
ON THE HOLONOMY OF CONNECTIONS WITHSKEW-SYMMETRIC TORSIONILKA AGRICOLA AND THOMAS FRIEDRICHAbstrat. We investigate the holonomy group of a linear metri onnetion withskew-symmetri torsion. In ase of the eulidian spae and a onstant torsion formthis group is always semisimple. It does not preserve any non-degenerated 2-form orany spinor. Suitable integral formulas allow us to prove similar properties in ase of aompat Riemannian manifold equipped with a metri onnetion of skew-symmetritorsion. On the Alo�-Wallah spae N(1; 1) we onstrut families of onnetions ad-mitting parallel spinors. Furthermore, we investigate the geometry of these onnetionsas well as the geometry of the underlying Riemannian metri. Finally, we prove thatany 7-dimensional 3-Sasakian manifold admits P2-parameter families of linear metrionnetions and spinorial onnetions de�ned by 4-forms with parallel spinors.Contents1. Introdution 12. The eight lasses of linear onnetions with torsion 33. The holonomy of spinor onnetions with onstant torsion in Rn 54. Constant 3-forms in Rn and their holonomy algebra 85. r-parallel 2-forms on manifolds 126. Shr�odinger-Lihnerowiz type formulas for Dira operators 137. 1-parameter families of onnetions with parallel spinors 158. Torsion forms with parallel spinors on Alo�-Wallah spaes 199. Torsion forms with parallel spinors on 3-Sasakian manifolds 26Appendix A. The Lie algebra spin(9) inside so(16) 28Referenes 291. IntrodutionThis paper treats the geometry of metri invariant onnetions with skew-symmetritorsion, as they beame reently of interest in string theory and speial geometries.The notion of torsion of a onnetion was invented by Elie Cartan, and appeared forthe �rst time in a short note at the Aad�emie des Sienes de Paris in 1922 (see [6℄)1.Although it ontains no formulas, Cartan observes that suh a onnetion may or maynot preserve geodesis, and turns his attention �rst to those who atually do so. In thissense, E. Cartan was the �rst to investigate this lass of onnetions. At that time,Reeived by the editors 5th May 2003.2000 Mathematis Subjet Classi�ation. Primary 53 C 25; Seondary 81 T 30.Key words and phrases. Parallel spinors, onnetions with skew-symmetri torsion, string theory.Supported by the SFB 288 "Di�erential geometry and quantum physis" of the DFG.1We thank Andrzej Trautman for drawing our attention to these papers by Cartan { see [23℄.1



2 ILKA AGRICOLA AND THOMAS FRIEDRICHit was not yet ustomary { as it beame later in the seond half of the 20th entury{ to assign to a Riemannian manifold only its Levi-Civita onnetion. Rather, Cartandemands (see [9℄):�Etant donn�e une vari�et�e plong�ee dans l'espae aÆne (ou projetif, ouonforme et.), attribuer �a ette vari�et�e la onnexion aÆne (ou projetive,ou onforme et.) qui rende le plus simplement ompte des relations deette vari�et�e ave l'espae ambiant.He then goes on to explain in very general terms how the onnetion should be adaptedto the geometry under onsideration. This point of view should be taken into aount inRiemannian geometry, too. The anonial onnetion of a naturally redutive Riemann-ian spae is a �rst example (see [1℄). Moreover, we know many non integrable geometristrutures on Riemannian manifolds admitting a unique metri onnetion preservingthe struture and with non vanishing skew-symmetri torsion (see [15℄, [14℄). FollowingCartan as well as the idea that torsion forms are andidates for the so alled B-�eld instring theory, the geometry of these onnetions deserves systemati investigation. Ba-sially, there are no general results onerning the holonomy group of onnetions withtorsion. The question whether or not a onnetion of that type admits parallel tensor�elds di�ers radially from the orresponding problem for the Levi-Civita onnetion.In partiular, one is interested in the existene of parallel spinor �elds, sine they areinterpreted in string theory as supersymmetries of the model.The paper is organized as follows. In Setion 2, we disuss one again some basi resultsmotivating the role of metri onnetions with skew-symmetri torsion. In Setions 3 and4, we study the linear ase, i.e., eulidian spae equipped with a onstant torsion form T.The holonomy algebra g�T of the orresponding linear onnetion has some remarkableproperties. For any 3-form, g�T is a semisimple Lie algebra. Moreover, it annot preserve anon degenerate 2-form or a spinor. On the other side, many representations of a ompat,semisimple Lie algebra our as the holonomy algebra of some 3-form, for example theadjoint representation an be realized in this way. We introdue an obstrution fora Lie algebra representation to be the holonomy algebra of some 3-form and show onan example how it may be used to rule out some representations. In partiular, theunique, irreduible 16-dimensional representation of the algebra spin(9) annot be theholonomy algebra of some 3-form. Forms of higher degree than three do not ourfor linear onnetions, but they de�ne spinorial onnetions. In the eulidian ase weintrodue their spinorial holonomy algebra as a Lie subalgebra of the Cli�ord algebra.In all examples disussed, this algebra turns out to be perfet.In Setion 5 and 6, we generalize the algebrai results to the ase of a Riemannianmanifold (Mn; g;T) with a metri onnetion r. In partiular, we are interested in thequestion whether or not the r-holonomy group preserves a spinor �eld. In the ompatase, we prove that if the salar urvature Salg � 0 is non positive and if the torsionform is losed, dT = 0, any r-parallel spinor is Riemannian parallel and T = 0 vanishes.Here we use an integral formula for the square of the Dira operator depending on theonnetion. The main point is that the formula beomes simple if one ompares the Diraoperator orresponding the onnetion with torsion form T with the spinorial Laplaeoperator orresponding to the onnetion with torsion form 3 � T. This e�et has beenobserved in the literature at several plaes, in partiular by Bismut (see [3℄) and, in thehomogeneous ase, by Agriola (see [1℄). We explore the orresponding integral formulaand study the spae of parallel spinors.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 3In Setion 7 we disuss, for a given triple (Mn; g;T), the whole family rs of metrionnetions with torsion form s � T. In the generi ase, the existene of a rs-parallelspinor restrits the possible parameter s via a polynomial equation. Consequently, inthe generi ase, at most a �nite number of onnetions in the family admits parallelspinors. Some simple examples show that sometimes two onnetions really admit paral-lel spinors. Moreover, our integral formulas prove that, on a ompat manifold, basiallyonly three parameters are possible. In ase that the torsion form is assoiated with aspeial non integrable geometry, the onnetion rs with a parallel spinor is sometimesunique. A result of that type requires additional informations onerning the under-lying geometry. We prove it for 5-dimensional Sasakian manifolds equipped with theiranonial onnetion.In Setion 8 we onstrut, on the Alo�-Wallah manifold N(1; 1) = SU(3)=S1, a two-parameter family of metris that admits two inequivalent oalibrated G2-strutures.Moreover, we investigate the torsion forms of their unique onnetions as well as othergeometri data of these onnetions. Our approah is di�erent from the usual one (see[5℄). First we onstrut 3-forms with parallel spinors on N(1; 1). The underlying G2-struture is oalibrated and many of the geometri data are enoded into the torsion3-form we started with. Moreover, we are interested not only in the type of the G2-struture, but mainly in the geometry of the unique onnetion preserving this struture.The same method is then applied in order to onstrut spinorial onnetions de�ned by 4-form and admitting parallel spinor �elds. Some of these onnetions are losely related tothe 3-Sasakian struture of N(1; 1). In setion 9 we generalize these examples. Indeed,we are able to onstrut, for any 7-dimensional 3-Sasakian manifold, a anonial P2-parameter family of 3- and 4-forms suh that the underlying linear or spinorial onnetionadmits parallel spinors.2. The eight lasses of linear onnetions with torsionWe begin by an elementary, yet enlightening investigation of geometri torsion tensors.Consider a Riemannian manifold (Mn; g). In a point, the di�erene between its Levi-Civita onnetion rg and any linear onnetion r is a (2; 1)-tensor A,rXY = rgXY +A(X;Y ); X; Y 2 TM :The vanishing of the symmetri or the antisymmetri part of A has an immediate geo-metri interpretation:Lemma 2.1. The onnetion r is torsion-free if and only if A is symmetri. Theonnetion r has the same geodesis as the Levi-Civita onnetion rg if and only if Ais antisymmetri.Proof. The torsion T of r isT(X;Y ) := rXY �rYX � [X;Y ℄ = A(X;Y )�A(Y;X) ;sine rg is torsion-free. Hene the �rst laim follows. For the seond, onsider a urve through a point p, and set X := _(p). ThenrXX = rgXX +A(X;X) ;and hene rXX oinides with rgXX if and only if A is skew-symmetri. �



4 ILKA AGRICOLA AND THOMAS FRIEDRICHFollowing Cartan (see [8, p.51℄), we study the algebrai types of the torsion tensor for ametri onnetion. Denote by the same symbol the (3; 0)-tensors derived from A;T byontration with the metri,A(X;Y;Z) := g(A(X;Y ); Z) ; T(X;Y;Z) := g(T(X;Y ); Z) :We identify TM with TM� via the metri from now on. Let T be the n2(n � 1)=2-dimensional spae of all possible torsion tensors,T = fT 2 
3TM j T(X;Y;Z) = �T(Y;X;Z)g �= ^2TM 
 TM :On the other side, a onnetion r is metri if and only if and only if A belongs to thespae Ag := TM 
 ^2TM = fA 2 
3TM j A(X;V;W ) +A(X;W; V ) = 0g :The real orthogonal group O(n;R) ats on both tensor representations T and Ag in anatural way by g � T(X;Y;Z) := T(g�1X; g�1Y; g�1Z) for g 2 O(n;R).Proposition 2.1. For n � 3, the spae T of possible torsion tensors splits under O(n;R)into the sum of three irreduible representations, T �= TM � ^3TM � T 0, as does Ag.Furthermore, an equivariant bijetion � : Ag ! T is given by (A 2 Ag;T 2 T )�(A)(X;Y;Z) = A(X;Y;Z) �A(Y;X;Z) ;2��1(T)(X;Y;Z) = T(X;Y;Z)� T(Y;Z;X) + T(Z;X; Y ) :The map � is a multiple of the identity preisely on ^3TM .Proof. It is lear that T and Ag split into the same irreduible summands under O(n;R).Hene, we onentrate on T . There exist two O(n;R)-equivariant ontrations from Tinto irreduible O(n;R)-representations,�1 : T �! ^3TM; �2 : T �! TM;given by �1(T) = 13 ST(X;Y;Z); �2(T) = nXi=1 T(ei+1; ei; ei+1)ei:Here, S denotes antisymmetrisation with respet