 
ontains atrivial summand (the 
onstant fun
tion, annihilated by all 	k), the rest is inde
omposable inthe following sense: for any �xed m 6= 0, the linear hull V1 of the invariantsIm; Im�2; Im�4; : : : ; Im+1 � Im�1; Im�3 � Im�1; Im�5 � Im�3; : : :is invariant under the a
tion of X2, but its 
omplement V2 spanned byIm+1 + Im�1; Im�3 + Im�1; Im�5 + Im�3; : : :



14 ILKA AGRICOLA AND ROE GOODMANis not. The se
ond 
laim is immediately 
lear, sin
e 	1 maps V2 into V1. For the �rst, Theo-rem 4.6 implies that 	k maps Im into a multiple of Im+k� Im�k, whi
h is a linear 
ombinationof elements of V1. The same applies to the image of all di�eren
es Im+k � Im�k.Remark 4.2. The example G = SL(2;C) is treated in detail in Se
tion 3 of the paper [KM01℄and the authors obtain similar formulas.5. A separation of variables theorem for SL(2;C)5.1. Harmoni
 
ofree a
tions. We re
all that an a
tion of a redu
tive group G on an irre-du
ible aÆne variety M is 
alled 
ofree if there exists a G-invariant subspa
e H of C[M ℄ su
hthat the multipli
ation map(14) H 
C[M ℄G �! C[M ℄; h
 f 7�! h � fis an isomorphism of ve
tor spa
es. Let M==G be the algebrai
 quotient of M by G (the aÆnevariety su
h that C[M==G℄ �= C[M ℄G), and let � : M 7! M==G be the 
anoni
al proje
tion(see [Kra85℄). By using the solution to the Serre 
onje
ture 
on
erning algebrai
 ve
tor bundleson Cn, Ri
hardson ([Ri
81℄) was able to establish a general algebrai
 
riterion for an a
tion tobe 
ofree.Theorem 5.1 (Ri
hardson). Let G be an algebrai
 group with redu
tive identity 
omponentand M a smooth irredu
ible aÆne G-variety. Then this a
tion is 
ofree whenever the followingtwo 
onditions are satis�ed:(i) the algebra of invariants C[M ℄G is a polynomial ring;(ii) the �ber ��1(x) has dimension dimM � dimM==G for all x 2M==G.Let G be a simply 
onne
ted semisimple algebrai
 group, T a maximal torus in G and W theWeyl group of G relative to T . Then in parti
ular the following group a
tions are 
ofree:(a) the 
onjugation a
tion of G on itself;(b) the a
tion of W on T ;(
) the K-a
tion on the symmetri
 spa
e G=K, where K is the �xed point set of someinvolution � of G.However, Ri
hardson's proof gives no expli
it realization of the spa
e H .Classi
al results by Kostant and Kostant-Rallis ([Kos63℄, [KR71℄) state (among others) thatthe isotropy representation p of a symmetri
 spa
e G=K is always 
ofree. Furthermore, inthe fa
torization (14) in this 
ase, the K-invariant subspa
e H may always be realized as theinterse
tion of the kernels of a �nite number of K-invariant di�erential operators with 
onstant
oeÆ
ients, thus generalizing the notion of harmoni
 polynomials for SO(n). This justi�es thefollowing de�nition.De�nition 5.1. A 
ofree a
tion of a redu
tive algebrai
 groupK on an irredu
ible aÆne varietyM will be 
alled harmoni
 if there exist K-invariant di�erential operators D1; : : : ; Dn on Msu
h that the linear spa
e H = n\i=1 kerDirealizes the isomorphism (14).Example 5.1. We start with an easy example of a harmoni
 Weyl group a
tion.Theorem 5.2. The a
tion of the Weyl group W = S2 on the maximal torus T �= C� ofG = SL(2;C) is harmoni
.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 15Proof. The ring of regular fun
tions of T is isomorphi
 to C[ez; e�z℄ and the non trivial elementof S2 a
ts hereon as the inversion enz 7! e�nz. Thus the invariant ring is exa
tly the polynomialring generated by ez + e�z, and one easily shows that �z and C[ez; e�z℄ together generate thering of algebrai
 di�erential operators on T . The operatorD = (ez � e�z)�z + (ez + e�z)�2zis obviouslyW -invariant and an easy 
al
ulation shows that its kernel H 
onsists exa
tly of thefun
tions 1 and ez � e�z. Sin
e on the other hand the aÆne ring C[T ℄ splits into the isotypi

