
THE ALGEBRA OF K-INVARIANT VECTOR FIELDSON A SYMMETRIC SPACE G=KILKA AGRICOLA AND ROE GOODMANAbstrat. When G is a omplex redutive algebrai group and G=K is a redutive symmet-ri spae, the deomposition of C[G=K℄ as a K-module was obtained (in a non-onstrutiveway) by Rihardson, generalizing the elebrated result of Kostant-Rallis for the linearizedproblem (the harmoni deomposition of the isotropy representation). To obtain a onstru-tive version of Rihardson's results, this paper studies the in�nite dimensional Lie algebraX(G=K)K of K-invariant regular algebrai vetor �elds using the geometry of G=K and theK-spherial representations of G. Assume G is semisimple and simply-onneted and letJ be the algebra of K biinvariant funtions on G. An expliit set of free generators forthe loalization X(G=K)K is onstruted for a suitable  2 J . A ommutator formula isobtained for K-invariant vetor �elds in terms of the orresponding K-ovariant maps fromG to the isotropy representation of G=K. Vetor �elds on G=K whose horizontal lifts toG are tangent to the Cartan embedding of G=K into G are alled at. When G is simpleand simply onneted, it is shown that every element of X(G=K)K is at if and only if Kis semisimple. The gradients of the fundamental haraters of G are shown to generate allonjugation-invariant vetor �elds on G. These results are applied in the ase of the adjointrepresentation of G = SL(2;C) to onstrut a onjugation invariant di�erential operatorwhose kernel furnishes a harmoni deomposition of C[G℄.1. IntrodutionIn this paper we study the in�nite dimensional Lie algebra of K-invariant vetor �elds on a re-dutive symmetri spae G=K. Our motivation was the investigation of the algebra of invariantdi�erential operators for non transitive group ations on smooth aÆne varieties, and in parti-ular the abstrat Howe duality theorem one has for this situation (see for example [Agr01, Satz2.2℄). Correspondingly, we shall work in the algebrai ategory, i. e. G is a omplex onnetedredutive linear algebrai group and K is the �xed points of an involutory automorphism � ofG (thus G=K is the omplexi�ation of a Riemannian symmetri spae).There is a anonial G-module isomorphism between the spae X(G=K) of regular algebraivetor �elds on G=K and the algebraially indued representation IndGK(�), where � is theisotropy representation of K. In partiular, the spae X(G=K)K of K-invariant vetor �eldson G=K orresponds to the K-�xed vetors in the indued representation. When G is simpleand simply onneted, Rihardson's results [Ri82℄ imply that X(G=K) is a free module overthe algebra J of K-biinvariant funtions on G. In Theorem 2.2 we obtain an expliit set of freegenerators for a loalization X(G=K)K , for some  2 J .We next study X(G=K)K as a Lie algebra in Setion 3 and obtain a formula for the ommu-tator of K-invariant vetor �elds in terms of the assoiated K-ovariant mappings. The Cartanembedding G=K �! P � G given by gK 7! g�(g)�1 is a fundamental tool in the study ofsymmetri spaes, and it is natural to use it to study X(G=K)K . Invariant vetor �elds onG=K whose horizontal lifts to G are tangent to P are alled at (in fat, the Cartan embeddingindues a priori two di�erent notions of atness, whih we show to be equivalent). We obtainDate: 31st Marh 2003.Key words and phrases. symmetri spaes, invariant vetor �elds, invariant di�erential operators, separationof variables.This work was partially supported by the SFB 288 "Di�erential geometry and quantum physis" of theDeutshe Forshungsgemeinshaft. 1



2 ILKA AGRICOLA AND ROE GOODMANa ommutator formula with no urvature term for the ation on P of these vetor �elds. For Gsimple and simply onneted, we prove (Theorem 3.1) that every element of X(G=K)K is atif and only if K is semisimple (i.e. G=K is not the omplexi�ation of a hermitian symmetrispae).In Setion 4 we study the onjugation ation of a semisimple group G on itself. This is anexample of the Cartan embedding of a symmetri spae for the group G � G and involution�(g; h) = (h; g). In this ase all onjugation-invariant vetor �elds on G are at. Assuming Gis simply-onneted, we show that the gradients of the haraters of the fundamental represen-tations of G give a free basis for the onjugation-invariant vetor �elds on all of G, with noloalization needed (Theorem 4.1). In the speial ase of SL(n;C) we alulate the ommuta-tors of an expliit basis of onjugation-invariant vetor �elds. When G = SL(2;C) we onstruta C-basis for X2 = X(G)AdG and ompute the ommutators and the ation on invariants ofthis basis. We show that X2 is isomorphi to a subalgebra of the Witt algebra (Theorem 4.5)and we �nd the highest weight vetors inside C[SL(2;C)℄.Setion 5 establishes a separation of variables theorem for SL(2;C). More preisely, usingthe preeding results, we onstrut expliitly a onjugation-invariant di�erential operator onSL(2;C) suh that its kernel H realizes the isomorphismC[SL(2;C)℄ �= C[SL(2;C)℄AdSL(2;C) 
H :This result (Theorem 5.3) is the global version of the separation of variables in the isotropyrepresentation going bak to Kostant and Kostant-Rallis ([Kos63℄, [KR71℄). However, our proofrequires extensive representation-theoreti alulations and does not seem to extend to arbitraryonjugation ations or symmetri spaes in any obvious way.A preliminary version of some of the results in this artile (in partiular, Theorem 5.3)appeared in the �rst author's dissertation ([Agr00℄). While writing this paper, the �rst authorlearned from P. Mihor (Vienna) that he and B. Kostant had obtained results onerningthe onjugation ation of an algebrai redutive group G on itself. In the preprint [KM01℄,onjugation-equivariant maps and their properties are studied using an approah somewhatsimilar to our desription via spherial representations. They also obtain an expliit algebraiseparation of variables theorem for SL(n;C).Thanks. We thank Thomas Friedrih (Humboldt-Universit�at zu Berlin) for many valuabledisussions on the topi of this paper. We also thank Siddhartha Sahi (Rutgers University) forhis insights and suggestions onerning spherial representations and Friedrih Knop (RutgersUniversity) for helpful omments onerning di�erential forms and quotient varieties.2. K-Invariant vetor fields on G=K2.1. Vetor �elds on G and G=K. Let G be a onneted omplex redutive linear algebraigroup and let � be an involutive automorphism of G. Let K be the �xed point set G�. Wedenote the deomposition of the Lie algebra g into the �1-eigenspaes of � by g = k + p.Sine G=K is an aÆne variety, we an identify the regular funtions on G=K with the rightK-invariant regular funtions on G.We denote by X(G) (respetively X(G=K)) the regular (algebrai) vetor �elds on G (re-spetively G=K). We �x a trivialization of the tangent bundle T G �= G � g so that a regularvetor �eld X on G orresponds to a regular map � : G ! g and a left-invariant vetor �eldorresponds to a onstant map. The relation between X and � is given by(1) Xf(g) = ddtf(g(1 + t�(g)))����t=0for all f 2 C[G℄ (we may assume G � GL(n;C); then f is the restrition to G of a regularfuntion on GL(n;C) so the right side makes sense, with the sums and produts being matrixoperations).



