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t. We investigate the holonomy group of a linear metri
 
onne
tion withskew-symmetri
 torsion. In 
ase of the eu
lidian spa
e and a 
onstant torsion formthis group is always semisimple. It does not preserve any non-degenerated 2-form orany spinor. Suitable integral formulas allow us to prove similar properties in 
ase of a
ompa
t Riemannian manifold equipped with a metri
 
onne
tion of skew-symmetri
torsion. On the Alo�-Walla
h spa
e N(1; 1) we 
onstru
t families of 
onne
tions ad-mitting parallel spinors. Furthermore, we investigate the geometry of these 
onne
tionsas well as the geometry of the underlying Riemannian metri
. Finally, we prove thatany 7-dimensional 3-Sasakian manifold admits P2-parameter families of linear metri

onne
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onne
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tionThis paper treats the geometry of metri
 invariant 
onne
tions with skew-symmetri
torsion, as they be
ame re
ently of interest in string theory and spe
ial geometries.The notion of torsion of a 
onne
tion was invented by Elie Cartan, and appeared forthe �rst time in a short note at the A
ad�emie des S
ien
es de Paris in 1922 (see [6℄)1.Although it 
ontains no formulas, Cartan observes that su
h a 
onne
tion may or maynot preserve geodesi
s, and turns his attention �rst to those who a
tually do so. In thissense, E. Cartan was the �rst to investigate this 
lass of 
onne
tions. At that time,Re
eived by the editors 5th May 2003.2000 Mathemati
s Subje
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ation. Primary 53 C 25; Se
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onne
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2 ILKA AGRICOLA AND THOMAS FRIEDRICHit was not yet 
ustomary { as it be
ame later in the se
ond half of the 20th 
entury{ to assign to a Riemannian manifold only its Levi-Civita 
onne
tion. Rather, Cartandemands (see [9℄):�Etant donn�e une vari�et�e plong�ee dans l'espa
e aÆne (ou proje
tif, ou
onforme et
.), attribuer �a 
ette vari�et�e la 
onnexion aÆne (ou proje
tive,ou 
onforme et
.) qui rende le plus simplement 
ompte des relations de
ette vari�et�e ave
 l'espa
e ambiant.He then goes on to explain in very general terms how the 
onne
tion should be adaptedto the geometry under 
onsideration. This point of view should be taken into a

ount inRiemannian geometry, too. The 
anoni
al 
onne
tion of a naturally redu
tive Riemann-ian spa
e is a �rst example (see [1℄). Moreover, we know many non integrable geometri
stru
tures on Riemannian manifolds admitting a unique metri
 
onne
tion preservingthe stru
ture and with non vanishing skew-symmetri
 torsion (see [15℄, [14℄). FollowingCartan as well as the idea that torsion forms are 
andidates for the so 
alled B-�eld instring theory, the geometry of these 
onne
tions deserves systemati
 investigation. Ba-si
ally, there are no general results 
on
erning the holonomy group of 
onne
tions withtorsion. The question whether or not a 
onne
tion of that type admits parallel tensor�elds di�ers radi
ally from the 
orresponding problem for the Levi-Civita 
onne
tion.In parti
ular, one is interested in the existen
e of parallel spinor �elds, sin
e they areinterpreted in string theory as supersymmetries of the model.The paper is organized as follows. In Se
tion 2, we dis
uss on
e again some basi
 resultsmotivating the role of metri
 
onne
tions with skew-symmetri
 torsion. In Se
tions 3 and4, we study the linear 
ase, i.e., eu
lidian spa
e equipped with a 
onstant torsion form T.The holonomy algebra g�T of the 
orresponding linear 
onne
tion has some remarkableproperties. For any 3-form, g�T is a semisimple Lie algebra. Moreover, it 
annot preserve anon degenerate 2-form or a spinor. On the other side, many representations of a 
ompa
t,semisimple Lie algebra o

ur as the holonomy algebra of some 3-form, for example theadjoint representation 
an be realized in this way. We introdu
e an obstru
tion fora Lie algebra representation to be the holonomy algebra of some 3-form and show onan example how it may be used to rule out some representations. In parti
ular, theunique, irredu
ible 16-dimensional representation of the algebra spin(9) 
annot be theholonomy algebra of some 3-form. Forms of higher degree than three do not o

urfor linear 
onne
tions, but they de�ne spinorial 
onne
tions. In the eu
lidian 
ase weintrodu
e their spinorial holonomy algebra as a Lie subalgebra of the Cli�ord algebra.In all examples dis
ussed, this algebra turns out to be perfe
t.In Se
tion 5 and 6, we generalize the algebrai
 results to the 
ase of a Riemannianmanifold (Mn; g;T) with a metri
 
onne
tion r. In parti
ular, we are interested in thequestion whether or not the r-holonomy group preserves a spinor �eld. In the 
ompa
t
ase, we prove that if the s
alar 
urvature S
alg � 0 is non positive and if the torsionform is 
losed, dT = 0, any r-parallel spinor is Riemannian parallel and T = 0 vanishes.Here we use an integral formula for the square of the Dira
 operator depending on the
onne
tion. The main point is that the formula be
omes simple if one 
ompares the Dira
operator 
orresponding the 
onne
tion with torsion form T with the spinorial Lapla
eoperator 
orresponding to the 
onne
tion with torsion form 3 � T. This e�e
t has beenobserved in the literature at several pla
es, in parti
ular by Bismut (see [3℄) and, in thehomogeneous 
ase, by Agri
ola (see [1℄). We explore the 
orresponding integral formulaand study the spa
e of parallel spinors.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 3In Se
tion 7 we dis
uss, for a given triple (Mn; g;T), the whole family rs of metri

onne
tions with torsion form s � T. In the generi
 
ase, the existen
e of a rs-parallelspinor restri
ts the possible parameter s via a polynomial equation. Consequently, inthe generi
 
ase, at most a �nite number of 
onne
tions in the family admits parallelspinors. Some simple examples show that sometimes two 
onne
tions really admit paral-lel spinors. Moreover, our integral formulas prove that, on a 
ompa
t manifold, basi
allyonly three parameters are possible. In 
ase that the torsion form is asso
iated with aspe
ial non integrable geometry, the 
onne
tion rs with a parallel spinor is sometimesunique. A result of that type requires additional informations 
on
erning the under-lying geometry. We prove it for 5-dimensional Sasakian manifolds equipped with their
anoni
al 
onne
tion.In Se
tion 8 we 
onstru
t, on the Alo�-Walla
h manifold N(1; 1) = SU(3)=S1, a two-parameter family of metri
s that admits two inequivalent 
o
alibrated G2-stru
tures.Moreover, we investigate the torsion forms of their unique 
onne
tions as well as othergeometri
 data of these 
onne
tions. Our approa
h is di�erent from the usual one (see[5℄). First we 
onstru
t 3-forms with parallel spinors on N(1; 1). The underlying G2-stru
ture is 
o
alibrated and many of the geometri
 data are en
oded into the torsion3-form we started with. Moreover, we are interested not only in the type of the G2-stru
ture, but mainly in the geometry of the unique 
onne
tion preserving this stru
ture.The same method is then applied in order to 
onstru
t spinorial 
onne
tions de�ned by 4-form and admitting parallel spinor �elds. Some of these 
onne
tions are 
losely related tothe 3-Sasakian stru
ture of N(1; 1). In se
tion 9 we generalize these examples. Indeed,we are able to 
onstru
t, for any 7-dimensional 3-Sasakian manifold, a 
anoni
al P2-parameter family of 3- and 4-forms su
h that the underlying linear or spinorial 
onne
tionadmits parallel spinors.2. The eight 
lasses of linear 
onne
tions with torsionWe begin by an elementary, yet enlightening investigation of geometri
 torsion tensors.Consider a Riemannian manifold (Mn; g). In a point, the di�eren
e between its Levi-Civita 
onne
tion rg and any linear 
onne
tion r is a (2; 1)-tensor A,rXY = rgXY +A(X;Y ); X; Y 2 TM :The vanishing of the symmetri
 or the antisymmetri
 part of A has an immediate geo-metri
 interpretation:Lemma 2.1. The 
onne
tion r is torsion-free if and only if A is symmetri
. The
onne
tion r has the same geodesi
s as the Levi-Civita 
onne
tion rg if and only if Ais antisymmetri
.Proof. The torsion T of r isT(X;Y ) := rXY �rYX � [X;Y ℄ = A(X;Y )�A(Y;X) ;sin
e rg is torsion-free. Hen
e the �rst 
laim follows. For the se
ond, 
onsider a 
urve
 through a point p, and set X := _
(p). ThenrXX = rgXX +A(X;X) ;and hen
e rXX 
oin
ides with rgXX if and only if A is skew-symmetri
. �



4 ILKA AGRICOLA AND THOMAS FRIEDRICHFollowing Cartan (see [8, p.51℄), we study the algebrai
 types of the torsion tensor for ametri
 
onne
tion. Denote by the same symbol the (3; 0)-tensors derived from A;T by
ontra
tion with the metri
,A(X;Y;Z) := g(A(X;Y ); Z) ; T(X;Y;Z) := g(T(X;Y ); Z) :We identify TM with TM� via the metri
 from now on. Let T be the n2(n � 1)=2-dimensional spa
e of all possible torsion tensors,T = fT 2 
3TM j T(X;Y;Z) = �T(Y;X;Z)g �= ^2TM 
 TM :On the other side, a 
onne
tion r is metri
 if and only if and only if A belongs to thespa
e Ag := TM 
 ^2TM = fA 2 
3TM j A(X;V;W ) +A(X;W; V ) = 0g :The real orthogonal group O(n;R) a
ts on both tensor representations T and Ag in anatural way by g � T(X;Y;Z) := T(g�1X; g�1Y; g�1Z) for g 2 O(n;R).Proposition 2.1. For n � 3, the spa
e T of possible torsion tensors splits under O(n;R)into the sum of three irredu
ible representations, T �= TM � ^3TM � T 0, as does Ag.Furthermore, an equivariant bije
tion � : Ag ! T is given by (A 2 Ag;T 2 T )�(A)(X;Y;Z) = A(X;Y;Z) �A(Y;X;Z) ;2��1(T)(X;Y;Z) = T(X;Y;Z)� T(Y;Z;X) + T(Z;X; Y ) :The map � is a multiple of the identity pre
isely on ^3TM .Proof. It is 
lear that T and Ag split into the same irredu
ible summands under O(n;R).Hen
e, we 
on
entrate on T . There exist two O(n;R)-equivariant 
ontra
tions from Tinto irredu
ible O(n;R)-representations,�1 : T �! ^3TM; �2 : T �! TM;given by �1(T) = 13 ST(X;Y;Z); �2(T) = nXi=1 T(ei+1; ei; ei+1)ei:Here, S denotes antisymmetrisation with respe
t to all arguments and e1; : : : ; en is anyorthonormal basis of TM . Vi
e versa, TM 
an be realized as an irredu
ible subspa
e ofT via ��12 : TM ! T ,V 7! TV ; TV (X;Y;Z) := g(X;Z)g(V; Y )� g(Y;Z)g(V;X):All in all, we identi�ed two irredu
ible summands of T , ^3TM � ker �2 and TM �ker �1. A dimensional argument shows that T 0 := ker�1 \ ker �2 is not empty. Infa
t, one easily 
he
ks that it is irredu
ible under the a
tion of O(n;R), and a routine
al
ulation proves all 
laims about the isomorphism �. �The eight 
lasses of linear 
onne
tions are now de�ned by the possible parts of theirtorsions T in these 
omponents. If one looks at the 
lass of linear metri
 
onne
tions,then these are also uniquely determined by their torsion, sin
e ��1 re
onstru
ts A fromT. For general 
onne
tions, T determines A only up to a 
ontribution from the 
omple-ment of Ag inside 
3TM , that is, from TM 
 S2TM . Sin
e this spa
e splits itself intotwo irredu
ible subspa
es, one might as well speak of a total of 16 
lasses in the generalsituation. The ni
e le
ture notes by Tri
erri and Vanhe
ke [24℄ use a similar approa
hin order to 
lassify homogeneous spa
es by the algebrai
 properties of the torsion of the