omponents of the trivial and the signum representation, one getsC[T ℄ = 1 �C[T ℄W + (ez � e�z) �C[T ℄W = H 
C[T ℄Wand the a
tion is therefore harmoni
. �Noti
e that (ez � e�z)�z is just the W -invariant ve
tor �eld indu
ed by the W -equivariantmapping T ! h; h 7! h� h�1. It should be possible to extend this example to wide 
lasses ofWeyl group a
tions.5.2. Harmoni
ity of the SL(2;C) 
onjugation a
tion. The remainder of this se
tion isdevoted to the proof that the 
onjugation a
tion of SL(2;C) on itself is harmoni
. The strategyis to guess a good 
andidate for the spa
eH of harmoni
s (this is the easy part) and to expli
itely
onstru
t a 
onjugation invariant di�erential operator with kernel H .Under the simultaneous left and right a
tion of G, the aÆne ring of SL(2;C) de
omposes byFrobenius re
ipro
ity into(15) C[SL(2;C)℄ �= Md�0 SdV 
 (SdV )� :The de
omposition of C[SL(2;C)℄ under the 
onjugation a
tion of G then amounts to de
om-posing ea
h o

urring tensor produ
t into G-irredu
ibles. By the Clebs
h-Gordon formula, weknow that SdV 
 (SdV )� = S2dV � S2(d�1)V � � � � � S0V , where the trivial representation
orresponds to the tra
e over SdV . Thus, we obtainC[SL(2;C)℄ �= Md�0 C[SL(2;C)℄AdN (d)
 SdV ;where the �rst fa
tor denotes the matrix fun
tions invariant under the lower diagonal unipo-tent matri
es N and of weight d. In [Agr01, Satz 2.2℄ it is shown that the in�nite-dimensionalmultipli
ity spa
es of the appearing irredu
ible SL(2;C)-modules are irredu
ible and pairwiseinequivalent modules for the 
anoni
al a
tion of the algebra of 
onjugation invariant di�eren-tial operators; this applies in parti
ular to the ring of invariants itself (d = 0). The spa
eC[SL(2;C)℄AdN (d) is spanned by the produ
ts of the d-th power of the matrix 
oeÆ
ient g12with any invariant, C[SL(2;C)℄AdN (d) = (g12)d �C[SL(2;C)℄AdSL(2;C) :Thus we may 
hoose for H the sum of all SL(2;C)-representations with highest weight ve
tor(g12)d for d = 0; 1; 2; : : :. The problem then is to 
onstru
t an invariant di�erential operator Dwith C[SL(2;C)℄AdN \ kerD = C[g12℄ :Remark 5.1. The spa
e H 
oin
ides with the pull ba
k under the map g 7! 	(g) of theharmoni
s on the Lie algebra g, de�ned as in [Kos63℄. In the preprint [KM01, 6.2℄, it is shownthat this 
hoi
e of a subspa
e H of harmoni
s works for G = SL(n;C) for all n. Denote byH(g) the harmoni
s on g, and 
onsider the 
onjugation invariant map �1(g) = g � tr(g) � 1=nalready en
ountered in Theorem 4.2. Then Kostant and Mi
hor prove the isomorphismC[G℄ �= C[G℄AdG 
 ��1H(g) :
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onstru
tion of the di�erential operator D. Besides the ve
tor �eld	 = 	1 from Theorem 4.4, the Casimir operator � that generates the 
enter of U(g) will alsoplay a 
ru
ial role. We normalize � su
h that���SdV
(SdV )� = d(d+ 2) � id :We need to keep tra
k of the behavior of matrix fun
tions under the transition from the left andright to the 
onjugation a
tion. For this we will use the expli
it isomorphism of equation (15).Let u; v be a basis of V and x; y the dual basis of V �. We 
hoose the monomials ukvd�k; k =0; : : : ; d; as a basis for SdV and realize the isomorphism Sd(V �) �= (SdV )� by'1 � � �'d 7�! hv1 � � � vd 7�! 1d! X�2Sd '�(1)(v1) � � �'�(d)(vd)i :Then �dk�xkyd�k is the basis ve
tor in (SdV )� dual to ukvd�k. Sin
e 
onfusions 
annot o