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 3Proposition 2.1. Let � be the isotropy representation of K on p, and let IndGK(�) be the spaeof regular mappings � : G! p satisfying the right K-ovariane ondition(2) �(gk) = �(k)�1�(g) for all k 2 K and g 2 G.Let G at by left translations on IndGK(�). Then X(G=K) �= IndGK(�) as a G-module, where thevetor �eld X 2 X(G=K) orresponding to � 2 IndGK(�) ats by formula (1) on f 2 C[G=K℄.In partiular, the K-invariant regular vetor �elds on G=K orrespond to the K-�xed elementsin IndGK(�).Proof. The inlusion C[G=K℄ � C[G℄ and the bundle isomorphismT (G=K) �= G�K pimply that a regular vetor �eld X on G=K an be identi�ed with a map � 2 IndGK(�) byformula (1). The ovariane ondition (2) on � implies that Xf 2 C[G=K℄ for all f 2 C[G=K℄;the assumption that � has values in p then makes the orrespondene � 7�! X bijetive. �2.2. Some �niteness results. Let J = C[G=K℄K be the algebra of K-biinvariant regularfuntions on G. Then X(G=K) and IndGK(�) are J -modules under pointwise multipliation.Furthermore, if X 2 X(G=K) orresponds to the map � : G ! p, then, for f 2 J , the vetor�eld fX orresponds to the map g 7! f(g)�(g).Fix a maximal �-anisotropi algebrai torus A � G with Lie algebra a. Let M be theentralizer of A in K, and M 0 the normalizer of A in K. Let W = M 0=M be the \little Weylgroup". Then under the restrition map J �= C[A℄W (see [Ri82, Cor. 11.5℄).Theorem 2.1. Let G be semisimple. Assume that C[A℄W is a polynomial algebra (this isalways true if G is simply onneted). Then the spae X(G=K)K of K-invariant vetor �eldson G=K is a free J -module of rank dim(pM ).Proof. We have X(G=K)K �= IndGK(�)K as a J -module. ButIndGK(�)K = MorK(KnG; p);the spae of K-equivariant regular maps from the right oset spae KnG to p. By [Ri82, The-orems 12.3 and 14.3℄, there is a K-stable vetor subspae E of C[KnG℄ so that the pointwisemultipliation map J 
E ! C[KnG℄ is a vetor spae isomorphism. Furthermore, the multi-pliity of the isotropy representation � in E is q = dim(pM ). Sine K is redutive, it followsthat there are maps �1; : : : ;�q from KnG to p that are linearly independent over J and spanMorK(KnG) as an J -module. �Remark 2.1. In [Ri82, Setion 15℄ Rihardson indiates how to determine all pairs (G; �)with G semisimple, suh that C[A℄W is a polynomial algebra.2.3. K-invariant vetor �elds and spherial funtions. Given  2 J , we use the trivi-alization of the tangent bundle of G from Setion 2.1 to identify the di�erential of  with themap d : G! g� de�ned byd (g)(X) = ddt (g(1 + tX))����t=0 for X 2 g:Sine d (g)(X) = 0 for X 2 k, we an view g 7! d (g) as a map from G to p�. From theK-biinvariane of  it is lear that(3) d (kgk0)(X) = d (g)(Ad (k0)X) for k; k0 2 K.We �x a bilinear form on g invariant under AdG and �. This de�nes an isomorphism p �= p�as a K-module, and we let grad (g) 2 p be the element orresponding to d (g) 2 p�. From(3) we see that grad 2 IndGK(�)K . Hene by Proposition 2.1 grad determines a K-invariantregular vetor �eld X on G=K.



4 ILKA AGRICOLA AND ROE GOODMANIf (��; V�) is a �nite-dimensional irreduible K-spherial representation of G with highestweight �, then the dual representation (���; V �� ) is also K-spherial. We �x v� 2 V K� andv�� 2 V �K� , normalized so that hv�; v��i = 1, and let �(g) = h��(g)v�; v��ibe the orresponding spherial funtion on G. Then  � 2 J and hene it determines a K-invariant regular vetor �eld that we denote by X�. Reall that when g is simple and (g; k) isa symmetri pair, then k is either semisimple or else has a one-dimensional enter ([Hel78℄).Theorem 2.2. Assume that G is simply onneted, g is simple, and G=K has rank r. Let'1; : : : ; 'r be algebraially independent generators for J , and let X1; : : : ; Xr be the orrespond-ing K-invariant vetor �elds on G=K. Then there is a nonzero funtion  2 J so that thefollowing holds (where J and X(G=K)K denote loalizations at  ):(i) If the Lie algebra k is semisimple, X1; : : : ; Xr generate the J -module X(G=K)K .(ii) If the enter of k is non-zero and has basis J with (adJ)2 = �1, let Yi be the vetor �eldorresponding to the map g 7! (adJ)grad'i(g). Then X1; : : : ; Xr; Y1; : : : ; Yr generatethe J -module X(G=K)K .Proof. We use a modi�ation of arguments from [Ste65, Theorem 8.1℄, [Sli-B89℄ and [Sol63℄.We �rst observe that(4) grad'(A) � a for all ' 2 J :This is a onsequene of the KAK polar oordinate deomposition of G, and holds for anyredutive G. For the sake of ompleteness, we give a proof. Consider the restrited root spaedeomposition g = m+ a+X� g� ;where m = Lie(M). We laim that(5) d'(a)(X) = 0 for all a 2 A and X 2 g�.To prove this, observe that X + �X 2 k, so d'(a)(X + �(X)) = 0. The left K-invariane of 'gives 0 = ddt'(a+ t(X + �X)a)jt=0 = d'(a)(Ad (a)�1(X + �X))= d'(a)(a��X + a��X):Sine we already know that d'(a)(a�X + a��X) = 0, we onlude that(a� � a��)d'(a)(X) = 0:Thus (5) holds on the dense open set in A where a� 6= a��, and hene it holds on all of A. But(5) implies that grad'(A) � (m+ a) \ p = a, proving assertion (4).Now assume G is simply onneted. Then the set �+ of K-spherial highest weights is a freemonoid generated by dominant weights �1; : : : ; �r in a�. Let � = Z�1+ � � �+Z�r be the lattiegenerated by these weights. For � 2 �+, de�ne the monomial symmetri funtion m� 2 C[A℄Wby m�(a) = X�2W �� a�:Put a partial order� on � by � � � if ��� is a sum of positive restrited roots with nonnegativeoeÆients. If � 2 �+, the spherial funtion  � is given on A by a harater sum of the form(6)  �(a) = 0m�(a) + X�2�+��� �m�(a);



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 5where 0 6= 0 ([Vre76℄; see also [Hel94, Prop. 9.4℄). When � = �i, we write  � =  i. Let !i bethe harater !i(a) = a�i of A. Then
 = d!1!1 ^ � � � ^ d!r!ris a nowhere vanishing top-degree di�erential form on A. By formula (4) we an write(7) d 1 ^ � � � ^ d rjA = f 