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 5
anoni
al 
onne
tion. They 
onstru
t homogeneous examples of all 
lasses, and studytheir \ri
hness".The des
ribed de
ompositions shows that a natural 
lass of non-torsion free metri
 
on-ne
tions are those with skew-symmetri
 torsion form. We obtain a geometri
 
hara
ter-ization of these 
onne
tions.Corollary 2.1. A 
onne
tion r on M is metri
 and geodesi
s preserving pre
isely if itstorsion T lies in ^3TM . In this 
ase, 2 � A = T holds,rXY = rgXY + 12 � T(X;Y;�);and the r-Killing ve
tor �elds 
oin
ide with the Riemannian Killing ve
tor �elds.Proof. If r preserves geodesi
s, 2 �A = T by Lemma 2.1. If r is also metri
, A needs inaddition to lie in the 
omponent of Ag that yields a torsion proportional to A, whi
h is^3TM by Proposition 2.1. �3. The holonomy of spinor 
onne
tions with 
onstant torsion in RnWe 
onsider the eu
lidian ve
tor spa
e Rn equipped with its standard inner produ
t.The exterior algebra ��(Rn) and the Cli�ord algebra Cl(Rn) are { treated as ve
torspa
es only { equivalent SO(n)-representations. Denote by �n the 
omplex ve
tor spa
eof all n-dimensional spinors. The Cli�ord algebra - and hen
eforth the exterior algebra,too - a
ts on �n. We denote by T � the 
orresponding a
tion of a k-form T on a spinor 2 �n. It is SO(n)-equivariant and 
alled the Cli�ord multipli
ation of a spinor bya k-form. The Cli�ord algebra is an asso
iative algebra and there is an underlying Liealgebra stru
ture, [�; �℄ = � � � � � � �; �; � 2 Cl(Rn) :We denote the 
orresponding Lie algebra by 
l(Rn). The Lie algebra so(n) of the spe
ialorthogonal group is a subalgebra of 
l(Rn),so(n) = Lin�X � Y : X;Y 2 Rn and hX; Y i = 0	 � 
l(Rn) :Consider an algebrai
 k-form T 2 �k(Rn) and denote by GT the group of all orthogonaltransformation of Rn preserving the form T. Let gT be its Lie algebra. We asso
iatewith any exterior form its 
ovariant derivative rT a
ting on spinor �elds  : Rn ! �nby the formula rTX := rgX + (X T) �  :Here, rg denotes the Levi-Civita 
onne
tion. For a 3-form T 2 �3(Rn), the spinorial
ovariant derivative rT is indu
ed by a linear metri
 
onne
tion with torsion tensor 2 �T,rTXY := rgXY + 2 � T(X;Y;�) :For a general exterior form T, we introdu
e a new Lie algebra g�T that is a subalgebraof 
l(Rn).De�nition 3.1. Let T be an exterior form on Rn . The Lie algebra g�T is the subalgebraof 
l(Rn) generated by all elements X T, where X 2 Rn is a ve
tor.The Lie algebra g�T is invariant under the a
tion of the isotropy group GT. The derivedalgebra �g�T ; g�T� is the Lie algebra generated by all 
urvature transformations of thespinorial 
onne
tion rT. It is the Lie algebra of the in�nitesimal holonomy group of thespinorial 
ovariant derivative rT (see [20℄, Chapter II, Se
tion 10):



6 ILKA AGRICOLA AND THOMAS FRIEDRICHDe�nition 3.2. Let T be an exterior form on Rn . The Lie algebrah�T := �g�T; g�T� � 
l(Rn)is 
alled the in�nitesimal holonomy algebra of the exterior form T.The Lie algebra h�T is invariant under the a
tion of the isotropy group GT, too. Fora 3-form T, the Lie algebras g�T; h�T � so(n) are subalgebras of the Lie algebra of theorthogonal group. This in
lusion re
e
ts again the fa
t that the 
orresponding spinorderivative rT is indu
ed by a linear metri
 
onne
tion. The following proposition gen-eralizes this observation.Proposition 3.1. If T is a k-form with k+ �k�12 � � 0 mod 2, then g�T is a 
ompa
t Liealgebra.Proof. We 
onsider the 
omplex spin representation of the Cli�ord algebra. There existsa hermitian produ
t on �n su
h that�X �  ;  1� + � ; X �  1� = 0for all ve
tors X 2 Rn and all spinors  ; 1 2 �n. Then, under the 
ondition for thedegree of the form T, all endomorphisms X T a
ting on �n are skew-symmetri
. �The following proposition is a spe
ial 
ase of the general holonomy theory. For 
om-pleteness, let us sket
h its proof.Proposition 3.2. There exists a non-trivial rT-parallel spinor �eld  : Rn ! �n,rTX = X( ) + (X T) �  = 0;if and only if there exists a 
onstant spinor  0 2 �n su
h that h�T �  0 = 0.Proof. If  : Rn ! �n is rT-parallel, we di�erentiate it twi
e with respe
t to arbitraryve
tors X;Y 2 Rn . Then we obtain the 
ondition�X T ; Y T� �  = 0 ;i.e., h�T �  = 0. Conversely, if  0 2 �0 is a spinor su
h that h�T �  0 = 0, we de�ne thespinor �eld  : Rn ! �n by the formula (m) := Exp(�m T) �  0 ; m 2 Rn :An easy 
omputation yields that X( )(m) + (X T) �  (m) is given by the formulaAd�Exp(m T)�� [m T;X T℄2 + [m T ; [m T;X T℄℄6 + � � �� �  0 :The 
ommutators [m T;X T℄ et
. are in h�T and the adjoint a
tion Ad(Exp(m T))preserves the holonomy algebra h�T sin
e m T 2 g�T. �Corollary 3.1. Let T be an exterior form su
h that the Lie algebra g�T is perfe
t, h�T =g�T. Then any rT-parallel spinor �eld  : Rn ! �n ,rTX = X( ) + (X T) �  = 0 ;is 
onstant and g�T �  = 0.Proof. Any parallel spinor �eld satis�es the 
ondition h�T �  = 0. By assumption, weobtain g�T �  = 0 and the di�erential equation yields X( ) = 0, i.e.,  is 
onstant. �



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 7Example 3.1. If T 2 �1(Rn) is a 1-form, the Lie algebra g�T is generated by one element1 2 
l(Rn) and g�T = R, h�T = 0. The general solution of the equation rT = 0 is (m) = e�hm;Ti �  0 ; m 2 Rn ;where  0 is 
onstant.We denote by e1; : : : ; en an orthonormal frame on Rn , and abbreviate as eijk::: the exteriorprodu
t ei ^ ej ^ ek ^ : : : of 1-forms.Example 3.2. Any 2-form T 2 �2(Rn) of rank 2k is equivalent to A1 � e12 + � � � +Ak �e2k�1;2k. The Lie algebra g�T is generated by the elements e1; e2; � � � ; e2k�1; e2k. It isisomorphi
 to the Lie algebra spin(2k + 1). In parti
ular, if n = 8 then �8 = R16 isa real, 16-dimensional and the spinorial holonomy algebra of a generi
 2-form in eightvariables is the unique 16-dimensional irredu
ible representation of spin(9).Example 3.3. Consider the 4-form T = e1234 + e3456 2 �4(R6). The Cli�ord algebraCl(R6 ) = End(R8 ) is isomorphi
 to the algebra of all endomorphisms of an 8-dimensionalreal ve
tor spa
e and g�T is the Lie algebra generated by the elementse234; e134; e124 + e456; e123 + e356; e346; e345:A 
omputation of the whole Lie algebra yields the result that g�T is isomorphi
 to theLie algebra e(6) of the eu
lidian group.Example 3.4. Consider the volume form T = e123456 in R6 . The subalgebra g�T ofCl(R6 ) = End(R8) is isomorphi
 to the 
ompa
t Lie algebra spin(7). Indeed, it isgenerated by the Lie algebra spin(6) and all elements of degree �ve.Example 3.5. Let us dis
uss the holonomy algebra of a more 
ompli
ated 4-form inseven variables,T = e12 � (e34 � e56) � e17 � (e45 � e36) � e27 � (e35 + e46) � e3456 :The 7-dimensional spin representation is real and we des
ribe the holonomy algebra g�Tusing the spin representation 
l(R7)! gl(�7) = gl(R8) of the Cli�ord algebra. For thispurpose, we introdu
e the matri
esA1 := 26640 0 0 00 0 0 01 0 0 00 0 0 03775 ; A2 := 26640 0 0 00 0 0 00 1 0 00 0 0 03775 ; A3 := 26640 0 0 00 0 0 00 0 1 00 0 0 03775 ; A4 := 26640 0 0 00 0 0 00 0 0 10 0 0 03775 :The holonomy algebra, treated as a subalgebra of gl(R8), is the Lie algebra generatedby the following seven matri
es:B1 := � 0 A1At1 0 � ; B2 := � 0 A2At2 0 � ; B3 := � 0 A3At3 0 � ; B4 := � 0 A4At4 0 � ;B5 := �A1 +At1 00 0� ; B6 := �A2 +At2 00 0� ; B7 := �A4 +At4 00 0� :An investigation of the 
ommutators of these matri
es yields the result that g�T is a46-dimensional subalgebra of gl(R8 ),g�T = n�X AAt Y � : X;Y 2 sl(R4 ) and A 2 gl(R4)o :No spinor is �xed by the holonomy group of the 
onne
tion rT, i.e., in the 
at spa
erT-parallel spinors do not exist. Later we will see that this torsion form o

urs in 
ertain



8 ILKA AGRICOLA AND THOMAS FRIEDRICH
ompa
t Riemannian manifolds in a natural way. On these non 
at spa
es there existrT-parallel spinors, see Theorem 9.2.4. Constant 3-forms in Rn and their holonomy algebraWe will study 3-forms T 2 �3(Rn) and their Lie algebras g�T. To begin with, let us
onsider some examples.Example 4.1. This is the pla
e to dis
uss Cartan's �rst example of a spa
e with torsion(see [6, p. 595℄). Consider R3 with its usual eu
lidian metri
, and the 
onne
tionrXY = rgXY �X � Y;
orresponding, of 
ourse, to the 
hoi
e T = �2�e1^e2^e3. Cartan observed 
orre
tly thatthis 
onne
tion has same geodesi
s than rg, but indu
es a di�erent parallel transport2.Indeed, 
onsider the z-axis 
(t) = (0; 0; t), a geodesi
, and the ve
tor �eld V whi
h, inevery point 
(t), 
onsists of the ve
tor (
os t; sin t; 0). Then one 
he
ks immediately thatrg_
V = _
 � V , that is, the ve
tor V is parallel transported a