to all arguments and e1; : : : ; en is anyorthonormal basis of TM . Vie versa, TM an be realized as an irreduible subspae ofT via ��12 : TM ! T ,V 7! TV ; TV (X;Y;Z) := g(X;Z)g(V; Y )� g(Y;Z)g(V;X):All in all, we identi�ed two irreduible summands of T , ^3TM � ker �2 and TM �ker �1. A dimensional argument shows that T 0 := ker�1 \ ker �2 is not empty. Infat, one easily heks that it is irreduible under the ation of O(n;R), and a routinealulation proves all laims about the isomorphism �. �The eight lasses of linear onnetions are now de�ned by the possible parts of theirtorsions T in these omponents. If one looks at the lass of linear metri onnetions,then these are also uniquely determined by their torsion, sine ��1 reonstruts A fromT. For general onnetions, T determines A only up to a ontribution from the omple-ment of Ag inside 
3TM , that is, from TM 
 S2TM . Sine this spae splits itself intotwo irreduible subspaes, one might as well speak of a total of 16 lasses in the generalsituation. The nie leture notes by Trierri and Vanheke [24℄ use a similar approahin order to lassify homogeneous spaes by the algebrai properties of the torsion of the



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 5anonial onnetion. They onstrut homogeneous examples of all lasses, and studytheir \rihness".The desribed deompositions shows that a natural lass of non-torsion free metri on-netions are those with skew-symmetri torsion form. We obtain a geometri harater-ization of these onnetions.Corollary 2.1. A onnetion r on M is metri and geodesis preserving preisely if itstorsion T lies in ^3TM . In this ase, 2 � A = T holds,rXY = rgXY + 12 � T(X;Y;�);and the r-Killing vetor �elds oinide with the Riemannian Killing vetor �elds.Proof. If r preserves geodesis, 2 �A = T by Lemma 2.1. If r is also metri, A needs inaddition to lie in the omponent of Ag that yields a torsion proportional to A, whih is^3TM by Proposition 2.1. �3. The holonomy of spinor onnetions with onstant torsion in RnWe onsider the eulidian vetor spae Rn equipped with its standard inner produt.The exterior algebra ��(Rn) and the Cli�ord algebra Cl(Rn) are { treated as vetorspaes only { equivalent SO(n)-representations. Denote by �n the omplex vetor spaeof all n-dimensional spinors. The Cli�ord algebra - and heneforth the exterior algebra,too - ats on �n. We denote by T � the orresponding ation of a k-form T on a spinor 2 �n. It is SO(n)-equivariant and alled the Cli�ord multipliation of a spinor bya k-form. The Cli�ord algebra is an assoiative algebra and there is an underlying Liealgebra struture, [�; �℄ = � � � � � � �; �; � 2 Cl(Rn) :We denote the orresponding Lie algebra by l(Rn). The Lie algebra so(n) of the speialorthogonal group is a subalgebra of l(Rn),so(n) = Lin�X � Y : X;Y 2 Rn and hX; Y i = 0	 � l(Rn) :Consider an algebrai k-form T 2 �k(Rn) and denote by GT the group of all orthogonaltransformation of Rn preserving the form T. Let gT be its Lie algebra. We assoiatewith any exterior form its ovariant derivative rT ating on spinor �elds  : Rn ! �nby the formula rTX := rgX + (X T) �  :Here, rg denotes the Levi-Civita onnetion. For a 3-form T 2 �3(Rn), the spinorialovariant derivative rT is indued by a linear metri onnetion with torsion tensor 2 �T,rTXY := rgXY + 2 � T(X;Y;�) :For a general exterior form T, we introdue a new Lie algebra g�T that is a subalgebraof l(Rn).De�nition 3.1. Let T be an exterior form on Rn . The Lie algebra g�T is the subalgebraof l(Rn) generated by all elements X T, where X 2 Rn is a vetor.The Lie algebra g�T is invariant under the ation of the isotropy group GT. The derivedalgebra �g�T ; g�T� is the Lie algebra generated by all urvature transformations of thespinorial onnetion rT. It is the Lie algebra of the in�nitesimal holonomy group of thespinorial ovariant derivative rT (see [20℄, Chapter II, Setion 10):



6 ILKA AGRICOLA AND THOMAS FRIEDRICHDe�nition 3.2. Let T be an exterior form on Rn . The Lie algebrah�T := �g�T; g�T� � l(Rn)is alled the in�nitesimal holonomy algebra of the exterior form T.The Lie algebra h�T is invariant under the ation of the isotropy group GT, too. Fora 3-form T, the Lie algebras g�T; h�T � so(n) are subalgebras of the Lie algebra of theorthogonal group. This inlusion reets again the fat that the orresponding spinorderivative rT is indued by a linear metri onnetion. The following proposition gen-eralizes this observation.Proposition 3.1. If T is a k-form with k+ �k�12 � � 0 mod 2, then g�T is a ompat Liealgebra.Proof. We onsider the omplex spin representation of the Cli�ord algebra. There existsa hermitian produt on �n suh that�X �  ;  1� + � ; X �  1� = 0for all vetors X 2 Rn and all spinors  ; 1 2 �n. Then, under the ondition for thedegree of the form T, all endomorphisms X T ating on �n are skew-symmetri. �The following proposition is a speial ase of the general holonomy theory. For om-pleteness, let us sketh its proof.Proposition 3.2. There exists a non-trivial rT-parallel spinor �eld  : Rn ! �n,rTX = X( ) + (X T) �  = 0;if and only if there exists a onstant spinor  0 2 �n suh that h�T �  0 = 0.Proof. If  : Rn ! �n is rT-parallel, we di�erentiate it twie with respet to arbitraryvetors X;Y 2 Rn . Then we obtain the