;where f is a regular funtion on A that we an alulate using the di�erentials of  ijA. Set� = �1 + � � �+ �r. From formula (6) we see thatf(a) = a� +X�2���� �a�;with  6= 0. Hene f 6= 0, so we onlude from formulas (3) and (7) that fd 1; : : : ; d rg islinearly independent on a dense open set in G. Nowd'1 ^ � � � ^ d'r = �('1; : : : ; 'r)�( 1; : : : ;  r)d 1 ^ � � � ^ d r :Sine '1; : : : ; 'r are assumed to generate J , the Jaobian fator is nonzero. Hene the di�er-entials d'1; : : : ; d'r are also linearly independent on a dense open set in G.When k is semisimple, p is an irreduibleK-module and pM = a has dimension r by [Ban-J90,Prop. 5.14℄. Let fZ1; : : : ; Zrg be a set of free generators for X(G=K)K given by Theorem 2.1.Then there are funtions  ij 2 J suh thatXj =Xi  ij Zi :Set  = det[ ij ℄. Then  6= 0, sine the vetor �elds X1; : : : ; Xr are linearly independent on adense open set of G=K. This implies statement (i) of the theorem.Now assume k has enter CJ with ad(J)2 = �1. The vetor �elds Yi in statement (ii) ofthe theorem are K-invariant. Sine pM = a� ad(J)a by [Ban-J90, Lemma 5.7 and Prop. 5.14℄,the vetor �elds X1; : : : ; Xr; Y1; : : : ; Yr are linearly independent on a dense open set of G=K bythe argument above. Hene statement (ii) of the theorem follows from Theorem 2.1 and theargument used for statement (i). �3. Lie algebra struture3.1. Commutator formula on G=K. The symmetri spae G=K is the base of a holomorphiprinipal K-�bre bundle with total spae G. The anonial onnetion Z : TG ! k on G hashorizontal spaeT hg G = fX 2 TgG : Z(X) = 0g = fX 2 TgG : dLg�1(X) 2 pg = dLg(p)at the point g 2 G. Sine we are working in the ontext of linear algebrai groups, we antake the di�erential of left and right translation as usual matrix multipliation; thus we writedLg(X) = g �X (matrix produt) for g 2 G and X 2 g.Let X;Y be vetor �elds on G=K orresponding to maps �;	 in IndGK(�), and let X�; Y �be their horizontal lifts to vetor �elds on G. It is lear from the de�nition of the anonialonnetion Z that the horizontal lift X� of X to a vetor �eld on G is given by formula (1). Iff is any regular funtion on G, we have by de�nition(X�Y �f)(g) = d2ds dtf�(g + sg�(g))(1 + t	(g + sg�(g)))�����s=t=0 :



6 ILKA AGRICOLA AND ROE GOODMANTaking a �rst-order Taylor expansion of 	 to determine the oeÆient of st in the argument off on the right side of this equation, we �nd that(X�Y �f)(g) = ddr f�g(1 + rH(g))�����r=0 ;where H(g) = �(g)	(g) + d	g(g�(g)). Using the same formula again with the order of X andY interhanged, we onlude that for any regular funtion f on G,(8) [X�; Y �℄f(g) = ddr f�g(1 + r[�(g);	(g)℄ + r�~	(g))�����r=0 ;where we have set(9) �~	(g) := d	g(g�(g))� d�g(g	(g)):In formula (8) the term [�(g);	(g)℄ is in k and arises from the urvature of the anonialonnetion. When f is right K-invariant, however, this term an be omitted and we obtain theommutator of X and Y as vetor �elds on G=K. Thus we have proved the following.Proposition 3.1. Let X and Y be vetor �elds on G=K orresponding to the maps � and 	in IndGK(�), respetively. Then the ommutator [X;Y ℄ orresponds to the map � ~ 	 de�nedin formula (9).Remark 3.1. Eah term on the right side of (9) satis�es the right K-ovariane ondition (2).Indeed, if x 2 p, thend�gk(gkx) = ddt��gk(1 + tx)�����t=0 = ddt��g(1 + tAd (k)x)k�����t=0= Ad (k�1)d�g(gAd (k)x)by the K-ovariane property of �. Hened�gk(gk	(gk)) = Ad (k�1)d�g(gAd (k)	(gk)) = Ad (k�1)d�g(g	(g))as laimed. Likewise, if � and 	 are left K-invariant, then so is the map g 7�! d�g(g	(g)).Remark 3.2. The ommutator formula (9) an also be obtained from Cartan's struturalequation for the anonial onnetion, using the fat that this onnetion is torsion free.3.2. Cartan embedding and at vetor �elds. The Cartan embedding of the symmetrispae G=K into G furnishes an alternate desription of vetor �elds on G=K. This will allow usto disuss the properties of Lie algebra X(G=K)K in more detail in some ases. The algebraigroup version of this embedding is treated in [Ri82℄ (see also [GW97, Setion 11.2.3℄). Wesummarize the results as follows.Proposition 3.2 (Cartan embedding). For g; y 2 G the formula g ? y = gy�(g)�1 de�nes anation of G on itself. The orbit of the identity P = G ? e = fg �(g)�1 : g 2 Gg is a losedirreduible subset of G isomorphi to G=K as a G-spae (relative to this ation).This embedding will be denoted by j : G=K �! P � G; gK 7�! g �(g)�1. Thus we have aommutative diagram G=K����G - Pj?where the map G ! P is g 7! g�(g)�1 and the map G ! G=K is g 7! gK. The ?-ation ofK on P is the usual onjugation ation. By abuse of notation, we shall often write Ad g bothfor the onjugation ation of G on G as well as the adjoint representation of G on g. We alsodenote by � the involution on g as well as on G. At any point y of P , one has the inlusion of



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 7tangent spaes TyP � TyG. Set �y = (Ad y)�1�. This is an involution on g, and we de�ne kyand py to be the �1-eigenspaes of �y:ky = fX 2 g : �yX = +Xg; py = fX 2 g : �yX = �Xg :Let �y and �y be the projetions on these spaes:�y = 12(1 + �y); �y = 12(1� �y) :Then py is exatly the tangent spae TyP , viewed as a subspae of g via left translation by y�1[GW97, Setion 11.2.7℄, and may be realized asTyP = py = fAd y�1X � �(X) : X 2 gg :The group K permutes the subspaes py, leaving pe is invariant. More preisely, Ad k maps pyto pkyk�1 in an equivariant way, as follows.Lemma 3.1. The following diagram is ommutative:pe �y - pypeAd k ? �kyk�1- pkyk�1Ad k?Proof. If X is in py and Y = Ad kX , then�(Y ) = �(Ad kX) = Ad �(k) �(X) = �Ad kAd yX= �Ad (kyk�1)Ad kX = �Ad (kyk�1)Y:Hene Ad k maps py to pkyk�1 , as laimed. The ommutativity of the diagram is as easilyveri�ed. �If � : P ! g is any regular map, then we an de�ne a regular vetor �eld ~� on P by~�f(y) = ddtf(y + ty�y�(y))����t=0for f 2 C[P ℄ and y 2 P . Now assume that �(y) 2 p for all y 2 P . Sine �(�(y)) = ��(y) inthis ase, we an writey�y�(y) = 12(y�(y) + yAd (y�1)�(y)) = fy;�(y)g;where fa; bg = (1=2)(ab + ba) is the (normalized) anti-ommutator of the matries a; b. Thisgives the alternate formula(10) ~�f(y) = ddtf(y + tfy;�(y)g)����t=0for maps � with values in p. If we assume that � is K-equivariant:�(kyk�1) = Ad (k)�(y) for all k 2 K and y 2 P ;then a brief alulation (using Lemma 3.1) shows that ~� is a K-invariant vetor �eld on P .De�nition 3.1. The vetor �eld ~� is said to be at if(i) � : P ! p is K-equivariant(ii) Ad (y)�(y) = �(y) for all y 2 P .Sine fy;�(y)g = y�(y) for a at �eld, formula (10) beomes(11) ~�f(y) = ddtf(y + ty�(y))����t=0in this ase.