ording to a heli
oidalmovement. If we now transport the ve
tor along the edges of a 
losed triangle, it willbe rotated around three linearly independent axes, hen
e the holonomy algebra is g�T =h�T = so(3).Example 4.2. Any 3-form in R4 is equivalent to one of the forms T = a � e123, hen
ethe same argument as in the previous example yields that g�T = 0 or so(3).Example 4.3. Any 3-form in R5 is equivalent to one of the forms T = a � e123 + b � e345.The 
orresponding algebras are gT = so(5); so(3)� so(2); 0 and g�T = 0; so(3); so(5).Example 4.4. In R7 , we 
onsider the 3-form T = e127+e135�e146�e236�e245+e347+e567.Its isotropy algebra gT is isomorphi
 to the ex
eptional Lie algebra g2. Moreover, so(7)splits into two G2-irredu
ible 
omponents, so(7) = gT�m. The orthogonal 
omplementm of gT 
oin
ides with the spa
e of all inner produ
tsX T. The Lie algebra generated bythese elements is isomorphi
 to so(7). To summarize, we obtain gT = g2 and g�T = so(7).The �rst Proposition estimates the dimension of the Lie algebra g�T from below.Proposition 4.1. Let T 2 �3(Rn) be a 3-form and �T : Rn ! g�T be the map de�nedby the formula �T(X) := X T. Then T depends only on the orthogonal 
omplementKer(�T)?, T 2 �3(Ker(�T)?) :In parti
ular, if T is a 3-form whi
h 
an not be redu
ed to a lower dimensional subspa
e,then n � dim(g�T) :Next, we investigate the representation of the Lie algebra g�T in Rn .Proposition 4.2. The representation (g�T ; Rn) is redu
ible if and only if there exista proper subspa
e V � Rn and two 3-forms T1 2 �3(V) and T2 2 �3(V?) su
h thatT = T1 +T2. In this 
ase, the Lie algebra g�T de
omposes intog�T = g�T1 � g�T2 :2\Deux tri�edres [. . . ℄ de E seront parall�eles lorsque les tri�edres 
orrespondants de E [l'espa
e eu
lidien
lassique℄ pourront se d�eduire l'un de l'autre par un d�epla
ement h�eli
o��dal de pas donn�e, de sensdonn�e[. . . ℄. L'espa
e E ainsi d�e�ni admet un groupe de transformations �a 6 param�etres : 
e serait notreespa
e ordinaire vu par des observateurs dont toutes les per
eptions seraient tordues." lo
.
it.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 9Proof. Consider a g�T-invariant subspa
e V � Rn and �x a basis e1; � � � ; ek in V as wellas a basis ek+1; � � � ; en in its orthogonal 
omplement V?. Then, for any ve
tor X 2 Rn ,and any pair of indi
es 1 � i � k, k + 1 � � � n, we obtainT(X; ei; e�) = 0 :Sin
e T is skew-symmetri
, we 
on
ludeT(ei; ej ; e�) = 0; and T(ei; e�; e�) = 0 : �The following Proposition restri
ts the type of the Lie algebra g�T. In parti
ular, it
annot be 
ontained in the Lie algebra u(k) � so(2k) of the unitary group.Proposition 4.3. Let T be a 3-form in R2k and suppose that there exists a 2-form 
su
h that 
k 6= 0 and [ g�T; 
 ℄ = 0 :Then T is zero, T = 0.Proof. We �x an orthonormal basis in R2k su
h that the 2-form 
 is given by
 = A1 � e12 + � � � + Ak � e2k�1;2k ; A1 � : : : �Ak 6= 0 :The 
ondition [g�T; 
℄ = 0 is equivalent to the equations2kXj=1
�j � T�j
 = 2kXj=1T��j � 
j
for any triple 1 � �; �; 
 � 2k. Using the spe
ial form of 
 we obtain the equations(1 � �; 
 � k): A� � T�;2�;2
�1 = �A
 � T�;2��1;2
and A� � T�;2��1;2
�1 = A
 � T�;2�;2
 :The latter system of algebrai
 equations implies that T = 0 vanishes. Indeed, let us
ompute { for example { T�;2�;2
�1. In 
ase � is odd, we haveA� � T�;2�;2
�1 = �A
 � T�;2��1;2
 = A
 � T2��1;�;2
 = �A(�+1)=2 � T2
�1;2��1;�+1= A� � T2
�1;2�;� = �A� � T�;2�;2
�1 :In 
ase � is even, a similar 
omputations yields the formula�A��2 � T�;2�;2
�1 = ��A�=2�2 � T�;2�;2
�1 : �Theorem 4.1. For any 3-form T 2 �3(Rn), the Lie algebra g�T is semisimple and
oin
ides with the holonomy algebra h�T.Proof. A

ording to Proposition 4.2 we assume that the representation (g�T ; Rn) is irre-du
ible. The Lie algebra g�T splits into the holonomy algebra h�T and the 
enter z(g�T).Suppose that the 
enter z is non trivial, i.e., that there exist a 2-form 
 su
h that�g�T ; 
� = 0 :We split the eu
lidian spa
e intoRn = Ker(
) � Ker(
)?and observe that both subspa
es are g�T-invariant. Sin
e Ker(
) 6= 0 and the representa-tion (g�T ; Rn) is irredu
ible, we 
on
lude that Ker(
) = 0. In parti
ular, the dimensionn = 2k is even and 
k 6= 0. Finally, we obtain T = 0 by Proposition 4.3. �



10 ILKA AGRICOLA AND THOMAS FRIEDRICHA se
ond restri
tion for the algebra g�T results from the observation that it is not 
on-tained in the isotropy Lie algebra of a spinor. This fa
t implies that there are norT-parallel spinors in Rn for T 6= 0. Furthermore, 
ertain semisimple Lie groups 
an-not o

ur as holonomy groups of 3-form in Rn . In dimensions n � 9, where the groupSpin(n) a
ts transitively on the set of spinors of length one, the proof is a 
onsequen
eof a dire
t algebrai
 
omputation. For example, in dimension n = 8, a general 3-formdepends on 56 parameters and g�T �  = 0 is a system 
onsisting again of at least 56linear equations. In higher dimensions, we have to avoid the problem of the unknownorbit stru
ture of the spin representation. We use a global argument here, but it wouldbe interesting to �nd a purely algebrai
 proof.Theorem 4.2. Let T 2 �3(Rn) be a 3-form. If there exists a non trivial spinor  2 �nsu
h that g�T �  = 0, then T = 0.Proof. Consider the 
ompa
t, 
at torus Rn=Zn. Sin
e T and  2 �n are 
onstant,both are geometri
 obje
ts on the torus. In parti
ular, with respe
t to the trivial spinstru
ture of the torus,  is a rT-parallel spinor �eld on Rn=Zn. The integral formula ofTheorem 6.3 yields that T = 0. �Corollary 4.1. Let T 2 �3(Rn) a 3-form. If there exists a non trivial solution  :Rn ! �n of the equationrTX = X( ) + (X T) �  = 0;then T = 0 and  is 
onstant.Proof. Suppose that a non trivial parallel spinor exists. By Corollary 3.1 and Theorem4.1, we 
on
lude that  is 
onstant and g�T �  = 0. Theorem 4.2 yields now that the3-form T = 0 vanishes. �In low dimensions, we obtain a 
omplete list of all possible holonomy algebras h�T:� n = 5 : h�T = 0; so(3); so(5).� n = 6 : h�T = 0; so(3); so(5); so(3) � so(3); so(6).� n = 7 : h�T = 0; so(3); so(5); so(3) � so(3); so(6); so(7).Starting from dimension eight, there o

ur representations of all semisimple Lie algebrasas the holonomy algebra of 
ertain 3-form in eu
lidian spa
e. Indeed, suppose that theeu
lidian spa
e Rn = g is a 
ompa
t Lie algebra, and the inner produ
t and the Liebra
ket are related by the 
onditionh [X ; Y ℄ ; Z i + hY ; [X ; Z℄ i = 0 :Then T(X;Y;Z) := h[X;Y ℄; Zi is a 3-form in Rn = g and we obtainX T = ad(X) 2 so(g) = so(n) :The Lie algebra g�T is the image of the Lie algebra g under the adjoint representation.Consequently, we have a series of representations o

urring for some 3-form.Proposition 4.4. The adjoint representation of any 
ompa
t, semisimple Lie algebra gis the holonomy algebra of a 
ertain 3-form with 
onstant 
oeÆ
ients in eu
lidian spa
eg = Rn .The �rst interesting example is the 8-dimensional Lie algebra su(3). It yields a 3-formin R8 su
h that g�T = su(3) and the in
lusion su(3) � so(8) is the adjoint representation.This example realizes the lower bound in the dimension estimate of Proposition 4.1.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 11The latter series of examples generalizes to Riemannian naturally redu
tive spa
es G=H.De
ompose the Lie algebra g = h � m; Ad(H)(m) � m ;and 
onsider the 
anoni
al 
onne
tion of the redu
tive spa
e. Its torsion form is givenby the formula T(X;Y;Z) = �h [X;Y ℄m ; Zi ; X; Y; Z 2 m ;where [ ; ℄m denotes the m-part of the Lie bra
ket. Consider the eu
lidian spa
e mand the 3-form T. Then g�T is the Lie subalgebra of so(m) generated by the subspa
em! so(m), where this map is given by the formulaZ �! Z T ; (Z T)(X) = [X;Z℄m; Z 2 m :In general, this is not the isotropy representation of the redu
tive spa
e, but related tothe holonomy of its Levi-Civita 
onne
tion (see [21℄).Let us dis
uss the question whi
h irredu
ible representations (g; Rn) of a semisimple Liealgebra g 
an o

ur for a 3-form. We already know some restri
tions. In even dimensions,the g-a
tion 
annot preserve a non-degenerate 2-form and, in any dimension, the liftinto the spin representation 
annot preserve a spinor. In order to formulate a furtherrestri
tion we introdu
e { in analogy to the prolongation of a linear Lie algebra (see [21,note 13℄) { an antisymmetri
 prolongation of a representation of a 
ompa
t semisimpleLie algebra byT(g;Rn) := �T 2 �3(Rn) : X T 2 g for any X 2 Rn 	:The subspa
e T(g;Rn) � �3(Rn) is g-invariant. A 3-form T belongs to this spa
e if andonly if its Lie algebra is 
ontained in g�T � g. In parti
ular, we 
an formulate a ne
essary
ondition.Proposition 4.5. If a representation (g;Rn) of a 
ompa
t, semisimple Lie algebra isrealized by some 3-form T 2 �3(Rn), then T(g;Rn) 6= 0 is non trivial.Example 4.5. The unique irredu
ible 16-dimensional representation spin(9) � so(16)of the Lie algebra spin(9) does not admit invariant, non degenerate 2-forms in R16 orinvariant spinors in �16. This algebra satis�es the 
onditions of Proposition 4.3 andTheorem 4.2. However, the algebra and any non trivial subalgebra of it 
annot be thealgebra g�T for a 3-form T in sixteen variables. It turns out thatT(spin(9);R16 ) = 0 :The proof is a longer algebrai
 
omputation and will be postponed to the appendix.We remark that the results of this se
tion 
annot be generalized dire
tly to the 
ase ofk-forms. Spinorial 
onne
tions related with forms of higher degree behave di�erently.Theorem 4.2 and Corollary 4.1 are not true for 4-forms. Espe
ially interesting is di-mension eight. A 4-form T on R8 depends on 70 parameters. On the other hand, the8-dimensional spin representation is real and splits �8 = �+8 ���8 into two 8-dimensionalrepresentations. Consider a spinor  2 �+8 in one of these 
omponents. The Cli�ordprodu
t (X T) � is a spinor in ��8 and the 
ondition �X T� � = 0 for any X 2 R8 isa system of 8 �8 = 64 linear equations for the 
oeÆ
ients of the 4-form T. Consequently,any spinor  2 ��8 admits a family of 4-forms T depending at least on 6 parameters su
hthat g�T �  = 0. In fa
t, the number of parameters is seven. Indeed, for any spinor  ,we 
onsider the subspa
e �T 2 �k(Rn) : g�T �  = 0	. It is invariant under the isotropygroup of the spinor. In dimension eight, the isotropy group Spin(7) splits �4(R8 ) into