ur,we shall hen
eforth omit the tensor produ
t sign for elements of SdV 
 (SdV )�. With this
hoi
e of dual bases, the tra
e over SdV is the total 
ontra
tion and may be writtentrjSdV = (ux+ vy)d = dXk=0�dk�xkyd�k � ukvd�k :Elements of SL(2;C) will be parameterized as g = �� �
 Æ �. They a
t on V and V � byg � �uv � = ��u+ �v
u+ Æv � ; g�t �xy � = � Æx� 
y��x+ �y � :For illustration, we 
he
k that (ux+ vy)d is G-invariant, thus reproving its identi�
ation withthe tra
e, g � (ux+ vy)d = [(�u+ �v)(Æx � 
y) + (
u+ Æv)(��x + �y)℄d= [(�Æ � �
)(ux+ vy)℄d = (ux+ vy)dand 
ompute the fun
tion on G 
orresponding to the tensor (uy)d 2 SdV 
 SdV �:f(g) = yd(g � ud) = yd�(�u+ �v)d� = yd(�dvd + d��d�1uvd�1 + : : :)= �d � 1 + ��d�1 � 0 + : : :+ 0 = �d :This is just the highest weight fun
tion (g12)d.Theorem 5.3. The kernel of the 
onjugation invariant di�erential operatorD = �tr(g)3�+ tr(g)	2 + (tr(g)2 + 4)	on G = SL(2;C), interse
ted with C[SL(2;C)℄AdN , 
onsists of the linear hull of all the fun
tions(g12)n; n 2 N. Hen
e the 
onjugation a
tion of SL(2;C) is harmoni
.Proof. The proof 
onsists of a tedious 
omputation; we only give an outline here. As in The-orem 4.6, one shows that the ve
tor �eld 	 a
ts on the matrix fun
tion Jm;n(g) = Jm � gn12 =(� + Æ)m�n by 	(Jm;n) = (n+m) Jm+1;n � 4mJm�1;n :Thus we obtain for the square of its a
tion	2(Jm;n) = (n+m)(n+m+ 1)Jm+2;n � 4(2m2 +mn+ n)Jm;n + 16m(m� 1)Jm�2;n :For m = 0 this means in parti
ularD(J0;n) = �tr(g)3n(n+ 2)J0;n + tr(g) [n(n+ 1)J2;n � 4nJ0;n℄ + (tr(g)2 + 4)nJ1;n = 0 ;as needed. The proof that DJm;n 6= 0 for m 6= 0 requires more work. The problem is todetermine the fun
tion on G 
orresponding to the tensor (uy)m(ux+vy)n 2 Sm+nV 
Sm+nV �,
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e the eigenvalue of � on Jm;n. In fa
t, a full formula 
an only be proved forn = 0. In this situation, one �rst shows on the maximal torus T of G the validity of the formulatr(g)��SmV = [m=2℄Xk=0 (�1)k�m� kk �tr(g)m�2k :Then, using � tr(g)��SmV = m(m+ 2)tr(g)��SmV , a lengthy indu
tion proof yields� tr(g)m = m(m+ 2)tr(g)m � 4m(m� 1)tr(g)m�2 :The expli
it 
al
ulation may be found in [Agr00, p. 54-55℄. Sin
e the a
tion of 	 and 	2 wasdetermined before, one gets for the a
tion of DD tr(g)m = �4m(m+ 1)tr(g)m+1 + 16m(m� 2)tr(g)m�1 :The right hand side vanishes exa
tly for m = 0, as it should. For the general 
ase, we showthat the matrix fun
tion fm;n(g) 
orresponding to (uy)n(ux+ vy)m has the formfm;n(g) = �n �tr(g)m + m(1�m)n+m tr(g)m�2 +R� ;where the remainder R is a sum of tr(g) to the powers m � 4;m � 6; : : :. The main pointhere is in fa