8 ILKA AGRICOLA AND ROE GOODMANLemma 3.2. Let � : P ! p be a regular, K-equivariant map. The following are equivalent:(i) ~� is at;(ii) ~�y 2 Ty(P ) for all y 2 P ;(iii) �(A) � a.Proof. (i) () (ii): From the identi�ation of TyP with a subspae of g, ondition (ii) isequivalent to �y�(y) = �(y) for all y 2 P .But �(y) 2 p when y 2 P , so ��(y) = ��(y), and hene�y�(y) = 12(1 + Ad (y))�(y) :This gives the equivalene of (i) and (ii).(i) =) (iii): Let a 2 A be a regular element. Then �(a) 2 a if and only if Ad (a)�(a) = �(a).In partiular, (i) implies that � maps the regular elements of A into a. Sine the regular elementsare dense in A, this implies (iii).(iii) =) (i): Let a 2 A and k 2 K. Set y = kak�1. Then �(y) = Ad (k)�(a) by theK-ovariane properties of �, so Ad (y)�(y) = Ad (k)Ad (a)�(a). Now use (iii) and the K-ovariane again to obtain Ad (y)�(y) = Ad (k)�(a) = �(y) :Sine Ad (K)A is dense in P , this equation holds everywhere on P , and hene ~� is at. �Proposition 3.3. Let X(P )Kat be the set of all at vetor �elds on P .(i) X(P )Kat is a J -submodule of X(P )K .(ii) If X;Y 2 X(P )Kat orrespond to the maps �;	 respetively, then [X;Y ℄ = Z, whereZ is the at vetor �eld orresponding to the map � ~ 	. Hene X(P )Kat is a Liesubalgebra of X(P )K .Proof. (i): This is obvious from the de�nition.(ii): If � and 	 are any regular maps from P to p, then a straightforward alulation as inthe proof of formula (8) shows that [~�; ~	℄ =℄�#	, where �#	 : P ! g is de�ned by(12) �#	(y) = d	y(fy;�(y)g)� d�y(fy;	(y)g) + 12[�(y);	(y)℄ :Note however that �#	 has values in g rather than p, in general, so formula (12) does notde�ne a Lie algebra struture on the set of regular maps from P to p. The projetion onto TyPof the k omponent 12 [�(y);	(y)℄ in formula (12) is the urvature term.Now assume that � and 	 orrespond to at vetor �elds X and Y . Let a 2 A. Then thepointwise ommutator [	(a);�(a)℄ = 0 by ondition (iii) of Lemma 3.2. Hene[	(kak�1);�(kak�1℄ = Ad (k)[	(a);�(a)℄ = 0 for k 2 Kby K-ovariane. Sine Ad (K)A is dense in P , it follows that [	(y);�(y)℄ = 0 for all y 2 P .Hene the urvature term is zero, fy;�(y)g = y�(y), and �#	 = �~	. It is lear that �~	satis�es ondition (iii) of Lemma 3.2, so [X;Y ℄ is a at vetor �eld. �De�nition 3.2. Let X 2 X(G=K)K and let X� be the horizontal lift of X to a vetor �eld onG. The vetor �eld X is said to be horizontally at if X�y 2 Ty(P ) for all y 2 P .If X is a horizontally at K-invariant vetor �eld on G=K and f is a regular funtion on Gthat vanishes on P , then X�f jP = 0 also. Hene X� restrits to a well-de�ned vetor �eld onP that we denote by X\. If X is de�ned by a map � 2 IndGK(�)K , we see from formulas (1)and (11) that X\ = ~�. We note that � is uniquely determined by its restrition to P , sine KPis dense in G, so X is determined by X\ when X is horizontally at. Also �(kyk�1) = �(y)for k 2 K and y 2 P . Thus, by Lemma 3.2, the atness of X is equivalent to the ondition�(A) � a. In this ase, X\ 2 X(P )Kat.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 9Proposition 3.4. Let ' 2 J . Then X' is a horizontally at vetor �eld.Proof. This follows from formula (4), Lemma 3.2, and the remarks just made. �Let j� : C[P ℄! C[G=K℄ be the algebra isomorphism obtained from the Cartan embedding(j�f = f Æ j for f 2 C[P ℄). De�ne the push-forward vetor �eld j�(X) = j��1 Æ X Æ j�for X 2 X(G=K). Then j� gives an isomorphism between X[G=K℄K and X[P ℄K . SupposeX 2 X(G=K)K is de�ned by a map � : G! p. The left K-invariane of � and the isomorphismG=K �= P given by the Cartan embedding imply the existene of a regular map 	 : G! p suhthat 2�(g) = 	(�(g)�1g) for all g 2 G.Let f 2 C[P ℄ and y 2 P . Sine j�1(y2) = y for y 2 P , we havej�(X)f(y2) = X(j�f)(y) = ddtf�y(1 + t�(y))2y�����t=0(13) = ddtf�y2(1 + t(Ad y)�1	(y2))�����t=0(note that t 7! (1+ t�(y))�(1+ t�(y))�1 is tangent to t 7! 1+2t�(y) at t = 0). Equation (13)uniquely determines j�(X), sine the map y 7! y2 is surjetive on P .When X 2 X(G=K)K is horizontally at, it determines two vetor �elds on P , namely X\and j�(X). It is evident from equation (13) that these vetor �elds are not the same. However,the two notions of atness are related as follows.Lemma 3.3. Let X 2 X(G=K)K. Then X is horizontally at if and only if j�(X) 2 X(P )Kat.Proof. Suppose j�(X) 2 X(P )Kat. Then j�(X) = ~	, where 	 : P ! p is a regular K-ovariantmap suh that Ad (y)	(y) = 	(y) for y 2 P . From equation (13) we see that2�(y) = 	(y2) for all y 2 P .It follows that Ad (y)�(y) = �(y) for y 2 P , so X is horizontally at by Lemma 3.2.Conversely, if X is horizontally at, then Ad (y)�(y) = �(y) for all y 2 P . Let the map 	be as in equation (13). Sine Ad (y)	(y2) = 	(y2) for all y 2 P , we see that j�(X) = ~	 byequation (13). The right K-ovariane of � and the surjetivity of the map y 7! y2 on P implythat 	(kyk�1) = Ad (k)	(y) for k 2 K and y 2 P .Thus ~	 2 X(P )Kat. �In light of Lemma 3.3, we shall simply use the term at in the rest of the paper to refereither to a horizontally at vetor �eld X 2 X(G=K)K or to an element in X(P )Kat.Theorem 3.1. Assume that G is simply onneted and g is simple. The following are equiva-lent:(i) k is semisimple.(ii) Every K-invariant regular vetor �eld on G=K is at.Furthermore, when (ii) holds, then X(P )K = X(P )Kat.Proof. Let '1; : : : ; 'r be a set of algebraially independent generators for J . If k is semisimple,the K-invariant vetor �elds orresponding to grad'1; : : : ; grad'r are a J -module basis forX(G=K)K by Theorem 2.2. These vetor �elds are at by Proposition 3.4. Hene all K-invariant vetor �elds on G=K are at by Proposition 3.3 (the property of atness is invariantunder loalization). On the other hand, if k is not semisimple, then ad(J)grad'i(A) 6� a, sothe orresponding vetor �eld Yi is not at by Lemma 3.2. The last statement follows fromLemma 3.3. �



10 ILKA AGRICOLA AND ROE GOODMANRemark 3.3. When k is not semisimple, the spae G=K is the omplexi�ation of a hermitiansymmetri spae. From Theorem 2.2 we have a diret sum deompositionX(G=K)K = X+Y;where X is the Lie algebra of at rational vetor �elds generated over J by the gradient�elds Xi, while Y is generated over J by the (nonat) �elds Yi. We have not determined theommutation relations between Xi and Yj .We �nish this setion with an easy example where the K-ation is trivial, yielding the Wittalgebra of algebrai vetor �elds on the one-sphere.Example 3.1 (Witt algebra). The (omplexi�ed) one-sphere C� is, in Cartan's lassi�ation,a symmetri spae of type BDI with the following involution,C� = SO(2;C)=S(O(1;C)�O(1;C)) ; � � a b�b a � = � a �bb a � :One heks that K = f1;�1g, P = SO(2;C) and thus g = p = so(2;C) �= C. Sine theK-ation on P is by onjugation, it is trivial, so any regular map P �= C� ! p �= C induesa K-invariant vetor �eld on the sphere. Those are spanned by fn(x) = xn for n 2 Z, withdi�erential (dfn)x(a) = naxn�1. Sine the projetion �x is trivial, the ommutator formula (9)givesfn ~ fm(x) = (dfm)x(x � fn(x)) � (dfn)x(x � fm(x)) = (m� n)xn+m = (m� n)fm+n(x) :This is the well-known ommutator relation of the Witt algebra. The linear ombinationskn = fn � f�n and pn = pn + p�n satisfy the relationskn ~ km = (m� n)kn+m � (n+m)km�n; pn ~ pm = (n�m)kn+m + (n+m)kn�m;pn ~ km = (n�m)pn+m � (n+m)pn�m :The Witt algebra thus arries a Z2-graduation whih we shall enounter again later (Theorem4.5). 4. The onjugation ation4.1. Conjugation-invariant vetor �elds. Consider the onjugation ation of a onnetedredutive algebrai group G on itself. It �ts into the general sheme by hoosing �G = G � Gwith the involution �(g; h) = (h; g). Then K = f(g; g) : g 2 Gg is the diagonal embedding of Gin G�G, and the Cartan embeddingj : �G=K = (G�G)=G �! G�G; (g; h)K 7�! (g; h)�(g; h)�1 = (gh�1; hg�1)realizes P as f(g; g�1) : g 2 Gg, to whih there orresponds p = f(X;�X) : X 2 gg on the Liealgebra side. The regular funtions on �G=K are of the form '(g; h) = f(gh�1), where f 2 C[G℄.In partiular, on P the funtion ' is given by '(g; g�1) = f(g2) (f. the proof of Lemma 3.3).The K ation on P is by onjugation in eah omponent, so that we may restrit attention tothe �rst omponent. Thus C[G℄ �= C[P ℄, where f 2 C[G℄ gives the funtion F (g; g�1) = f(g).Conjugation-invariant algebrai vetor �elds then orrespond to onjugation-equivariant regularmaps from G to g, and we denote them by X(G)AdG. With this identi�ation, the spherialfuntions beome the irreduible haraters of G and the representation � beomes the adjointrepresentation of G on g. The algebra J onsists of the regular lass funtions on G.Theorem 4.1. Assume G is simply onneted and g is semisimple of rank r. Let '1; : : : ; 'rbe the haraters of the fundamental representations of G. Then the vetor �elds X1; : : : ; Xron G orresponding to grad'1; : : : ; grad'r are a J -module basis for X(G)AdG. Furthermore,all onjugation-invariant vetor �elds are at.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 11Proof. Let T � G be a maximal torus. We may takeA = f(t; t�1) : t 2 Tg; M = f(t; t) : t 2 Tg:The ation of M on p is equivalent to the adjoint ation of T on g, hene dim pM = dim T = r.By [Ste65, Theorem 8.1℄ the vetor �elds X1; : : : ; Xr are linearly independent on the set ofregular elements of G. Hene the funtion  in Theorem 2.2 never vanishes on the set ofregular elements, so its zero set is ontained in the set Q of irregular elements of G. But Qis a Zariski losed set of odimension 3 by [Ste65, Theorem 1.3℄. Hene  must be onstant.For � : G ! g a onjugation equivariant map, we have Ad (y)�(y) = �(y2y�1) = �(y) for ally 2 G. Thus the vetor �eld ~� is at. �Remark 4.1. Let N �= Cr be the ross-setion for the set of regular elements of G onstrutedin [Ste65, Theorem 1.4℄. Then Theorem 4.1 applies to any set f'1; : : : ; 'rg of generators for Jif it is known that fd'1; : : : ; d'rg is linearly independent at every point of N .4.2. Invariant vetor �elds on SL(n;C). We now apply some of our general results toSL(n;C). The same method applies to other lassial groups and symmetri spaes usingTheorems 2.2 and 3.1 and the generators for the invariant polynomials given in [GW97, Setion12.4.2℄.Theorem 4.2. Let G = SL(n;C). De�ne maps �k : G! g by�k(g) = gk � (1=n) tr(gk) � 1 for g 2 G:Then X(G)AdG is generated (as a module over C[G℄AdG) by the vetor �elds ~�1; : : : ; ~�n�1.Proof. De�ne 'k(g) = (1=k) tr(gk) for g 2 G. Then for X 2 g we alulate thatd'k(g)(X) = ddt'k(g(1 + tX))����t=0 = tr(gkX) = tr(�k(g)X):Using the trae form to identify g with g�, we see that grad'k = �k. The restrition of 'k tothe diagonal is a multiple of the power sum of degree k, so '1; : : : ; 'n�1 generate the G-invariantregular funtions. The matriesX = 2666664 1 �2 � � � (�1)n�2n�1 (�1)n�11 0 � � � 0 00 1 � � � 0 0... ... . . . ... ...0 0 � � � 1 0