12 ILKA AGRICOLA AND THOMAS FRIEDRICHfour Spin(7)-irredu
ible 
omponents of dimensions 1; 7; 27; 35 (see [10℄). In any 
ase,there exist non trivial 4-forms on R8 with non trivial parallel spinors. Sin
e the spa
e �8of all spinors in dimension eight 
oin
ides with the spa
e �9 of all spinors in dimensionnine, we obtain 4-forms in R9 with parallel spinors, too.5. r-parallel 2-forms on manifoldsAny metri
 
onne
tion on a Riemannian manifold de�nes several di�erential operators,like the Lapla
e operator on forms or the Dira
 operator on spinors. One 
an 
omparethese operators with the 
orresponding operator de�ned by the Levi-Civita 
onne
tion.There is one parti
ularly interesting formula of that type, namely for the 
odi�erentialof an exterior form, Ær! := � nXi=1 ei rei! :We shall prove that the Riemannian divergen
e of the torsion form 
oin
ides with itsr-divergen
e.Proposition 5.1. Let r be a 
onne
tion with skew-symmetri
 torsion. Then, for anyexterior form !, the following formula holds:Ær! = Æg! � 12 � nXi;j=1(ei ej T) ^ (ei ej !) :In parti
ular, for the torsion form itself, we obtain ÆrT = ÆgT.Proof. For simpli
ity, we prove the formula for 3-forms. Then we getÆr!(X;Y ) = � nXi=1 rei!(ei;X; Y ) = � nXi=1 ei�!(ei;X; Y )�+ nXi=1 �!(reiei;X; Y ) + !(ei;reiX;Y ) + !(ei;X;reiY )�:Sin
e the two 
onne
tions are related by 2 �rXY � 2 �rgXY =Pnj=1T(X;Y; ej) � ej , this
an be rewritten in the formÆr!(X;Y ) = Æg!(X;Y ) + 12 nXi;j=1 �T(ei;X; ej)!(ei; ej ; Y ) + T(ei; Y; ej)!(ei;X; ej)�= Æg!(X;Y )� 12 nXi;j=1(ei ej T) ^ (ei ej !)(X;Y ) : �Corollary 5.1. If the torsion form T is r-parallel, then its divergen
e vanishes,ÆgT = ÆrT = 0 :Let us dis
uss r-parallel 2-forms. The di�erential equation reads asrg�
�
 = 12 nXj=1 �

j � T�j� � 
�j � T�j
	 :Using the well known formulas for the exterior di�erential, the 
odi�erential as well asfor the Bo
hner-Lapla
e operator r�r we obtain



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 13Proposition 5.2. Let r be a metri
 
onne
tion r and skew-symmetri
 torsion. If 
is a r-parallel 2-form, thenÆg
 = 12 � �
 T� = 14 nXj;�;
=1
�j � T�j
 � e
 ;d
 = nXj=1 �ej 
� ^ �ej T)= 16 nXj;�;�;
=1�
�j � T�j
 � 
�j � T�j
 + 

j � T�j�	 � e� ^ e� ^ e
 ;g�
 ; r�rg
� = 12 nXj;k;�;�;
=1
�
 � 
�k � T�jk � T�j
 ;where r�rg denotes the Riemannian Bo
hner-Lapla
e operator a
ting on 2-forms.In an adapted basis, 
 = A1 � e1 ^ e2+ � � �+Ak � e2k�1 ^ e2k, the third formula simpli�es,g�
 ; r�rg
� = 12 kX�=1 nXi;j=1 �T2ij2��1 + T2ij2�� � A2� :It explains on
e again, from a geometri
 point of view, the proof of Proposition 4.3.We remark that there exist indeed metri
 
onne
tions with skew-symmetri
 torsionand parallel 2-forms. Indeed, 
onsider an almost hermitian manifold with totally skew-symmetri
 Nijenhuis tensor. Then there is a unique 
onne
tion r preserving the her-mitian stru
ture with skew-symmetri
 torsion (see [15℄). The fundamental form of thehermitian stru
ture is r-parallel. A se
ond example are Sasakian manifolds. For these,the di�erential of the 
onta
t form is parallel with respe
t to the unique 
onne
tionpreserving the Sasakian stru
ture.6. S
hr�odinger-Li
hnerowi
z type formulas for Dira
 operatorsConsider a Riemannian spin manifold (Mn; g;T) with 3-form T as well as the one-parameter family of linear metri
 
onne
tions with torsion,rsXY := rgXY + 2s � T(X;Y;�) :In parti
ular, the supers
ript s = 0 
orresponds to the Levi-Civita 
onne
tion, rg � r0.These 
onne
tions 
an all be lifted to 
onne
tions on the spinor bundle S of M , wherethey take the expression rsX := rgX + s(X T) �  :There is a formula for the square of the Dira
 operator Ds asso
iated with the 
onne
tionrs. In order to state it, let us introdu
e the �rst order di�erential operatorDs := nXk=1(ek T) � rsek = D0 + sXk (ek T) � (ek T) �  ;where e1; : : : ; en denotes an orthonormal basis. In fa
t, it will be 
onvenient to use aseparate notation for the algebrai
 4-form derived from T appearing in the di�eren
e



14 ILKA AGRICOLA AND THOMAS FRIEDRICHDs �D0: �T := 12Xk (ek T) ^ (ek T):Theorem 6.1 ([15, Thm 3.1, 3.3℄). Let (Mn; g;rs) be an n-dimensional Riemannianmanifold with a metri
 
onne
tion rs of skew-symmetri
 torsion 4 � s � T. Then, thesquare of the Dira
 operator Ds asso
iated with rs a
ts on an arbitrary spinor �eld  as(1) (Ds)2 = �s( ) + 3s dT �  � 8s2 �T �  + 2s ÆT �  � 4sDs + 14 S
als �  ;where �s is the spinor Lapla
ian of rs,�s( ) = (rs)�rs = � nXk=1rsekrsek +rsrgeiei :Furthermore, the anti
ommutator of Ds and ! is(2) Ds � T+T �Ds = dT+ ÆT� 8s � �T � 2Ds:S
als denotes the s
alar 
urvature of the 
onne
tion rs. Remark that S
al0 = S
alg isthe usual s
alar 
urvature of the underlying Riemannian manifold (Mn; g).This formula for (Ds)2 has the disadvantage of still 
ontaining a �rst order di�erentialoperator as well as several 4-forms, whi
h are diÆ
ult to treat algebrai
ally. Inspiredby the homogeneous 
ase, we were looking for an alternative 
omparison of (Ds)2 withthe Lapla
e operator of some other 
onne
tion rs0 from the same family. For the
omputations, we need the square of T inside the Cli�ord algebra. The proof of thefollowing proposition is 
ompletely similar to that of Proposition 3.1 in [1℄ and willhen
e be omitted.Proposition 6.1. Let T be a 3-form, and denote by the same symbol its asso
iated(2; 1)-tensor. Then its square inside the Cli�ord algebra has no 
ontribution of degree 6,and its s
alar and fourth degree part are given byT20 = 16 nXi;j=1 jjT(ei; ej)jj2; T24 = � 2 � �T:With these preparations in hand, we 
an state a more useful S
hr�odinger-Li
hnerowi
ztype formula for (Ds)2. It links the Dira
 operator for the parameter s=3 with theLapla
ian for the parameter s. The remainder is a zero order operator. Similar formulas
an be found in [3℄ and, for homogeneous spa
es, in [1℄.Theorem 6.2. The spinor Lapla
ian �s and the square of the Dira
 operator Ds=3 arerelated by (Ds=3)2 = �s + s � dT+ 14 S
alg � 2s2 � T20:Proof. By the formula from Theorem 6.1,(Ds)2 + 4sDs = �s + 3s dT� 8s2 �T + 2s ÆT + 14 S
als:But sin
e Ds = D0 + 3s � T, the left hand side 
an equally be rewritten(Ds)2 + 4sDs = (D0)2 + 3s(TD0 +D0T) + 9s2 T2 + 4sDs:



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 15We use equation (2) to express Ds by the anti
ommutator TDs +DsT:2Ds = dT+ ÆT� 8s � �T � (D0T+TD0)� 6s � T2 :Now we obtain(Ds)2 + 4sDs = (D0)2 + s(TD0 +D0T)� 3s2 T2 � 16s2 � �T + 2s � dT= (Ds=3)2 � 4s2 � T2 � 16s2 � �T + 2s � dT :We observe that Ds=3 hen
e appears by quadrati
 
ompletion. Now it suÆ
es to insertthis result in the formula of Theorem 6.1 and to use Proposition 6.1 as well as well asthe easy relation between s
alar 
urvatures, S
als = S
alg � 24s2 T20. �Integrating the latter formula on a 
ompa
t manifold Mn, we obtainZMn jjDs=3 jj2 = ZMn hjjrs jj2 + shdT �  ; i + 14S
alg � jj jj2 � 2s2 T20 � jj jj2i :A �rst 
onsequen
e is a non linear version of Corollary 4.1.Theorem 6.3. Let (Mn; g;T) be a 
ompa
t, Riemannian spin manifold of non positives
alar 
urvature, S
alg � 0, and suppose that the 4-form dT a
ts on spinors as a nonpositive endomorphism. If there exists a solution  6= 0 of the equationrTX = rgX + (X T) �  = 0 ;then the 3-form and the s
alar 
urvature vanish, T = 0 = S
alg, and  is parallel withrespe
t to the Levi-Civita 
onne
tion.Remark 6.1. Let us 
ompare Theorem 6.3 with the integral formula in [15℄. There,we need the 
ondition that dT + 8 � �T is a non positive endomorphism in order toprove the same result. Sin
e �T is neither positive nor negative, the two 
onditionsare independent. The advantage of Theorem 6.3 is that only the algebrai
 type of theexterior di�erential dT is involved, but not the algebrai
 type of the torsion form T itself(see the proof of Theorem 4.2).Theorem 6.3 applies, in parti
ular, to Calabi-Yau or Joy
e manifolds. These are 
ompa
t,Ri

i-
at Riemannian manifolds in dimensions n = 6; 7 with one parallel spinor �eld.Let us perturb the 
onne
tion rg by a 3-form su
h that dT is non positive on spinors.Then the new 
onne
tion rT does not admit rT-parallel spinor �elds. Nilmanifolds andtheir 
ompa
t quotients Mn = G=� are a se
ond family of examples where the theoremapplies. A further family of examples arises from 
ertain naturally redu
tive spa
es anda torsion form T being proportional to the torsion form of the 
anoni
al 
onne
tion, see[1℄. 7. 1-parameter families of 
onne
tions with parallel spinorsConsider a triple (Mn; g;T) 
onsisting of a Riemannian manifold together with a �xed3-form T 6= 0. Let us ask for parameters s0 su
h that the 
onne
tion rs0 admits aparallel spinor. The �rst example des
ribes a 
ase with parallel spinors for more thenonly one parameter in the family.Example 7.1. Let G be a simply 
onne
ted Lie group, g a biinvariant metri
 and
onsider the torsion form T(X;Y;Z) := g([X;Y ℄; Z). The 
onne
tions r�1=4 are 
at(see [21℄). In parti
ular, there are r�1=4-parallel spinor �elds.