t the pre
ise value of the 
oeÆ
ient of tr(g)m�2, sin
e the general form of thisAnsatz is obviously 
orre
t. For n = 0, we re
over for the se
ond 
oeÆ
ient the old result1�m = ��m�11 �. For the 
omputation, we may restri
t fm;n(g) to the Borel subgroup B of allgroup elements with 
 = 0. Then one has for b 2 Bfm;n(b) = (�u+ �v)nyn �(�u+ �v)x + ��1vy�m= ��nvn + n��n�1uvn�1 + � � � � yn� �vmym�m +mvm�1ym�1�m�1 (�u+ �v)x + m(m� 1)2 vm�2ym�2�m�2 (�u+ �v)2x2 + � � � � :We sort this produ
t by in
reasing powers of �, starting with ��m. The produ
t of the �rstsummands in every fa
tor yields the only 
ontribution to ��m. The two mixed produ
tsof the �rst summand in one fa
tor and the se
ond summand in the other fa
tor both yield
ontributions to ��(m�2) and ��(m�1). However, the 
ontribution to ��(m�1) is zero, be
ausevn+mxyn+m�1 = 0, these two basis elements are not dual to ea
h other. Similarly, the produ
tof �mvm in the �rst fa
tor with the third summand in the se
ond fa
tor gives no 
ontributionto ��(m�2), be
ause the basis ve
tors do not mat
h. To summarize, one gets the expansionfm;n(b) = �n �vn+myn+m�m + (m+ nm)uvn+m�1xyn+m�1�m�2 + � � � � :The ve
tor xyn+m�1 is dual to uvn+m�1 up to a 
orre
tion fa
tor of n+m, so we �nally getfm;n(b) = �n � 1�m + m(n+ 1)n+m 1�m�2 + � � � � :By its nature, fm;n(b) has to be a produ
t of �n times an invariant. Thus the expressioninside the bra
kets is a linear 
ombination of powers of (� + ��1). Sin
e (� + ��1)m =��m +m��(m�2) + � � � , there exists a rearrangement of terms su
h thatfm;n(b) = �n �(� + ��1)m +�m(n+ 1)n+m �m�(�+ ��1)m�2 + � � � � :This is the desired expression, on whi
h we 
an now study the a
tion of the Casimir operator.The fun
tion fm;n is an eigenfun
tion of � with eigenvalue (n+m)(n+m+ 2), hen
e��ntr(g)m = (n+m)(n+m+ 2)fm;n � m(1�m)n+m ��ntr(g)m�2 ��R ;



18 ILKA AGRICOLA AND ROE GOODMANand again ��ntr(g)m�2 = (n + m � 2)(n + m)�ntr(g)m�2+ lower order terms. Sorting bypowers of tr(g), we get��ntr(g)m = (n+m)(n+m+ 2)�ntr(g)m + 4m(1�m)�ntr(g)m�2 + ~R :We 
onje
ture that ~R = 0, but we do not need this here. Noti
e that the se
ond 
oeÆ
ientdoes not depend on n. Going ba
k to the de�nition of the operator D, we sort the result againby de
reasing powers of tr(g) to obtainD�ntr(g)m = �4m(n+m+ 1)�ntr(g)m+1 + � � � :As a polynomial in tr(g), D�ntr(g)m vanishes if and only if every 
oeÆ
ient is zero, and alook on the se
ond fa
tor shows that this happens pre
isely for m = 0. Thus we showed thatD�ntr(g)m 6= 0 for m 6= 0. �Referen
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