3777775give a ross-setion N for the regular elements of G as [1; 2; : : : ; n�1℄ ranges over Cn�1[Ste65, Setion 7.4℄. It is easy to see that X;X2; : : : ; Xn�1 are linearly independent. Hene themaps �1; : : : ;�n�1 are linearly independent at all points of N . The result now follows fromRemark 4.1. �We ompute the ommutators of the vetor �elds in Theorem 4.2. Sine all the onjugationinvariant vetor �elds are at (by Theorem 4.1), it suÆes by Proposition 3.3 to alulate themaps �k ~ �l.Theorem 4.3. The maps �k satisfy the ommutation relations�k ~ �l(g) = (l � k) � �k+l(g) + kn � tr(gl) �k(g)� ln � tr(gk) �l(g) :Proof. One obtains for the di�erential(d�k)g(X) = Xgk�1 + gXgk�2 + � � �+ gk�1X � kn tr(Xgk�1) ;



12 ILKA AGRICOLA AND ROE GOODMANwhih implies(d�k)g�g � �l(g)� = k�gl+1 � 1n tr(gl) g� gk�1 � kn tr��gl+1 � 1n tr(gl)g�gk�1�= k�gk+l � 1n tr(gk+l) �� kn tr(gl)�gk � 1n tr(gk)�= k � �k+l � kn tr(gl)�k :Now apply formula (9). �In partiular, the relation�1 ~ ��1(g) = 1n�tr(g) ��1(g) + tr(g�1) �1(g)�shows that �1 and ��1 generate a �nite Lie ring over the ring of invariants.4.3. Invariant vetor �elds on SL(2;C). We onsider the ase G = SL(2;C) in more detail.Theorem 4.4. Every onjugation invariant map 	 : G = SL(2;C) ! g = sl(2;C) is amultiple of the map 	1 : g 7! g � g�1 by an element of C[G℄AdG.Proof. The representation of G on C2 is self-dual, so its harater � satis�es2�(g) = tr(g + g�1)Hene 2d� = 	1 by the alulation in the proof of Theorem 4.2. The result now follows fromTheorem 4.1. �In order to get a C-basis of the spae X�SL(2;C)�AdSL(2;C) = X2, it thus suÆes to hooseany onvenient basis of the spae of invariants. The traes on symmetri tensor powers of thefundamental representation V of G turned out to yield the simplest formulas.Proposition 4.1. Let g be an element of G = SL(2;C) and denote by SkV the (k + 1)-dimensional irreduible representation of G. Thengk+1 � g�k�1 = tr(g)��SkV � (g � g�1):Furthermore, tr(g)��SkV = tr(gk) + tr(gk�2) + � � �+� 1 k eventr(g) k odd:Proof. We �rst prove the seond formula on the maximal torus T of G, hosen as before. Forh = diag(x; 1=x) 2 T , one hastr(h)��SkV = xk + xk�2 + � � �+ x2�k + x�k :Sine tr(hn) = xn + x�n, the formula follows immediately on T . The ase distintion for thelast term depends on whether the number of summands is even or odd. Sine the trae isonjugation invariant, the formula is valid on the dense set of all onjugates of T , and thereforealso holds on G. For the �rst formula, we note that� a b d �+ � d �b� a � = (a+ d) � 1implies gn + g�n = tr(gn) � 1, so the algebrai identitygk+1 � g�k�1 = (gk + gk�2 + � � �+ g2�k + g�k) � (g � g�1)�nishes the proof. �Corollary 4.1. The vetor �elds de�ned by the maps 	k(g) = gk � g�k for k � 1 are a basisfor X2 as a vetor spae over C.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 13We ompute the ommutation relations for this basis. For notational simpliity, we write 	kfor the onjugation invariant vetor �eld de�ned by the map g 7! 	k(g).Theorem 4.5. The vetor �elds 	k satisfy the ommutator relations[	k;	l℄ = (l � k)	k+l � (k + l)	l�k :In partiular, the algebra X2 of onjugation invariant vetor �elds on SL(2;C) is isomorphito a subalgebra of the Witt algebra, and the vetor �elds with even index f	2kgk�1 span asubalgebra of X2.Proof. We ompute the di�erential(d	k)g(X) = Xgk�1 + gXgk�2 + � � �+ gk�1X+ g�1Xg�k + g�2Xg�k+1 + � � �+ g�kXg�1 ;from whih we obtain(d	k)g�g �	l(g)� = k � (gk+l � g�k�l + gl�k � gk�l) = k � (	k+l(g) + 	l�k(g)) :The ommutator formula (9) and Proposition 3.3 then imply the result. �The ation of the vetor �elds 	k on the invariants is of partiular interest. The three mostimportant bases for the invariant funtions are:�m(g) = tr(g)��SmV ; Im(g) = tr(gm); Jm(g) = tr(g)m:Only the ation of 	k on the power sum Im is given by a simple formula. For this reason, werestrit our attention to k = 1 in the other two ases.Theorem 4.6. The vetor �eld 	k ats on invariants in C[SL(2;C)℄AdSL(2;C) as follows:	k(Im) = m(Im+k � Im�k);	1 (�m) = m�m+1 � (m+ 2)�m�1; 	1(Jm) = m (Jm+1 � 4 Jm�1) :Proof. For the invariant Im, the omputation is straightforward using formula (1)	k(Im) = ddt Im(g + tg	k(g))����t=0 = ddt tr�(g + t(g1+k � g1�k))m�����t=0= ddt tr�gm + tm gm�1(g1+k � g1�k) + � � � �����t=0= ddt tr�gm + tm(gm+k � gm�k)�����t=0= m �tr(gm+k)� tr(gm�k)� = m(Im+k � Im�k) :Sine �m = Im+Im�2+� � � by Proposition 4.1, the seond formula is easily proved by indution.The last formula is shown with a similar argument than the �rst and requires at one stage theidentity tr(g2) = tr(g)2 � 2, whih is immediately veri�ed on matries. �From the point of representation theory, the in�nite dimensional Lie algebra X2 omes withtwo natural representations (and in fat many more, see Setion 5). The ommutator formula(Theorem 4.5) desribes the struture of the adjoint representation of X2 and shows in partiularthat it has no (non-trivial) �nite-dimensional subalgebras. The ation on invariants ontains atrivial summand (the onstant funtion, annihilated by all 	k), the rest is indeomposable inthe following sense: for any �xed m 6= 0, the linear hull V1 of the invariantsIm; Im�2; Im�4; : : : ; Im+1 � Im�1; Im�3 � Im�1; Im�5 � Im�3; : : :is invariant under the ation of X2, but its omplement V2 spanned byIm+1 + Im�1; Im�3 + Im�1; Im�5 + Im�3; : : :