ondition�X T ; Y T� �  = 0 ;i.e., h�T �  = 0. Conversely, if  0 2 �0 is a spinor suh that h�T �  0 = 0, we de�ne thespinor �eld  : Rn ! �n by the formula (m) := Exp(�m T) �  0 ; m 2 Rn :An easy omputation yields that X( )(m) + (X T) �  (m) is given by the formulaAd�Exp(m T)�� [m T;X T℄2 + [m T ; [m T;X T℄℄6 + � � �� �  0 :The ommutators [m T;X T℄ et. are in h�T and the adjoint ation Ad(Exp(m T))preserves the holonomy algebra h�T sine m T 2 g�T. �Corollary 3.1. Let T be an exterior form suh that the Lie algebra g�T is perfet, h�T =g�T. Then any rT-parallel spinor �eld  : Rn ! �n ,rTX = X( ) + (X T) �  = 0 ;is onstant and g�T �  = 0.Proof. Any parallel spinor �eld satis�es the ondition h�T �  = 0. By assumption, weobtain g�T �  = 0 and the di�erential equation yields X( ) = 0, i.e.,  is onstant. �



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 7Example 3.1. If T 2 �1(Rn) is a 1-form, the Lie algebra g�T is generated by one element1 2 l(Rn) and g�T = R, h�T = 0. The general solution of the equation rT = 0 is (m) = e�hm;Ti �  0 ; m 2 Rn ;where  0 is onstant.We denote by e1; : : : ; en an orthonormal frame on Rn , and abbreviate as eijk::: the exteriorprodut ei ^ ej ^ ek ^ : : : of 1-forms.Example 3.2. Any 2-form T 2 �2(Rn) of rank 2k is equivalent to A1 � e12 + � � � +Ak �e2k�1;2k. The Lie algebra g�T is generated by the elements e1; e2; � � � ; e2k�1; e2k. It isisomorphi to the Lie algebra spin(2k + 1). In partiular, if n = 8 then �8 = R16 isa real, 16-dimensional and the spinorial holonomy algebra of a generi 2-form in eightvariables is the unique 16-dimensional irreduible representation of spin(9).Example 3.3. Consider the 4-form T = e1234 + e3456 2 �4(R6). The Cli�ord algebraCl(R6 ) = End(R8 ) is isomorphi to the algebra of all endomorphisms of an 8-dimensionalreal vetor spae and g�T is the Lie algebra generated by the elementse234; e134; e124 + e456; e123 + e356; e346; e345:A omputation of the whole Lie algebra yields the result that g�T is isomorphi to theLie algebra e(6) of the eulidian group.Example 3.4. Consider the volume form T = e123456 in R6 . The subalgebra g�T ofCl(R6 ) = End(R8) is isomorphi to the ompat Lie algebra spin(7). Indeed, it isgenerated by the Lie algebra spin(6) and all elements of degree �ve.Example 3.5. Let us disuss the holonomy algebra of a more ompliated 4-form inseven variables,T = e12 � (e34 � e56) � e17 � (e45 � e36) � e27 � (e35 + e46) � e3456 :The 7-dimensional spin representation is real and we desribe the holonomy algebra g�Tusing the spin representation l(R7)! gl(�7) = gl(R8) of the Cli�ord algebra. For thispurpose, we introdue the matriesA1 := 26640 0 0 00 0 0 01 0 0 00 0 0 03775 ; A2 := 26640 0 0 00 0 0 00 1 0 00 0 0 03775 ; A3 := 26640 0 0 00 0 0 00 0 1 00 0 0 03775 ; A4 := 26640 0 0 00 0 0 00 0 0 10 0 0 03775 :The holonomy algebra, treated as a subalgebra of gl(R8), is the Lie algebra generatedby the following seven matries:B1 := � 0 A1At1 0 � ; B2 := � 0 A2At2 0 � ; B3 := � 0 A3At3 0 � ; B4 := � 0 A4At4 0 � ;B5 := �A1 +At1 00 0� ; B6 := �A2 +At2 00 0� ; B7 := �A4 +At4 00 0� :An investigation of the ommutators of these matries yields the result that g�T is a46-dimensional subalgebra of gl(R8 ),g�T = n�X AAt Y � : X;Y 2 sl(R4 ) and A 2 gl(R4)o :No spinor is �xed by the holonomy group of the onnetion rT, i.e., in the at spaerT-parallel spinors do not exist. Later we will see that this torsion form ours in ertain



8 ILKA AGRICOLA AND THOMAS FRIEDRICHompat Riemannian manifolds in a natural way. On these non at spaes there existrT-parallel spinors, see Theorem 9.2.4. Constant 3-forms in Rn and their holonomy algebraWe will study 3-forms T 2 �3(Rn) and their Lie algebras g�T. To begin with, let usonsider some examples.Example 4.1. This is the plae to disuss Cartan's �rst example of a spae with torsion(see [6, p. 595℄). Consider R3 with its usual eulidian metri, and the onnetionrXY = rgXY �X � Y;orresponding, of ourse, to the hoie T = �2�e1^e2^e3. Cartan observed orretly thatthis onnetion has same geodesis than rg, but indues a di�erent parallel transport2.Indeed, onsider the z-axis (t) = (0; 0; t), a geodesi, and the vetor �eld V whih, inevery point (t), onsists of the vetor (os t; sin t; 0). Then one heks immediately thatrg_V = _ � V , that is, the vetor V is parallel transported aording to a helioidalmovement. If we now transport the vetor along the edges of a losed triangle, it willbe rotated around three linearly independent axes, hene the holonomy algebra is g�T =h�T = so(3).Example 4.2. Any 3-form in R4 is equivalent to one of the forms T = a � e123, henethe same argument as in the previous example yields that g�T = 0 or so(3).Example 4.3. Any 3-form in R5 is equivalent to one of the forms T = a � e123 + b � e345.The orresponding algebras are gT = so(5); so(3)� so(2); 0 and g�T = 0; so(3); so(5).Example 4.4. In R7 , we onsider the 3-form T = e127+e135�e146�e236�e245+e347+e567.Its isotropy algebra gT is isomorphi to the exeptional Lie algebra g2. Moreover, so(7)splits into two G2-irreduible omponents, so(7) = gT�m. The orthogonal omplementm of gT oinides with the spae of all inner produtsX T. The Lie algebra generated bythese elements is isomorphi to so(7). To summarize, we obtain gT = g2 and g�T = so(7).The �rst Proposition estimates the dimension of the Lie algebra g�T from below.Proposition 4.1. Let T 2 �3(Rn) be a 3-form and �T : Rn ! g�T be the map de�nedby the formula �T(X) := X T. Then T depends only on the orthogonal omplementKer(�T)?, T 2 �3(Ker(�T)?) :In partiular, if T is a 3-form whih an not be redued to a lower dimensional subspae,then n � dim(g�T) :Next, we investigate the representation of the Lie algebra g�T in Rn .Proposition 4.2. The representation (g�T ; Rn) is reduible if and only if there exista proper subspae V � Rn and two 3-forms T1 2 �3(V) and T2 2 �3(V?) suh thatT = T1 +T2. In this ase, the Lie algebra g�T deomposes intog�T = g�T1 � g�T2 :2\Deux tri�edres [. . . ℄ de E seront parall�eles lorsque les tri�edres orrespondants de E [l'espae eulidienlassique℄ pourront se d�eduire l'un de l'autre par un d�eplaement h�elio��dal de pas donn�e, de sensdonn�e[. . . ℄. L'espae E ainsi d�e�ni admet un groupe de transformations �a 6 param�etres : e serait notreespae ordinaire vu par des observateurs dont toutes les pereptions seraient tordues." lo.it.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 9Proof. Consider a g�T-invariant subspae V � Rn and �x a basis e1; � � � ; ek in V as wellas a basis ek+1; � � � ; en in its orthogonal omplement V?. Then, for any vetor X 2 Rn ,and any pair of indies 1 � i � k, k + 1 � � � n, we obtainT(X; ei; e�) = 0 :Sine T is skew-symmetri, we onludeT(ei; ej ; e�) = 0; and T(ei; e�; e�) = 0 : �The following Proposition restrits the type of the Lie algebra g�T. In partiular, itannot be ontained in the Lie algebra u(k) � so(2k) of the unitary group.Proposition 4.3. Let T be a 3-form in R2k and suppose that there exists a 2-form 
suh that 
k 6= 0 and [ g�T; 
 ℄ = 0 :Then T is zero, T = 0.Proof. We �x an orthonormal basis in R2k suh that the 2-form 
 is given by
 = A1 � e12 + � � � + Ak � e2k�1;2k ; A1 � : : : �Ak 6= 0 :The ondition [g�T; 
℄ = 0 is equivalent to the equations2kXj=1
�j � T�j = 2kXj=1T��j � 
jfor any triple 1 � �; �;  � 2k. Using the speial form of 
 we obtain the equations(1 � �;  � k): A� � T�;2�;2�1 = �A � T�;2��1;2and A� � T�;2��1;2�1 = A � T�;2�;2 :The latter system of algebrai equations implies that T = 0 vanishes. Indeed, let usompute { for example { T�;2�;2�1. In ase � is odd, we haveA� � T�;2�;2�1 = �A � T�;2��1;2 = A � T2��1;�;2 = �A(�+1)=2 � T2�1;2��1;�+1= A� � T2�1;2�;� = �A� � T�;2�;2�1 :In ase � is even, a similar omputations yields the formula�A��2 � T�;2�;2�1 = ��A�=2�2 � T�;2�;2�1 : �Theorem 4.1. For any 3-form T 2 �3(Rn), the Lie algebra g�T is semisimple andoinides with the holonomy algebra h�T.Proof. Aording to Proposition 4.2 we assume that the representation (g�T ; Rn) is irre-duible. The Lie algebra g�T splits into the holonomy algebra h�T and the enter z(g�T).Suppose that the enter z is non trivial, i.e., that there exist a 2-form 
 suh that�g�T ; 
� = 0 :We split the eulidian spae intoRn = Ker(
) � Ker(
)?and observe that both subspaes are g�T-invariant. Sine Ker(
) 6= 0 and the representa-tion (g�T ; Rn) is irreduible, we onlude that Ker(
) = 0. In partiular, the dimensionn = 2k is even and 
k 6= 0. Finally, we obtain T = 0 by Proposition 4.3. �



10 ILKA AGRICOLA AND THOMAS FRIEDRICHA seond restrition for the algebra g�T results from the observation that it is not on-tained in the isotropy Lie algebra of a spinor. This fat implies that there are norT-parallel spinors in Rn for T 6= 0. Furthermore, ertain semisimple Lie groups an-not our as holonomy groups of 3-form in Rn . In dimensions n � 9, where the groupSpin(n) ats transitively on the set of spinors of length one, the proof is a onsequeneof a diret algebrai omputation. For example, in dimension n = 8, a general 3-formdepends on 56 parameters and g�T �  = 0 is a system onsisting again of at least 56linear equations. In higher dimensions, we have to avoid the problem of the unknownorbit struture of the spin representation. We use a global argument here, but it wouldbe interesting to �nd a purely algebrai proof.Theorem 4.2. Let T 2 �3(Rn) be a 3-form. If there exists a non trivial spinor  2 �nsuh that g�T �  = 0, then T = 0.Proof. Consider the ompat, at torus Rn=Zn. Sine T and  2 �n are onstant,both are geometri objets on the torus. In partiular, with respet to the trivial spinstruture of the torus,  is a rT-parallel spinor �eld on Rn=Zn. The integral formula ofTheorem 6.3 yields that T = 0. �Corollary 4.1. Let T 2 �3(Rn) a 3-form. If there exists a non trivial solution  :Rn ! �n of the equationrTX = X( ) + (X T) �  = 0;then T = 0 and  is onstant.Proof. Suppose that a non trivial parallel spinor exists. By Corollary 3.1 and Theorem4.1, we onlude that  is onstant and g�T �  = 0. Theorem 4.2 yields now that the3-form T = 0 vanishes. �In low dimensions, we obtain a omplete list of all possible holonomy algebras h�T:� n = 5 : h�T = 0; so(3); so(5).� n = 6 : h�T = 0; so(3); so(5); so(3) � so(3); so(6).