16 ILKA AGRICOLA AND THOMAS FRIEDRICHThe integrability 
ondition of Theorem 6.1 implies that the fun
tionG(m; s) := Det�3s dT� 8s2 �T + 2s ÆT + 14 S
als	(m)vanishes at s0 and allm 2Mn. Here we treat forms as endomorphisms a
ting on spinors.The fun
tion G(s) is a polynomial. If the Riemannian s
alar 
urvature is not identi
allyzero, there exists only a �nite number of parameters with rs-parallel spinors. Let usdis
uss low dimensions.Example 7.2 (The 3-dimensional 
ase). Consider the 3-dimensional sphere (S3; g; dS3)equipped with its standard metri
 and the volume form T = dS3. The equationrsX = rgX + s � (X T) �  = rgX + s �X �  = 0is the usual Killing spinor equation. There are solutions on the 3-dimensional spherefor both parameters s = �1=2. In dimension n = 3, this is the only manifold admittingparallel spinors with respe
t to a non trivial 3-form. Indeed, any T is proportional tothe volume form, T = f � dM3, where f is a real-valued smooth fun
tion on M3. If theequation rgX + (X T) �  = rgX + f �X �  = 0admits a non trivial solution  , then by a Theorem of A. Li
hnerowi
z (see [22℄) f is
onstant and (M3; g) is a spa
e form.In dimension four, we split any 2-form ! 2 �2(R4) into its self-dual and anti-self-dualpart, ! = !+ + !�.Lemma 7.1. An element a+!+ f � e1234 2 Cl(R4) a
ts on the spa
e �4 of spinors andits determinant is given by the formulaDet�a+ ! + f � e1234� = �(a+ f)2 + 4 � jj!+jj2� � �(a� f)2 + 4 � jj!�jj2� :For any 3-form T 2 �3(R4 ) the 
orresponding 4-form �T vanishes, �T = 0.Proof. Any 3-form in R4 is SO(4)-equivalent to the form a � e1 ^ e2 ^ e3 
ontaining onlyone summand. This normal form implies �T = 0 immediately. The formula for thedeterminant follows from a matrix representation of the Cli�ord algebra. �The equation G(m; s) = 0 yields the following 
ondition not expressing the full integra-bility 
onditions for the existen
e of a parallel spinor.Proposition 7.1. Let (M4; g;T) be a Riemannian spin manifold equipped with a 3-formT. If the 
onne
tion rs admits a non trivial parallel spinor, the following equations holdat any point:(1) 12 � s � dT = � (S
alg � 24 � s2 � T20) � dM4.(2) Æ(T) is a (anti)-self-dual 2-form.Example 7.3. Using the unique 3-dimensional example S3 and its Killing spinors, weobtain by M4 := S3 � R1 and T := dS3 an example in dimension four. Indeed, the3-dimensional Killing spinors are r�1=2-parallel on M4. They do not depend on theR1 -
oordinate.The integrability 
ondition restri
ts the admissible parameters via a polynomial equationinvolving the s
alar 
urvature and the torsion form of the triple (Mn; g;T). Globally,not all of these values are possible.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 17Theorem 7.1. Let (Mn; g;T) be a 
ompa
t triple. For any rs-parallel spinor  , thefollowing formula holds:64 � s2 ZMnh�T �  ;  i + ZMn S
als = 0 :If the mean value of h�T �  ;  i does not vanish, the parameter s is given bys = 18 ZMnhdT �  ;  i.ZMnh�T �  ;  iIf the mean value of h�T � ;  i vanishes, the parameter s depends only on the Riemann-ian s
alar 
urvature and on the length of the torsion form,0 = ZMn S
als = ZMn S
alg � 24s2 ZMn T20 :Finally, if the 4-forms dT and �T are proportional, there are at most three parameterswith rs-parallel spinors.Proof. We use the integrability 
onditions for parallel spinors from Theorem 6.1. Let  be a rs-parallel spinor of length one. Then we obtain3sZMnhdT �  ;  i � 8s2 ZMnh�T �  ;  i + 14 ZMn S
alg � 6s2 ZMn T20 = 0 :On the other side, the anti
ommutator relation between Ds and T as well as the sym-metry property of the Dira
 operator in L2 yields0 = ZMnhT �  ; Ds i = ZMnhDsT �  ;  i = ZMnhdT �  ;  i � 8sZMnh�T �  ;  i :If the mean values of h�T �  ;  i does not vanish, then the se
ond equation determinesthe parameter s, s = 18 ZMnhdT �  ;  i.ZMnh�T �  ;  i :If the mean values of h�T �  ;  i vanishes, then the mean value of hdT �  ;  i vanishes,too. The �rst formula yields the result. �Remark 7.1. In Proposition 8.5, we dis
uss an example of a non-
at 
onne
tion onthe 
ompa
t, 7-dimensional Alo�-Walla
h spa
e N(1; 1) su
h that rs0 and r�s0 admitparallel spinors for suitable s0, hen
e showing that both 
ases from Theorem 7.1 
ana
tually o

ur in non-trivial situations. The "trivial" 
ases we knew about before are,of 
ourse, Lie groups (Example 7.1). Example 8.1 illustrates how a parallel spinor 
ano

ur for zero s
alar 
urvature and dT proportional to �T. In the same vein, we 
onstru
ton N(1; 1) a spinorial 
onne
tion de�ned by a 4-form R su
h that rR and r�R admitparallel spinors (Proposition 8.13).If the torsion form T of the linear 
onne
tion is r-parallel, we have dT = 2 � �T andÆ(T) = 0. This situation o

urs if Mn = G=H is a redu
tive spa
e and T is thetorsion form of its natural 
onne
tion (see [20℄) or for Sasakian manifolds, nearly K�ahlermanifolds, nearly parallel G2-manifolds equipped with their unique 
onne
tion preservingthe 
orresponding geometri
 stru
ture (see [15℄). A dire
t 
onsequen
e of Theorem 6.2and Theorem 7.1 is the following



18 ILKA AGRICOLA AND THOMAS FRIEDRICHCorollary 7.1. Let (Mn; g;T) be a 
ompa
t Riemannian manifold and suppose that theexterior di�erential of the 3-form T is proportional to the 4-form �T, dT = 2 � �T. Ifa 
onne
tion rs with s 6= 1=4 admits a parallel spinor �eld, the �rst eigenvalue of theDira
 operator Ds=3 is bounded by6 � vol(Mn; g) � �21(Ds=3) � ZMn S
alg :If r1=4 = r admits a parallel spinor �eld,vol(Mn; g) � �21(D1=12) � 18 ZMn S
alg + 116 ZMn T20 :Remark 7.2. On a naturally redu
tive spa
e M = G=K, r1=4 is the 
anoni
al 
onne
-tion and [1, Corollary 3.1.℄ shows that a r1=4-parallel spinor realizes indeed this lowerbound for �21(D1=12) provided the Casimir operator 
g is non-negative.In 
ase that the torsion form of the triple (Mn; g;T) arises from some spe
ial non-integrable geometri
 stru
ture (see [14℄), then usually only one 
onne
tion in the familyadmits rs-parallel spinors. A uniqueness of that type requires additional arguments in-volving the spe
ial geometri
 stru
ture. For example, 
onsider a 5-dimensional Sasakianmanifold (M5; g; �; �; '). Denote by r its unique 
onne
tion with skew-symmetri
 tor-sion and preserving the 
onta
t stru
ture. Its torsion is given by the formula T = �^d�(see [15℄). In an adapted lo
al frame, we have the formulasT = � ^ d� = 2 � (e12 + e34) ^ e5; d� = 2 � (e12 + e34):We 
onsider the family rs of 
onne
tions. The �rst admissible 
ase s = 1=4 is the
onne
tion r preserving the 
onta
t stru
ture we started with. In the papers [15℄, [16℄the integrability 
onditions for r1=4-parallel spinors have been dis
ussed 
ompletely. Inparti
ular, there are 
ompa
t examples. For any Sasakian stru
ture, we have2 � rgX� = X d� :Suppose that there exists a rs-parallel spinor  � for some parameter s 6= 1=4. Weintrodu
e the ve
tor �eld �� via the algebrai
 equation �� �  � = i �  �. Then �� isrs-parallel, rgX�� = � 2s � T(X; ��;�) :Let us 
onsider the inner produ
t f := g(� ; ��) of the two ve
tor �elds. Its di�erentialis given by the formula 2 � df = (4s � 1) �� d� :In parti
ular, �(f) = ��(f) = 0. Next, we 
ompute the 
ommutator of the ve
tor �elds�� ; ��� = rg��� � rg��� = � (1=2 + 2s) �� d� = � 4s+ 14s� 1 � df :First we dis
uss the 
ase that s 6= �1=4. Sin
e ��; ���(f) = 0, we 
on
lude thatjjgrad(f)jj2 = 0 holds and then we obtain �� d� = 0. Consequently, �� is propor-tional to the ve
tor �eld �. In parti
ular, � is rs-parallel,rgX� = � 2s � T(X; �;�) = 2s �X d� :If s 6= 1=4, the latter equation 
ontradi
ts the di�erential equation for the Killing ve
tor�eld � of a Sasakian stru
ture. Finally, we study the remaining 
ase s = � 1=4. Thenwe have 3s � dT � 8s2 � �T + 14 � S
als = � 8 � e1234 + 14 � S
al�1=4:
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ts on spinors with 
onstant eigenvalues �1. Therefore, if  � isa r�1=4-parallel spinor, the s
alar 
urvature S
al�1=4 is 
onstant and  � is an eigenspinorof this endomorphism, e1234 � � = � � �. Sin
e the 
onne
tion r1=4 preserves the 
onta
tstru
ture, the 
ovariant derivative r1=4X  � satis�es the same algebrai
 equation. Withrespe
t to 0 = r�1=4X  � = r1=4X  � � 12 � (X T) �  �we 
on
lude that for any ve
tor X the spinor  � satis�es the equatione1234 � (X T) �  � = � � (X T) �  � :Inserting X = e1 we obtain e1234 � e25 �  � = � � e25 �  � and e1234 �  � = � �  �. Therelations in the Cli�ord algebra yield immediately that  � = 0. All together, we proved:Proposition 7.2. Let (M5; g; �; �; ') be a 5-dimensional Sasakian manifold and denoteby r its unique 
onne
tion with skew-symmetri
 torsion T and preserving the 
onta
tstru
ture. If a 
onne
tion rs in the family through r admits a parallel spinor �eld, thens = 1=4 and the 
onne
tion is r.8. Torsion forms with parallel spinors on Alo�-Walla
h spa
esThe goal of this se
tion is to 
onstru
t on the Alo�-Walla
h manifoldN(1; 1) = SU(3)=S1a two-parameter family of metri
s g = gs;y that admits, for every gs;y, two inequivalent
o
alibrated G2-stru
tures. Moreover, we investigate the torsion forms of their unique
onne
tions (see [15℄) as well as other geometri
 data of these 
onne
tions. We usethe 
omputations available in [2, p.109 �℄, whi
h we hen
e shall not reprodu
e here.Consider the embedding S1 ! SU(3) given by ei� 7! diag(ei�; ei�; e�2i�). The Lie algebrasu(3) splits into su(3) = m + R, where R denotes the Lie algebra of S1 dedu
ed fromthe given embedding. The spa
e m has a preferred dire
tion, namely the subspa
e m0generated by the matri
 L := diag(3i;�3i; 0). Let Eij (i < j) be the matrix with 1at the pla
e (i; j) and zero elsewhere, and de�ne Aij = Eij � Eji; ~Aij = i(Eij + Eji).We set m1 := LinfA12; ~A12g, m2 := LinfA13; ~A13g and m3 := LinfA23; ~A23g. The summ1 � m2 � m3 is an algebrai
 