14 ILKA AGRICOLA AND ROE GOODMANis not. The seond laim is immediately lear, sine 	1 maps V2 into V1. For the �rst, Theo-rem 4.6 implies that 	k maps Im into a multiple of Im+k� Im�k, whih is a linear ombinationof elements of V1. The same applies to the image of all di�erenes Im+k � Im�k.Remark 4.2. The example G = SL(2;C) is treated in detail in Setion 3 of the paper [KM01℄and the authors obtain similar formulas.5. A separation of variables theorem for SL(2;C)5.1. Harmoni ofree ations. We reall that an ation of a redutive group G on an irre-duible aÆne variety M is alled ofree if there exists a G-invariant subspae H of C[M ℄ suhthat the multipliation map(14) H 
C[M ℄G �! C[M ℄; h
 f 7�! h � fis an isomorphism of vetor spaes. Let M==G be the algebrai quotient of M by G (the aÆnevariety suh that C[M==G℄ �= C[M ℄G), and let � : M 7! M==G be the anonial projetion(see [Kra85℄). By using the solution to the Serre onjeture onerning algebrai vetor bundleson Cn, Rihardson ([Ri81℄) was able to establish a general algebrai riterion for an ation tobe ofree.Theorem 5.1 (Rihardson). Let G be an algebrai group with redutive identity omponentand M a smooth irreduible aÆne G-variety. Then this ation is ofree whenever the followingtwo onditions are satis�ed:(i) the algebra of invariants C[M ℄G is a polynomial ring;(ii) the �ber ��1(x) has dimension dimM � dimM==G for all x 2M==G.Let G be a simply onneted semisimple algebrai group, T a maximal torus in G and W theWeyl group of G relative to T . Then in partiular the following group ations are ofree:(a) the onjugation ation of G on itself;(b) the ation of W on T ;() the K-ation on the symmetri spae G=K, where K is the �xed point set of someinvolution � of G.However, Rihardson's proof gives no expliit realization of the spae H .Classial results by Kostant and Kostant-Rallis ([Kos63℄, [KR71℄) state (among others) thatthe isotropy representation p of a symmetri spae G=K is always ofree. Furthermore, inthe fatorization (14) in this ase, the K-invariant subspae H may always be realized as theintersetion of the kernels of a �nite number of K-invariant di�erential operators with onstantoeÆients, thus generalizing the notion of harmoni polynomials for SO(n). This justi�es thefollowing de�nition.De�nition 5.1. A ofree ation of a redutive algebrai groupK on an irreduible aÆne varietyM will be alled harmoni if there exist K-invariant di�erential operators D1; : : : ; Dn on Msuh that the linear spae H = n\i=1 kerDirealizes the isomorphism (14).Example 5.1. We start with an easy example of a harmoni Weyl group ation.Theorem 5.2. The ation of the Weyl group W = S2 on the maximal torus T �= C� ofG = SL(2;C) is harmoni.



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 15Proof. The ring of regular funtions of T is isomorphi to C[ez; e�z℄ and the non trivial elementof S2 ats hereon as the inversion enz 7! e�nz. Thus the invariant ring is exatly the polynomialring generated by ez + e�z, and one easily shows that �z and C[ez; e�z℄ together generate thering of algebrai di�erential operators on T . The operatorD = (ez � e�z)�z + (ez + e�z)�2zis obviouslyW -invariant and an easy alulation shows that its kernel H onsists exatly of thefuntions 1 and ez � e�z. Sine on the other hand the aÆne ring C[T ℄ splits into the isotypiomponents of the trivial and the signum representation, one getsC[T ℄ = 1 �C[T ℄W + (ez � e�z) �C[T ℄W = H 
C[T ℄Wand the ation is therefore harmoni. �Notie that (ez � e�z)�z is just the W -invariant vetor �eld indued by the W -equivariantmapping T ! h; h 7! h� h�1. It should be possible to extend this example to wide lasses ofWeyl group ations.5.2. Harmoniity of the SL(2;C) onjugation ation. The remainder of this setion isdevoted to the proof that the onjugation ation of SL(2;C) on itself is harmoni. The strategyis to guess a good andidate for the spaeH of harmonis (this is the easy part) and to expliitelyonstrut a onjugation invariant di�erential operator with kernel H .Under the simultaneous left and right ation of G, the aÆne ring of SL(2;C) deomposes byFrobenius reiproity into(15) C[SL(2;C)℄ �= Md�0 SdV 
 (SdV )� :The deomposition of C[SL(2;C)℄ under the onjugation ation of G then amounts to deom-posing eah ourring tensor produt into G-irreduibles. By the Clebsh-Gordon formula, weknow that SdV 
 (SdV )� = S2dV � S2(d�1)V � � � � � S0V , where the trivial representationorresponds to the trae over SdV . Thus, we obtainC[SL(2;C)℄ �= Md�0 C[SL(2;C)℄AdN (d)
 SdV ;where the �rst fator denotes the matrix funtions invariant under the lower diagonal unipo-tent matries N and of weight d. In [Agr01, Satz 2.2℄ it is shown that the in�nite-dimensionalmultipliity spaes of the appearing irreduible SL(2;C)-modules are irreduible and pairwiseinequivalent modules for the anonial ation of the algebra of onjugation invariant di�eren-tial operators; this applies in partiular to the ring of invariants itself (d = 0). The spaeC[SL(2;C)℄AdN (d) is spanned by the produts of the d-th power of the matrix oeÆient g12with any invariant, C[SL(2;C)℄AdN (d) = (g12)d �C[SL(2;C)℄AdSL(2;C) :Thus we may hoose for H the sum of all SL(2;C)-representations with highest weight vetor(g12)d for d = 0; 1; 2; : : :. The problem then is to onstrut an invariant di�erential operator Dwith C[SL(2;C)℄AdN \ kerD = C[g12℄ :Remark 5.1. The spae H oinides with the pull bak under the map g 7! 	(g) of theharmonis on the Lie algebra g, de�ned as in [Kos63℄. In the preprint [KM01, 6.2℄, it is shownthat this hoie of a subspae H of harmonis works for G = SL(n;C) for all n. Denote byH(g) the harmonis on g, and onsider the onjugation invariant map �1(g) = g � tr(g) � 1=nalready enountered in Theorem 4.2. Then Kostant and Mihor prove the isomorphismC[G℄ �= C[G℄AdG 