omplement of m0 inside m, and in fa
t all spa
es miare pairwise perpendi
ular with respe
t to the Killing form B(X;Y ) := �Re(trXY )=2.Hen
e, the following formulags;y := 1s2 B��m0 + B��m1 + 1yB��m2 + 1yB��m3de�nes a two-parameter family of metri
s on N(1; 1) := SU(3)=S1. It is a subfamilyof the family 
onsidered in [2, p.109 �℄; in parti
ular, (s = 1; y = 2) 
orresponds tothe 3-Sasakian metri
 that has three Killing spinors with Killing number 1=2, and (s =1; y = 2=5) is the Einstein metri
 with one Killing spinor with Killing number �3=10(see [2, Thm 12, p.116℄). An orthonormal basis of m is given byX1 = A12; X2 = ~A12; X3 = pyA13; X4 = py ~A13; X5 = pyA23; X6 = py ~A23;and X7 = s � L=3. The isotropy representation Ad (�) leaves the ve
tors X1;X2 and X7invariant, and a
ts as a rotation by 3� in the (X3;X4)-plane and in the (X5;X6)-plane.We use the standard realization of the 8-dimensional Spin(7)-representation �7 as givenin [2, p.97℄ or [13, p.13℄, and denote by  i; i = 1; : : : 8 its basis (ui in the notationof [2℄). One then 
he
ks that  3;  4;  5 and  6 are �xed under the lift ~Ad (�) of theisotropy representation to Spin(7). Thus, they de�ne 
onstant se
tions in the spinor



20 ILKA AGRICOLA AND THOMAS FRIEDRICHbundle S = SU(3)� ~Ad �7. The Levi-Civita 
onne
tion of N(1; 1) is des
ribed by a map� : m 7! so(7), whose lift ~� : m 7! spin(7) is given by3 ([2, p.112℄)~�(X1) = + 12s e2 � e7 � �12 � y4� [e3 � e5 + e4 � e6℄~�(X2) = � 12s e1 � e7 � �12 � y4� [e4 � e5 � e3 � e6℄~�(X3) = + y4s e4 � e7 � y4 [e2 � e6 � e1 � e5℄~�(X4) = � y4s e3 � e7 + y4 [e1 � e6 + e2 � e5℄~�(X5) = � y4s e6 � e7 � y4 [e1 � e3 + e2 � e4℄~�(X6) = + y4s e5 � e7 � y4 [e1 � e4 � e2 � e3℄~�(X7) = s2 [2e1 � e2 + e3 � e4 � e5 � e6℄� 12se1 � e2 � y4se3 � e4 + y4se5 � e6:We now make the following Ansatz for an algebrai
 3-form on m,T = �X1 ^X3 ^X5 + � X1 ^X4 ^X6 + 
X2 ^X4 ^X5 + Æ X2 ^X3 ^X6+ �X1 ^X2 ^X7 + � X3 ^X4 ^X7 + � X5 ^X6 ^X7:For notational 
onvenien
e, we shall write Xijk for Xi^Xj ^Xk, and similarly for formsof any degree. In order to de�ne a global form on N(1; 1), an algebrai
 form on m needsto be invariant under the isotropy representation. This is true for X127, X347, and X567,whereas for example X135 does not exist globally. However, one easily 
he
ks that thetwo 2-forms X35 +X46; X45 �X36 are isotropy invariant, and this will suÆ
e to 
he
kthat all forms to follow are indeed well-de�ned on N(1; 1). In any event, X1 T a
tson algebrai
 spinors by Cli�ord multipli
ation with � e3 � e5 + � e4 � e6 + � e2 � e7, andsimilarly for X2; : : : ;X7.Proposition 8.1. The spinor �eld  3 satis�es the equation rgX 3 + (X T) �  3 = 0exa
tly for one 3-form T := T3,T3 := �12 � y4 + 1 + y6s � s3� [X135 + X146℄ + �12 � y4 � 1 + y6s + s3� [X245 � X236℄+ �2y � 16s � 2s3 � X127 + �4 + y12s � 2s3 � [X347 � X567℄:Proof. A 
omputer 
omputation yields that the overdetermined system of equationsrgXi 3+(Xi T) � 3 = 0 (for i = 1; : : : ; 7) redu
es to a linear system of seven equationsin the seven variables �; : : : ; � with two free parameters s; y > 0:12s+1�y2����+� = 0; � 12s+1�y2�
+Æ�� = 0; y4s���Æ+� = 0; y4s��+
+� = 0;� y4s + �� 
 + � = 0; � y4s + � + Æ + � = 0; 2s� 1 + y2s + �+ � � � = 0:One then veri�es that the 
oeÆ
ients given in the proposition are its unique solution. �3Noti
e the following typo in the referen
e: the right de�nition of d on page 112 is d := pxy=z +pyz=x�pxz=y. For our metri
s, x = 1 and y = z.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 21Proposition 8.2. The spinor �eld  4 satis�es the equation rgX 4 + (X T) �  4 = 0exa
tly for one 3-form T := T4,T4 := �12 � y4 � 1 + y6s + s3� [X135 + X146℄ + �12 � y4 + 1 + y6s � s3� [X245 � X236℄+ �2y � 16s � 2s3 � X127 + �4 + y12s � 2s3 � [X347 � X567℄:Proof. The linear system determined by rgXi 4 + (Xi T) �  4 = 0 reads as12s�1+ y2+�+�+� = 0; 12s+1� y2�
+Æ+� = 0; y4s+�+Æ+� = 0; y4s+��
+� = 0;y4s + �� 
 � � = 0; y4s + � + Æ � � = 0; �2s+ 1 + y2s � �� � + � = 0:Its unique solution leads to the formulas above. �Proposition 8.3. The spinor �eld  5 satis�es the equation rgX 5 + (X T) �  5 = 0exa
tly for one 3-form T := T5,T5 := �16 + y12 + y � 16s � [X135 + X146 + X245 � X236℄ + �23 � 2y3 � 2y + 16s � X127+ �13 � y3 � 4� y12s � [X347 � X567℄:Proof. The linear system rgXi 5 + (Xi T) �  5 = 0 is of slightly di�erent type,y4s+ y2��+Æ+� = 0; y4s+ y2���
+� = 0; y4s+ y2���
�� = 0; y4s+ y2��+Æ�� = 0;12s � 1 + y2 + 
 � Æ + � = 0; 12s � 1 + y2 + �+ � + � = 0; y � 12s + �� � + � = 0:The main reason for this is that  5 and  6 span the kernel of the �rst summand of~�(X7), hen
e the last equation 
ontains no term linear in s. �Proposition 8.4. The spinor �eld  6 satis�es the equation rgX 6 + (X T) �  6 = 0exa
tly for one 3-form T := T6,T6 := �16 + y12 � y � 16s � [X135 + X146 + X245 � X236℄ + ��23 + 2y3 � 2y + 16s � X127+ ��13 + y3 � 4� y12s � [X347 � X567℄:Proof. The linear system rgXi 6 + (Xi T) �  6 = 0 isy4s� y2+��Æ+� = 0; y4s� y2+�+
+� = 0; y4s� y2+�+
�� = 0; y4s� y2+��Æ�� = 0;� 12s � 1 + y2 + 
 � Æ � � = 0; � 12s � 1 + y2 + �+ � � � = 0; 1� y2s � �+ � � � = 0: �Remark 8.1. For s = y = 1, all four 3-forms T3; : : : ;T6 
oin
ide, re
e
ting the fa
tthat the undeformed metri
 has  3; : : : ;  6 as parallel spinors for the 
onne
tion de�nedby T := 14 [X135 + X146 + X245 � X236℄ � 12 X127 � 14 [X347 �X567℄ :



22 ILKA AGRICOLA AND THOMAS FRIEDRICHThe 3-forms T3 and T4 are equal for the family of metri
s de�ned by 2s2 = 1 + y,whereas T5 = T6 as soon as y = 1. Even more interestingly, there exists a metri
 forwhi
h T3 = �T4:Proposition 8.5. Consider the metri
 gs0;y0 on N(1; 1) de�ned by s0 = p3=2 andy0 = 2, and the 3-formT := p3=6 (X135 +X146 �X245 +X236):Then,  3 is parallel with respe
t to the 
onne
tion r4�T, and  4 is parallel with respe
tto the 
onne
tion r�4�T. Furthermore, both 
onne
tions are not 
at.It is a subtle and 
omputationally diÆ
ult question in as mu
h T 
an be adapted toa given spinor in order to make it parallel. For this, a more systemati
 approa
h isrequired. There are pre
isely 13 isotropy invariant 3-forms on m, hen
e the most general3-form we 
an 
onsider is a linear 
ombination ofX135 +X146; X235 +X246; X357 +X467; X145 �X136; X245 �X236; X457 �X367;X127; X347; X567; X134; X234; X156; X256:We studied the question whether there exists a 
ontinuous family of 3-forms Ta;b of thisgeneral type su
h that a given linear 
ombination a 3 + b  5 is parallel with respe
t torTa;b . It turns out that this is possible if and only if s = y. We state the result of thislengthy 
al
ulation without proof.Proposition 8.6. The spinor �eld  a;b := a �  3 + b �  5; ab 6= 0, satis�es the equationrgX a;b + (X Ta;b) �  a;b = 0 if and only if s = y and if Ta;b is given byTa;b = a2(�7s2 + 8s+ 2) + b2(s2 + 4s� 2)12s(a2 + b2) [X135 +X146℄ + s2 + 4s� 212s [X245 �X236℄+ a2(�8s2 + s+ 4) + b2(�4s2 + 5s� 4)12s(a2 + b2) [X347 �X567℄ + �4s2 + 2s� 16s X127+ ab (�2s2 + s+ 1)3s(a2 + b2) [X134 �X156℄ + ab (s2 + s� 2)3s(a2 + b2) [X357 +X467℄For ab = 0, this di�erential form Ta;b is again a linear 
ombination of the seven basi
3-forms we started with, and 
oin
ides indeed for a = 1; b = 0 and a = 0; b = 1 with the3-forms T3; T5 evaluated at the parameter value s = y, respe
tively. Remark that the
onne
tions with torsion Ta;b 
onstitute a S1-parameter family of 
onne
tions admittingparallel spinors on the same Riemannian manifold. The 3-Sasakian metri
 (s = 1; y = 2)and the Einstein metri
 (s = 1; y = 2=5) are of parti
ular interest. For theoreti
alreasons to be explained in the next se
tion, both must admit a family of torsion formssu
h that the three Killing spinors of the 3-Sasakian metri
 ( 3;  4;  6 in our notation)are parallel with respe
t to the 
onne
tion it de�nes. In fa
t, su
h a family exists fors = 1 and arbitrary y (but not for arbitrary s).Proposition 8.7. For the metri
s gs;y on N(1; 1), the spinor �eld  a;b;
 := a 3+b  4+
  6; ab
 6= 0, satis�es the equation rgX a;b;
+(X Ta;b;
) � a;b;
 = 0 if and only if s = 1and if Ta;b;
 is given byTa;b;
 = P (a; b; 
)[X567 �X347℄ + P (a; 
; b)[X135 +X146℄ + P (b; 
; a)[X245 �X236℄+ Q(a; b; 
)[X235 +X246 +X145 �X136℄ +Q(b; 
; a)[X357 +X467 +X156 �X134℄+ Q(a; 
; b)[X457 �X367 +X234 �X256℄ + 2y � 56 X127;