 ��1H(g) :



16 ILKA AGRICOLA AND ROE GOODMANWe now turn to the onstrution of the di�erential operator D. Besides the vetor �eld	 = 	1 from Theorem 4.4, the Casimir operator � that generates the enter of U(g) will alsoplay a ruial role. We normalize � suh that���SdV
(SdV )� = d(d+ 2) � id :We need to keep trak of the behavior of matrix funtions under the transition from the left andright to the onjugation ation. For this we will use the expliit isomorphism of equation (15).Let u; v be a basis of V and x; y the dual basis of V �. We hoose the monomials ukvd�k; k =0; : : : ; d; as a basis for SdV and realize the isomorphism Sd(V �) �= (SdV )� by'1 � � �'d 7�! hv1 � � � vd 7�! 1d! X�2Sd '�(1)(v1) � � �'�(d)(vd)i :Then �dk�xkyd�k is the basis vetor in (SdV )� dual to ukvd�k. Sine onfusions annot our,we shall heneforth omit the tensor produt sign for elements of SdV 
 (SdV )�. With thishoie of dual bases, the trae over SdV is the total ontration and may be writtentrjSdV = (ux+ vy)d = dXk=0�dk�xkyd�k � ukvd�k :Elements of SL(2;C) will be parameterized as g = �� � Æ �. They at on V and V � byg � �uv � = ��u+ �vu+ Æv � ; g�t �xy � = � Æx� y��x+ �y � :For illustration, we hek that (ux+ vy)d is G-invariant, thus reproving its identi�ation withthe trae, g � (ux+ vy)d = [(�u+ �v)(Æx � y) + (u+ Æv)(��x + �y)℄d= [(�Æ � �)(ux+ vy)℄d = (ux+ vy)dand ompute the funtion on G orresponding to the tensor (uy)d 2 SdV 
 SdV �:f(g) = yd(g � ud) = yd�(�u+ �v)d� = yd(�dvd + d��d�1uvd�1 + : : :)= �d � 1 + ��d�1 � 0 + : : :+ 0 = �d :This is just the highest weight funtion (g12)d.Theorem 5.3. The kernel of the onjugation invariant di�erential operatorD = �tr(g)3�+ tr(g)	2 + (tr(g)2 + 4)	on G = SL(2;C), interseted with C[SL(2;C)℄AdN , onsists of the linear hull of all the funtions(g12)n; n 2 N. Hene the onjugation ation of SL(2;C) is harmoni.Proof. The proof onsists of a tedious omputation; we only give an outline here. As in The-orem 4.6, one shows that the vetor �eld 	 ats on the matrix funtion Jm;n(g) = Jm � gn12 =(� + Æ)m�n by 	(Jm;n) = (n+m) Jm+1;n � 4mJm�1;n :Thus we obtain for the square of its ation	2(Jm;n) = (n+m)(n+m+ 1)Jm+2;n � 4(2m2 +mn+ n)Jm;n + 16m(m� 1)Jm�2;n :For m = 0 this means in partiularD(J0;n) = �tr(g)3n(n+ 2)J0;n + tr(g) [n(n+ 1)J2;n � 4nJ0;n℄ + (tr(g)2 + 4)nJ1;n = 0 ;as needed. The proof that DJm;n 6= 0 for m 6= 0 requires more work. The problem is todetermine the funtion on G orresponding to the tensor (uy)m(ux+vy)n 2 Sm+nV 
Sm+nV �,



INVARIANT VECTOR FIELDS ON SYMMETRIC SPACES 17in order to dedue the eigenvalue of � on Jm;n. In fat, a full formula an only be proved forn = 0. In this situation, one �rst shows on the maximal torus T of G the validity of the formulatr(g)��SmV = [m=2℄Xk=0 (�1)k�m� kk �tr(g)m�2k :Then, using � tr(g)��SmV = m(m+ 2)tr(g)��SmV , a lengthy indution proof yields� tr(g)m = m(m+ 2)tr(g)m � 4m(m� 1)tr(g)m�2 :The expliit alulation may be found in [Agr00, p. 54-55℄. Sine the ation of 	 and 	2 wasdetermined before, one gets for the ation of DD tr(g)m = �4m(m+ 1)tr(g)m+1 + 16m(m� 2)tr(g)m�1 :The right hand side vanishes exatly for m = 0, as it should. For the general ase, we showthat the matrix funtion fm;n(g) orresponding to (uy)n(ux+ vy)m has the formfm;n(g) = �n �tr(g)m + m(1�m)n+m tr(g)m�2 +R� ;where the remainder R is a sum of tr(g) to the powers m � 4;m � 6; : : :. The main pointhere is in fat the preise value of the oeÆient of tr(g)m�2, sine the general form of thisAnsatz is obviously orret. For n = 0, we reover for the seond oeÆient the old result1�m = ��m�11 �. For the omputation, we may restrit fm;n(g) to the Borel subgroup B of allgroup elements with  = 0. Then one has for b 2 Bfm;n(b) = (�u+ �v)nyn �(�u+ �v)x + ��1vy�m= ��nvn + n��n�1uvn�1 + � � � � yn� �vmym�m +mvm�1ym�1�m�1 (�u+ �v)x + m(m� 1)2 vm�2ym�2�m�2 (�u+ �v)2x2 + � � � � :We sort this produt by inreasing powers of �, starting with ��m. The produt of the �rstsummands in every fator yields the only ontribution to ��m. The two mixed produtsof the �rst summand in one fator and the seond summand in the other fator both yieldontributions to ��(m�2) and ��(m�1). However, the ontribution to ��(m�1) is zero, beausevn+mxyn+m�1 = 0, these two basis elements are not dual to eah other. Similarly, the produtof �mvm in the �rst fator with the third summand in the seond fator gives no ontributionto ��(m�2), beause the basis vetors do not math. To summarize, one gets the expansionfm;n(b) = �n �vn+myn+m�m + (m+ nm)uvn+m�1xyn+m�1�m�2 + � � � � :The vetor xyn+m�1 is dual to uvn+m�1 up to a orretion fator of n+m, so we �nally getfm;n(b) = �n � 1�m + m(n+ 1)n+m 1�m�2 + � � � � :By its nature, fm;n(b) has to be a produt of �n times an invariant. Thus the expressioninside the brakets is a linear ombination of powers of (� + ��1). Sine (� + ��1)m =��m +m��(m�2) + � � � , there exists a rearrangement of terms suh thatfm;n(b) = �n �(� + ��1)m +�m(n+ 1)n+m �m�(�+ ��1)m�2 + � � � � :This is the desired expression, on whih we an now study the ation of the Casimir operator.The funtion fm;n is an eigenfuntion of � with eigenvalue (n+m)(n+m+ 2), hene��ntr(g)m = (n+m)(n+m+ 2)fm;n � m(1�m)n+m ��ntr(g)m�2 ��R ;
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