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 23with the following de�nitions for the 
oeÆ
ients P and Q:P (a; b; 
) := (a2 + b2)(4� y) + 
2(8� 5y)12(a2 + b2 + 
2) ; Q(a; b; 
) := ab (y � 1)3(a2 + b2 + 
2) :Let us dis
uss the spinor �elds  3 and  5 from the point of view of G2-geometry. Ingeneral, a spinor �eld  of length one de�nes on a 7-dimensional Riemannian manifolda 3-form of general type by the formula (see [2℄, [19℄)!(X;Y;Z) := �hX � Y � Z �  ;  i :Computing the forms of the spinors  3;  5 we obtain!3 = �X127 + X135 +X146 + X236 � X245 � X347 + X567 ;!5 = �X127 � X135 �X146 + X236 � X245 + X347 � X567 :The 
onne
tions r3 and r5 with torsion forms 4�T3 and 4�T5 preserve the G2-stru
tures!3 and !5, respe
tively. Moreover, a dire
t 
omputation yields the formulas�T3 ; !3� = 4 � s2 + y + 16 � s > 0 ;�T5 ; !5� = � 4 � s+ 2 � s � y + y � 16 � s :Sin
e the 
onne
tion preserving a G2-stru
ture is unique (see [15℄), the G2-stru
tures !3and !5 are not equivalent. We remark that !3 and !5 are 
o
alibrated G2-stru
tures,d � !3 = 0 ; d � T3 = 0 ; d � !5 = 0 ; d � T5 = 0 :Indeed, for any ve
tor, the inner produ
t X �!3 is orthogonal to 7 �T3� (T3 ; !3) �!3.The formula expressing the torsion form T of an admissible G2-stru
ture by the 3-form! ( see [15℄ and [17℄) yields now d�!3 = 0 immediately. The 
odi�erential of the torsionform is given by the formula (see [15℄ and [17℄)4 � d � T3 = d�3 ^ �!3 ; �3 = (4 � T3 ; !3) :In our example the fun
tion �3 is 
onstant, i.e., d �T3 = 0. The same argument appliesfor !5. The 
lass of all 
o
alibrated G2-stru
tures splits into the sum W1 �W3 of a 1-dimensional 
lass W1 (the so 
alled nearly parallel G2-stru
tures) and a 27-dimensional
lass W3 (see [11℄). Nearly parallel G2-stru
tures are 
hara
terized by the 
onditionthat the torsion form T of its unique 
onne
tion is proportional to !. On the otherside, the G2-stru
tures of typeW3 are the 
o
alibrated stru
tures su
h that T and ! areorthogonal, (T ; !) = 0 (see [15℄). Using this 
hara
terization we obtain immediatelyProposition 8.8. The G2-stru
ture !3 is nearly parallel if and only if s = 1 and y = 2.The G2-stru
ture !3 is never of type W3. The G2-stru
ture !5 is nearly parallel if andonly if s = 1 and y = 2=5. This metri
 is a universal deformation of the 3-Sasakianmetri
 (see [19℄). The G2-stru
ture !5 is of type W3 if and only if 2 � s � (2 + y) = 1� y.In general, the s
alar 
urvatures S
alg ; S
alr of a 
o
alibrated G2-stru
ture (M7; g; !)
an be expressed by its torsion form T (see [17℄) :S
alg = 2 � (T ; !)2 � 12 � jjTjj2 ; S
alr = S
alg � 32 � jjTjj2 = 2 � (T ; !)2 � 2 � jjTjj2 :We use the forms !3 ; 4 � T3 as well as the forms !5 ; 4 � T5 in order to 
ompute theRiemannian s
alar 
urvature of the metri
 depending on the parameters s; y. In both
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ases the result is the same :S
alg = 8 + 24y � 2y2 � 2 + y2s2 :In a similar way we 
ompute the s
alar 
urvature of the 
onne
tion r3 and r5 :S
al3 = � 43s2 � �8 + 32s4 + 4y + 5y2 + 2s2(�4� 28y + 3y2)� ;S
al5 = � 43s2 � �8� 4y + 5y2 + 8s(�2 + y + y2) + 2s2(4� 20y + 7y2)� :In parti
ular, we obtain a family of 
o
alibrated G2-stru
tures on N(1; 1) with vanishings
alar 
urvature of the asso
iated 
onne
tion. Moreover, a numeri
al 
omputation yieldsthat there exist two pairs of parameters where both s
alar 
urvatures S
al3 and S
al5vanish, namely (s ; y) � (0:62066 ; 0:852508) and (1:49934 ; 1:66564). The Ri

i tensorRi
r of the 
anoni
al 
onne
tion of a G2-stru
ture (M7; g; !) 
an be expressed by thederivative dT of the torsion form (see [15℄),Ri
r(Xi ; Xj) = 12 � �Xi dT ; Xj �!� :Using the 
ommutator relations in the Lie algebra we 
ompute the exterior derivativesdX1 = � 2s �X27 + y � (X35 + X46) ;dX2 = 2s �X17 + y � (X45 � X36) ;dX7 = � 2s �X12 � ys � (X34 � X56) :The torsion form T3 
an be written asT3 = � (y � 2)(5s2 � 1� y)3sy X127 + 1y h12 � y4 + 1 + y6s � s3iX1 ^ dX1+ 1y h12 � y4 � 1 + y6s + s3iX2 ^ dX2 � sy h4 + y12s � 2s3 iX7 ^ dX7 :We 
an now 
ompute the exterior derivative as well as the Ri

i tensor. Let us dis
ussthe 
ases (s; y) = (1; 4) and (s; y) = (p3=2 ; 2) where the formulas simplify.Example 8.1. In 
ase of s = 1 and y = 4 we obtainT3 = � 14X2 ^ dX2 ; dT3 = 8X3456 � 4X1457 + 4X1367:The s
alar 
urvatures are S
al3 = 0 and S
alg = 54 . Moreover, we obtain� 2 � �T3 = (T23)4 = 14 � dT3;i.e., dT3 is proportional to �T3 (see Theorem 7.1).Example 8.2. In 
ase of s =p3=2 and y = 2 we obtainT3 = 14X7 ^ dX7 ; dT3 = 43(X1234 � X1256 � X3456):The s
alar 
urvatures S
al3 and S
alg are positive.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 25The 3-form !a;b 
orresponding to the spinor a �  3 + b �  5 is given by the formula!a;b = � (a2 + b2)(X127 � X236 + X245) + 2ab(X134 � X156 + X357 + X467)+ (a2 � b2)(X135 + X146 � X347 + X567):We 
ompute the inner produ
t with the torsion form of Proposition 8.6 :(Ta;b ; !a;b) = b2(1� 5 s� 2 s2) + a2(1 + s+ 4 s2)6 s :In parti
ular, the G2-stru
ture is of pure type W3 if and only ifb2(1� 5 s� 2 s2) + a2(1 + s+ 4 s2) = 0 ; y = s :Finally, we will 
onstru
t non trivial 4-forms on N(1; 1) su
h that the underlying 
onne
-tions admit parallel spinors. Remark that spinorial 
onne
tions related to 4-forms areof 
ompletely di�erent type. For example, they do not preserve the hermitian produ
tof spinors and, in general, the holonomy group of a spinorial 
onne
tion of that typeis non 
ompa
t. Nevertheless, for the family of metri
s gs;y, the qualitative results arequite similar to those for 3-forms, though they 
annot be dedu
ed one from ea
h other.Theorem 8.1. On N(1; 1) with the metri
 gs;y, there exist four spinorial 
onne
tionsde�ned by 4-forms admitting  3;  4;  5 and  6 as parallel spinors, respe
tively; and thereexists, for s = 1, arbitrary y and any linear 
ombination of  3;  4;  6 pre
isely one 4-form whi
h makes this parti
ular 
ombination parallel.Again, the exposition of results will make the statement more pre
ise. No proofs will begiven, sin
e they are similar to the 
orresponding 
omputations for 3-forms. With thesame notations as before, 
onsider now the following Ansatz for a global 4-form :R = �X1234 + � X1256 + 
 X3456 + Æ X1347 + "X1567 + � X2347 + �X2567+ � (X1235 +X1246) + � (X1357 +X1467) + � (X1245 �X1236)+ ! (X1457 �X1367) + � (X2457 �X2367) + % (X2357 +X2467):Proposition 8.9. The spinor �eld  3 satis�es the equation rgX 3 + (X R) � 3 = 0 ifand only if R = R3, withR3 := �y4 � 12 + 1 + y8s � s2� [X1457 �X1367℄ + �12 � y4 + 1 + y8s � s2� [X2357 +X2467℄+ ��s2 + y + 38s � [X1234 �X1256℄ + �s2 + 1� 3y8s �X3456:Proposition 8.10. The spinor �eld  4 satis�es the equation rgX 4 + (X R) �  4 = 0if and only if R = R4, withR4 := �y4 � 12 � 1 + y8s + s2� [X1457 �X1367℄ + �12 � y4 � 1 + y8s + s2� [X2357 +X2467℄+ ��s2 + y + 38s � [X1234 �X1256℄ + �s2 + 1� 3y8s �X3456:Proposition 8.11. The spinor �eld  5 satis�es the equation rgX 5 + (X R) �  5 = 0if and only if R = R5, withR5 := �12 � y4 + y � 38s � [X1234 �X1256℄ + ��12 + 3y4 + 1 + 3y8s �X3456+ 1� y8s [(X1457 �X1367)� (X2357 +X2467)℄:



26 ILKA AGRICOLA AND THOMAS FRIEDRICHProposition 8.12. The spinor �eld  6 satis�es the equation rgX 6 + (X R) �  6 = 0if and only if R = R6, withR6 := ��12 + y4 + y � 38s � [X1234 �X1256℄ + �12 � 3y4 + 1 + 3y8s �X3456+ y � 18s [(X1457 �X1367)� (X2357 +X2467)℄:Remark 8.2. For s = y = 1, no two of the four 4-forms R3; : : : ; R6 
oin
ide, re
e
tingthe di�erent behavior of spinorial 
onne
tions de�ned by 4-forms when 
ompared to
onne
tions de�ned by 3-forms. The 4-forms R3 and R4 are equal for the family ofmetri
s de�ned by 4s2 = 1 + y, whereas R5 and R6 are never equal. As for 3-forms,there exists a metri
 for whi
h R3 = �R4:Proposition 8.13. Consider the metri
 gs0;y0 on N(1; 1) de�ned by s0 = p5=2 andy0 = 2, and the 4-formR := �p5=10 [(X1457 �X1367) + (X2357 +X2467)℄:Then,  3 is parallel with respe
t to the 
onne
tion rR, and  4 is parallel with respe
t tothe 
onne
tion r�R. Furthermore, both 
onne
tions are not 
at.Proposition 8.14. For the metri
s gs;y on N(1; 1), the spinor �eld  a;b;
 := a 3 +b  4 + 
  6; ab
 6= 0, satis�es the equation rgX a;b;
 + (X Ra;b;
) �  a;b;
 = 0 if and onlyif s = 1 and if Ra;b;
 is given byRa;b;
 = P (a; b; 
)[X1234 �X1256℄� P (a; 
; b)[X2467 +X2357℄ + P (b; 
; a)[X1457 �X1367℄+ Q(a; b; 
)[(X2457 �X2367)� (X1357 +X1467)℄ +Q(b; 
; a)[(X1235 +X1246) ++ (X2567 �X2347)℄ +Q(a; 
; b)[(X1567 �X1347)� (X1245 �X1236)℄ + 5� 3y8 X3456;with the following de�nitions for the 
oeÆ
ients P and Q:P (a; b; 
) := (a2 + b2)(y � 1) + 
2(3y � 7)8(a2 + b2 + 
2) ; Q(a; b; 
) := ab (y � 3)4(a2 + b2 + 
2) :9. Torsion forms with parallel spinors on 3-Sasakian manifoldsThe Alo�-Walla
h spa
e N(1; 1) admits a 3-Sasakian stru
ture, and some spe
ial torsionforms with parallel spinors dis
ussed in Se
tion 8 are 
losely related to the underlying
onta
t stru
tures of N(1; 1). This observation yielded the idea that any 3-Sasakianmanifold should admit natural 
onne
tions with skew-symmetri
 torsion and parallelspinors. In this se
tion, we will make this remark pre
ise. In parti
ular, for a �xed3-Sasakian metri
, we will 
onstru
t a whole family of 
onne
tions with parallel spinors.The stru
ture group of a 3-Sasakian geometry is the subgroup SU(2) � G2 � SO(7),the isotropy group of four spinors in dimension seven. In order to keep the realizationof the spin representation we used in Se
tion 8, we des
ribe the subgroup SU(2) in su
ha way that the ve
tors e1; e2; e7 2 R7 are �xed. More pre
isely, the Lie algebra su(2) isgenerated by the following 2-forms in R7 :e34 + e56 ; e35 � e46 ; e36 + e56 :The real spin representation �7 splits under the a
tion of SU(2) into a 4-dimensionaltrivial representation �07 and the unique non trivial 4-dimensional representation �17. In
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e �07 is spanned by the spinors  3;  4;  5;  6. We 
onsider thefollowing SU(2)-invariant 2-forms on R7 :de1 := e35 + e46 ; de2 := e45 � e36 ; de7 := e34 � e56 :Using this notation, we introdu
e a family of invariant 3-forms in R7 depending on 10parameters, T = Xi;j=1;2;7xij � ei ^ dej + w � e1 ^ e2 ^ e7The key point of our 
onsiderations in this se
tion is the following algebrai
 observationProposition 9.1. For any spinor  2 �07, there exists a unique invariant 3-form Tsu
h that �X � 2 �X T	 �  = 0 holds for any ve
tor X 2 R7 .Proof. Given a spinor  = a 3+ b  4+ 
  5+ d 6, we solve the overdetermined system(X � 2 �X T) �  = 0 with respe
t to the 
oeÆ
ients of the 3-form. It turns out that asolution exists and is given by the following expli
it formulasx11 = a2 � b2 � 
2 + d26(a2 + b2 + 
2 + d2) ; x12 = ab+ 
d3(a2 + b2 + 
2 + d2) ; x17 = a
� bd3(a2 + b2 + 
2 + d2) ;x21 = ab� 
d3(a2 + b2 + 
2 + d2) ; x22 = �a2 + b2 � 
2 + d26(a2 + b2 + 
2 + d2) ; x27 = b
+ ad3(a2 + b2 + 
2 + d2) ;x71 = a
+ bd3(a2 + b2 + 
2 + d2) ; x72 = b
� ad3(a2 + b2 + 
2 + d2) ; x77 = �a2 � b2 + 
2 + d26(a2 + b2 + 
2 + d2) :and w = � 1=6. The map (a; b; 
; d) ! xij(a; b; 
; d) is the Veronese map from P3 intothe sphere S8 of radius 1=12. �Consider a simply 
onne
ted 3-Sasakian manifold M7 of dimension seven and denoteits three 
onta
t stru
tures by �1; �2, and �7. It is known that M7 is then an Einsteinspa
e, and examples (also non homogeneous ones) 
an be found in the paper [4℄ by Boyerand Gali
ki. The tangent bundle of M7 splits into the 3-dimensional part spannedby �1; �2; �7 and its 4-dimensional orthogonal 
omplement. We restri
t the exteriorderivatives d�1; d�2 and d�7 to this 
omplement. In an adapted orthonormal frame, theseforms 
oin
ide with the algebrai
 forms de1; de2 and de7. Now we apply Proposition 9.1.The spa
e of Riemannian Killing spinorsrgX + 12 �X �  = 0is non trivial and has at least dimension three (see [18℄). Moreover, the proof of this fa
tshows that all the Riemannian Killing spinors are se
tions in the subbundle 
orrespond-ing to the SU(2)-representation �07. Consequently, for any Killing spinor, there exists aunique torsion form T of the des
ribed type su
h thatrTX = rgX + (X T) �  = 0 :Theorem 9.1. Any 3-Sasakian manifold in dimension seven admits a P2-parameterfamily of metri
 
onne
tions with skew-symmetri
 torsion and parallel spinors. Theholonomy group of these 
onne
tions is a subgroup of G2.The spa
e of SU(2)-invariant 4-forms on R7 has dimension ten,T = Xi;j;k=1;2;7xijk � ei ^ ej ^ dek + w � e3 ^ e4 ^ e5 ^ e6 :



28 ILKA AGRICOLA AND THOMAS FRIEDRICH!1;9 = !8;16 !1;10 = �!8;15 !1;11 = !8;14 !1;12 = !8;13 !1;13 = �!8;12!1;14 = �!8;11 !1;15 = !8;10 !1;16 = �!8;9 !2;9 = !8;15 !2;10 = !8;16!2;11 = �!8;13 !2;12 = !8;14 !2;13 = !8;11 !2;14 = �!8;12 !2;15 = �!8;9!2;16 = �!8;10 !3;9 = �!8;14 !3;10 = !8;13 !3;11 = !8;16 !3;12 = !8;15!3;13 = �!8;10 !3;14 = !8;9 !3;15 = �!8;12 !3;16 = �!8;11 !4;9 = �!8;13!4;10 = �!8;14 !4;11 = �!8;15 !4;12 = !8;16 !4;13 = !8;9 !4;14 = !8;10!4;15 = !8;11 !4;16 = �!8;12 !5;9 = !8;12 !5;10 = �!8;11 !5;11 = !8;10!5;12 = �!8;9 !5;13 = !8;16 !5;14 = !8;15 !5;15 = �!8;14 !5;16 = �!8;13!6;9 = !8;11 !6;10 = !8;12 !6;11 = �!8;9 !6;12 = �!8;10 !6;13 = �!8;15!6;14 = !8;16 !6;15 = !8;13 !6;16 = �!8;14 !7;9 = �!8;10 !7;10 = !8;9!7;11 = !8;12 !7;12 = �!8;11 !7;13 = !8;14 !7;14 = �!8;13 !7;15 = !8;16!7;16 = �!8;15Table 1. First group of equations de�ning spin(9) inside so(16).We study spinorial 
onne
tions depending on 4-forms. Again, any spinor in �07 de�nesa unique 4-form being a solution of the 
orresponding overdetermined linear system andwe 
an apply the same 
onstru
tion as above. Let us formulate the results.Proposition 9.2. For any spinor  2 �07 there exists a unique invariant 4-form T su
hthat �X � 2 �X T	 �  = 0 holds for any ve
tor X 2 R7 .Theorem 9.2. Any 3-Sasakian manifold in dimension seven admits a P2-parameterfamily of spinorial 
onne
tions de�ned by 4-forms and with parallel spinors. The spino-rial holonomy group of these 
onne
tions is a subgroup of GL(7;R).Appendix A. The Lie algebra spin(9) inside so(16)The Lie algebra so(16) of all antisymmetri
 matri
es is parameterized by 120 parameters!i;j, 1 � i < j � 16. We realize the 36-dimensional subalgebra spin(9) by 84 expli
itequations. The �rst group of 56 equations involves forms of type !8;� and !i;�, where1 � i < 8 < �; � � 16, and is given in Table 1. The se
ond group of 28 equationsinvolves the forms !i;j ; !�;� for 1 � i; j � 8 < �; � � 16, and is given in Table 2.Consider a 3-form T 2 T(spin(9);R16 ) in the antisymmetri
 prolongation of the spin(9)-representation in R16 . Then the 2-forms e1 T; e8 T; e9 T; e16 T are elements ofspin(9). Using the �rst equation !1;9 = !8;16 de�ning this subalgebra, we 
on
lude thatT1;8;9 = 0 ; T1;8;16 = 0 ; T8;9;16 = 0 ; T1;9;16 = 0:In a similar way, the �rst 56 equations de�ning spin(9) yield that, for 1 � i; j < 8 and8 < �; � � 16, the following 
omponents of T vanish,Ti;8;� = 0 ; T8;�;� = 0:The se
ond 28 equations immediately imply now that Ti;j;8 = 0, i.e., the interior produ
te8 T = 0 vanishes for any 3-form in the antisymmetri
 prolongation. Sin
e the groupSpin(9) a
ts transitively on the sphere in R16 , we 
on
lude that T = 0.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 292 � !1;2 = !11;12 + !13;14 � !15;16 + !9;10 2 � !1;3 = �!10;12 + !13;15 + !14;16 + !9;112 � !1;4 = !10;11 + !13;16 � !14;15 + !9;12 2 � !1;5 = �!10;14 � !11;15 � !12;16 + !9;132 � !1;6 = !10;13 � !11;16 + !12;15 + !9;14 2 � !1;7 = !10;16 + !11;13 � !12;14 + !9;152 � !1;8 = �!10;15 + !11;14 + !12;13 + !9;16 2 � !2;3 = !10;11 � !13;16 + !14;15 + !9;122 � !2;4 = !10;12 + !13;15 + !14;16 � !9;11 2 � !2;5 = !10;13 + !11;16 � !12;15 + !9;142 � !2;6 = !10;14 � !11;15 � !12;16 � !9;13 2 � !2;7 = !10;15 + !11;14 + !12;13 � !9;162 � !2;8 = !10;16 � !11;13 + !12;14 + !9;15 2 � !3;4 = !11;12 � !13;14 + !15;16 + !9;102 � !3;5 = �!10;16 + !11;13 + !12;14 + !9;15 2 � !3;6 = !10;15 + !11;14 � !12;13 + !9;162 � !3;7 = �!10;14 + !11;15 � !12;16 � !9;13 2 � !3;8 = !10;13 + !11;16 + !12;15 � !9;142 � !4;5 = !10;15 � !11;14 + !12;13 + !9;16 2 � !4;6 = !10;16 + !11;13 + !12;14 � !9;152 � !4;7 = �!10;13 + !11;16 + !12;15 + !9;14 2 � !4;8 = �!10;14 � !11;15 + !12;16 � !9;132 � !5;6 = �!11;12 + !13;14 + !15;16 + !9;10 2 � !5;7 = !10;12 + !13;15 � !14;16 + !9;112 � !5;8 = �!10;11 + !13;16 + !14;15 + !9;12 2 � !6;7 = !10;11 + !13;16 + !14;15 � !9;122 � !6;8 = !10;12 � !13;15 + !14;16 + !9;11 2 � !7;8 = !11;12 + !13;14 + !15;16 � !9;10Table 2. Se
ond group of equations de�ning spin(9) inside so(16).Proposition A.1. The antisymmetri
 prolongation of the unique irredu
ible 16-dimensionalof the Lie algebra spin(9) vanishes,T(spin(9);R16 ) = 0:Referen
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