� n = 7 : h�T = 0; so(3); so(5); so(3) � so(3); so(6); so(7).Starting from dimension eight, there our representations of all semisimple Lie algebrasas the holonomy algebra of ertain 3-form in eulidian spae. Indeed, suppose that theeulidian spae Rn = g is a ompat Lie algebra, and the inner produt and the Liebraket are related by the onditionh [X ; Y ℄ ; Z i + hY ; [X ; Z℄ i = 0 :Then T(X;Y;Z) := h[X;Y ℄; Zi is a 3-form in Rn = g and we obtainX T = ad(X) 2 so(g) = so(n) :The Lie algebra g�T is the image of the Lie algebra g under the adjoint representation.Consequently, we have a series of representations ourring for some 3-form.Proposition 4.4. The adjoint representation of any ompat, semisimple Lie algebra gis the holonomy algebra of a ertain 3-form with onstant oeÆients in eulidian spaeg = Rn .The �rst interesting example is the 8-dimensional Lie algebra su(3). It yields a 3-formin R8 suh that g�T = su(3) and the inlusion su(3) � so(8) is the adjoint representation.This example realizes the lower bound in the dimension estimate of Proposition 4.1.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 11The latter series of examples generalizes to Riemannian naturally redutive spaes G=H.Deompose the Lie algebra g = h � m; Ad(H)(m) � m ;and onsider the anonial onnetion of the redutive spae. Its torsion form is givenby the formula T(X;Y;Z) = �h [X;Y ℄m ; Zi ; X; Y; Z 2 m ;where [ ; ℄m denotes the m-part of the Lie braket. Consider the eulidian spae mand the 3-form T. Then g�T is the Lie subalgebra of so(m) generated by the subspaem! so(m), where this map is given by the formulaZ �! Z T ; (Z T)(X) = [X;Z℄m; Z 2 m :In general, this is not the isotropy representation of the redutive spae, but related tothe holonomy of its Levi-Civita onnetion (see [21℄).Let us disuss the question whih irreduible representations (g; Rn) of a semisimple Liealgebra g an our for a 3-form. We already know some restritions. In even dimensions,the g-ation annot preserve a non-degenerate 2-form and, in any dimension, the liftinto the spin representation annot preserve a spinor. In order to formulate a furtherrestrition we introdue { in analogy to the prolongation of a linear Lie algebra (see [21,note 13℄) { an antisymmetri prolongation of a representation of a ompat semisimpleLie algebra byT(g;Rn) := �T 2 �3(Rn) : X T 2 g for any X 2 Rn 	:The subspae T(g;Rn) � �3(Rn) is g-invariant. A 3-form T belongs to this spae if andonly if its Lie algebra is ontained in g�T � g. In partiular, we an formulate a neessaryondition.Proposition 4.5. If a representation (g;Rn) of a ompat, semisimple Lie algebra isrealized by some 3-form T 2 �3(Rn), then T(g;Rn) 6= 0 is non trivial.Example 4.5. The unique irreduible 16-dimensional representation spin(9) � so(16)of the Lie algebra spin(9) does not admit invariant, non degenerate 2-forms in R16 orinvariant spinors in �16. This algebra satis�es the onditions of Proposition 4.3 andTheorem 4.2. However, the algebra and any non trivial subalgebra of it annot be thealgebra g�T for a 3-form T in sixteen variables. It turns out thatT(spin(9);R16 ) = 0 :The proof is a longer algebrai omputation and will be postponed to the appendix.We remark that the results of this setion annot be generalized diretly to the ase ofk-forms. Spinorial onnetions related with forms of higher degree behave di�erently.Theorem 4.2 and Corollary 4.1 are not true for 4-forms. Espeially interesting is di-mension eight. A 4-form T on R8 depends on 70 parameters. On the other hand, the8-dimensional spin representation is real and splits �8 = �+8 ���8 into two 8-dimensionalrepresentations. Consider a spinor  2 �+8 in one of these omponents. The Cli�ordprodut (X T) � is a spinor in ��8 and the ondition �X T� � = 0 for any X 2 R8 isa system of 8 �8 = 64 linear equations for the oeÆients of the 4-form T. Consequently,any spinor  2 ��8 admits a family of 4-forms T depending at least on 6 parameters suhthat g�T �  = 0. In fat, the number of parameters is seven. Indeed, for any spinor  ,we onsider the subspae �T 2 �k(Rn) : g�T �  = 0	. It is invariant under the isotropygroup of the spinor. In dimension eight, the isotropy group Spin(7) splits �4(R8 ) into



12 ILKA AGRICOLA AND THOMAS FRIEDRICHfour Spin(7)-irreduible omponents of dimensions 1; 7; 27; 35 (see [10℄). In any ase,there exist non trivial 4-forms on R8 with non trivial parallel spinors. Sine the spae �8of all spinors in dimension eight oinides with the spae �9 of all spinors in dimensionnine, we obtain 4-forms in R9 with parallel spinors, too.5. r-parallel 2-forms on manifoldsAny metri onnetion on a Riemannian manifold de�nes several di�erential operators,like the Laplae operator on forms or the Dira operator on spinors. One an omparethese operators with the orresponding operator de�ned by the Levi-Civita onnetion.There is one partiularly interesting formula of that type, namely for the odi�erentialof an exterior form, Ær! := � nXi=1 ei rei! :We shall prove that the Riemannian divergene of the torsion form oinides with itsr-divergene.Proposition 5.1. Let r be a onnetion with skew-symmetri torsion. Then, for anyexterior form !, the following formula holds:Ær! = Æg! � 12 � nXi;j=1(ei ej T) ^ (ei ej !) :In partiular, for the torsion form itself, we obtain ÆrT = ÆgT.Proof. For simpliity, we prove the formula for 3-forms. Then we getÆr!(X;Y ) = � nXi=1 rei!(ei;X; Y ) = � nXi=1 ei�!(ei;X; Y )�+ nXi=1 �!(reiei;X; Y ) + !(ei;reiX;Y ) + !(ei;X;reiY )�:Sine the two onnetions are related by 2 �rXY � 2 �rgXY =Pnj=1T(X;Y; ej) � ej , thisan be rewritten in the formÆr!(X;Y ) = Æg!(X;Y ) + 12 nXi;j=1 �T(ei;X; ej)!(ei; ej ; Y ) + T(ei; Y; ej)!(ei;X; ej)�= Æg!(X;Y )� 12 nXi;j=1(ei ej T) ^ (ei ej !)(X;Y ) : �Corollary 5.1. If the torsion form T is r-parallel, then its divergene vanishes,ÆgT = ÆrT = 0 :Let us disuss r-parallel 2-forms. The di�erential equation reads asrg�
� = 12 nXj=1 �
j � T�j� � 
�j � T�j	 :Using the well known formulas for the exterior di�erential, the odi�erential as well asfor the Bohner-Laplae operator r�r we obtain



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 13Proposition 5.2. Let r be a metri onnetion r and skew-symmetri torsion. If 
is a r-parallel 2-form, thenÆg
 = 12 � �
 T� = 14 nXj;�;=1
�j � T�j � e ;d
 = nXj=1 �ej 
� ^ �ej T)= 16 nXj;�;�;=1�
�j � T�j � 
�j � T�j + 
j � T�j�	 � e� ^ e� ^ e ;g�
 ; r�rg
� = 12 nXj;k;�;�;=1
� � 
�k � T�jk � T�j ;where r�rg denotes the Riemannian Bohner-Laplae operator ating on 2-forms.In an adapted basis, 
 = A1 � e1 ^ e2+ � � �+Ak � e2k�1 ^ e2k, the third formula simpli�es,g�
 ; r�rg
� = 12 kX�=1 nXi;j=1 �T2ij2��1 + T2ij2�� � A2� :It explains one again, from a geometri point of view, the proof of Proposition 4.3.We remark that there exist indeed metri onnetions with skew-symmetri torsionand parallel 2-forms. Indeed, onsider an almost hermitian manifold with totally skew-symmetri Nijenhuis tensor. Then there is a unique onnetion r preserving the her-mitian struture with skew-symmetri torsion (see [15℄). The fundamental form of thehermitian struture is r-parallel. A seond example are Sasakian manifolds. For these,the di�erential of the ontat form is parallel with respet to the unique onnetionpreserving the Sasakian struture.6. Shr�odinger-Lihnerowiz type formulas for Dira operatorsConsider a Riemannian spin manifold (Mn; g;T) with 3-form T as well as the one-parameter family of linear metri onnetions with torsion,rsXY := rgXY + 2s � T(X;Y;�) :In partiular, the supersript s = 0 orresponds to the Levi-Civita onnetion, rg � r0.These onnetions an all be lifted to onnetions on the spinor bundle S of M , wherethey take the expression rsX := rgX + s(X T) �  :There is a formula for the square of the Dira operator Ds assoiated with the onnetionrs. In order to state it, let us introdue the �rst order di�erential operatorDs := nXk=1(ek T) � rsek = D0 + sXk (ek T) � (ek T) �  ;where e1; : : : ; en denotes an orthonormal basis. In fat, it will be onvenient to use aseparate notation for the algebrai 4-form derived from T appearing in the di�erene



14 ILKA AGRICOLA AND THOMAS FRIEDRICHDs �D0: �T := 12Xk (ek T) ^ (ek T):Theorem 6.1 ([15, Thm 3.1, 3.3℄). Let (Mn; g;rs) be an n-dimensional Riemannianmanifold with a metri onnetion rs of skew-symmetri torsion 4 � s � T. Then, thesquare of the Dira operator Ds assoiated with rs ats on an arbitrary spinor �eld  as(1) (Ds)2 = �s( ) + 3s dT �  � 8s2 �T �  + 2s ÆT �  � 4sDs + 14 Sals �  ;where �s is the spinor Laplaian of rs,�s( ) = (rs)�rs = � nXk=1rsekrsek +rsrgeiei :Furthermore, the antiommutator of Ds and ! is(2) Ds � T+T �Ds = dT+ ÆT� 8s � �T � 2Ds:Sals denotes the salar urvature of the onnetion rs. Remark that Sal0 = Salg isthe usual salar urvature of the underlying Riemannian manifold (Mn; g).This formula for (Ds)2 has the disadvantage of still ontaining a �rst order di�erentialoperator as well as several 4-forms, whih are diÆult to treat algebraially. Inspiredby the homogeneous ase, we were looking for an alternative omparison of (Ds)2 withthe Laplae operator of some other onnetion rs0 from the same family. For theomputations, we need the square of T inside the Cli�ord algebra. The proof of thefollowing proposition is ompletely similar to that of Proposition 3.1 in [1℄ and willhene be omitted.Proposition 6.1. Let T be a 3-form, and denote by the same symbol its assoiated(2; 1)-tensor. Then its square inside the Cli�ord algebra has no ontribution of degree 6,and its salar and fourth degree part are given byT20 = 16 nXi;j=1 jjT(ei; ej)jj2; T24 = � 2 � �T:With these preparations in hand, we an state a more useful Shr�odinger-Lihnerowiztype formula for (Ds)2. It links the Dira operator for the parameter s=3 with theLaplaian for the parameter s. The remainder is a zero order operator. Similar formulasan be found in [3℄ and, for homogeneous spaes, in [1℄.Theorem 6.2. The spinor Laplaian �s and the square of the Dira operator Ds=3 arerelated by (Ds=3)2 = �s + s � dT+ 14 Salg � 2s2 � T20:Proof. By the formula from Theorem 6.1,(Ds)2 + 4sDs = �s + 3s dT� 8s2 �T + 2s ÆT + 14 Sals:But sine Ds = D0 + 3s � T, the left hand side an equally be rewritten(Ds)2 + 4sDs = (D0)2 + 3s(TD0 +D0T) + 9s2 T2 + 4sDs:



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 15We use equation (2) to express Ds by the antiommutator TDs +DsT:2Ds = dT+ ÆT� 8s � �T � (D0T+TD0)� 6s � T2 :Now we obtain(Ds)2 + 4sDs = (D0)2 + s(TD0 +D0T)� 3s2 T2 � 16s2 � �T + 2s � dT= (Ds=3)2 � 4s2 � T2 � 16s2 � �T + 2s � dT :We observe that Ds=3 hene appears by quadrati ompletion. Now it suÆes to insertthis result in the formula of Theorem 6.1 and to use Proposition 6.1 as well as well asthe easy relation between salar urvatures, Sals = Salg � 24s2 T20. �Integrating the latter formula on a ompat manifold Mn, we obtainZMn jjDs=3 jj2 = ZMn hjjrs jj2 + shdT �  ; i + 14Salg � jj jj2 � 2s2 T20 � jj jj2i :A �rst onsequene is a non linear version of Corollary 4.1.Theorem 6.3. Let (Mn; g;T) be a ompat, Riemannian spin manifold of non positivesalar urvature, Salg � 0, and suppose that the 4-form dT ats on spinors as a nonpositive endomorphism. If there exists a solution  6= 0 of the equationrTX = rgX + (X T) �  = 0 ;then the 3-form and the salar urvature vanish, T = 0 = Salg, and  is parallel withrespet to the Levi-Civita onnetion.Remark 6.1. Let us ompare Theorem 6.3 with the integral formula in [15℄. There,we need the ondition that dT + 8 � �T is a non positive endomorphism in order toprove the same result. Sine �T is neither positive nor negative, the two onditionsare independent. The advantage of Theorem 6.3 is that only the algebrai type of theexterior di�erential dT is involved, but not the algebrai type of the torsion form T itself(see the proof of Theorem 4.2).Theorem 6.3 applies, in partiular, to Calabi-Yau or Joye manifolds. These are ompat,Rii-at Riemannian manifolds in dimensions n = 6; 7 with one parallel spinor �eld.Let us perturb the onnetion rg by a 3-form suh that dT is non positive on spinors.Then the new onnetion rT does not admit rT-parallel spinor �elds. Nilmanifolds andtheir ompat quotients Mn = G=� are a seond family of examples where the theoremapplies. A further family of examples arises from ertain naturally redutive spaes anda torsion form T being proportional to the torsion form of the anonial onnetion, see[1℄. 7. 1-parameter families of onnetions with parallel spinorsConsider a triple (Mn; g;T) onsisting of a Riemannian manifold together with a �xed3-form T 6= 0. Let us ask for parameters s0 suh that the onnetion rs0 admits aparallel spinor. The �rst example desribes a ase with parallel spinors for more thenonly one parameter in the family.Example 7.1. Let G be a simply onneted Lie group, g a biinvariant metri andonsider the torsion form T(X;Y;Z) := g([X;Y ℄; Z). The onnetions r�1=4 are at(see [21℄). In partiular, there are r�1=4-parallel spinor �elds.



16 ILKA AGRICOLA AND THOMAS FRIEDRICHThe integrability ondition of Theorem 6.1 implies that the funtionG(m; s) := Det�3s dT� 8s2 �T + 2s ÆT + 14 Sals	(m)vanishes at s0 and allm 2Mn. Here we treat forms as endomorphisms ating on spinors.The funtion G(s) is a polynomial. If the Riemannian salar urvature is not identiallyzero, there exists only a �nite number of parameters with rs-parallel spinors. Let usdisuss low dimensions.Example 7.2 (The 3-dimensional ase). Consider the 3-dimensional sphere (S3; g; dS3)equipped with its standard metri and the volume form T = dS3. The equationrsX = rgX + s � (X T) �  = rgX + s �X �  = 0is the usual Killing spinor equation. There are solutions on the 3-dimensional spherefor both parameters s = �1=2. In dimension n = 3, this is the only manifold admittingparallel spinors with respet to a non trivial 3-form. Indeed, any T is proportional tothe volume form, T = f � dM3, where f is a real-valued smooth funtion on M3. If theequation rgX + (X T) �  = rgX + f �X �  = 0admits a non trivial solution  , then by a Theorem of A. Lihnerowiz (see [22℄) f isonstant and (M3; g) is a spae form.In dimension four, we split any 2-form ! 2 �2(R4) into its self-dual and anti-self-dualpart, ! = !+ + !�.Lemma 7.1. An element a+!+ f � e1234 2 Cl(R4) ats on the spae �4 of spinors andits determinant is given by the formulaDet�a+ ! + f � e1234� = �(a+ f)2 + 4 � jj!+jj2� � �(a� f)2 + 4 � jj!�jj2� :For any 3-form T 2 �3(R4 ) the orresponding 4-form �T vanishes, �T = 0.Proof. Any 3-form in R4 is SO(4)-equivalent to the form a � e1 ^ e2 ^ e3 ontaining onlyone summand. This normal form implies �T = 0 immediately. The formula for thedeterminant follows from a matrix representation of the Cli�ord algebra. �The equation G(m; s) = 0 yields the following ondition not expressing the full integra-bility onditions for the existene of a parallel spinor.Proposition 7.1. Let (M4; g;T) be a Riemannian spin manifold equipped with a 3-formT. If the onnetion rs admits a non trivial parallel spinor, the following equations holdat any point:(1) 12 � s � dT = � (Salg � 24 � s2 � T20) � dM4.(2) Æ(T) is a (anti)-self-dual 2-form.Example 7.3. Using the unique 3-dimensional example S3 and its Killing spinors, weobtain by M4 := S3 � R1 and T := dS3 an example in dimension four. Indeed, the3-dimensional Killing spinors are r�1=2-parallel on M4. They do not depend on theR1 -oordinate.The integrability ondition restrits the admissible parameters via a polynomial equationinvolving the salar urvature and the torsion form of the triple (Mn; g;T). Globally,not all of these values are possible.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 17Theorem 7.1. Let (Mn; g;T) be a ompat triple. For any rs-parallel spinor  , thefollowing formula holds:64 � s2 ZMnh�T �  ;  i + ZMn Sals = 0 :If the mean value of h�T �  ;  i does not vanish, the parameter s is given bys = 18 ZMnhdT �  ;  i.ZMnh�T �  ;  iIf the mean value of h�T � ;  i vanishes, the parameter s depends only on the Riemann-ian salar urvature and on the length of the torsion form,0 = ZMn Sals = ZMn Salg � 24s2 ZMn T20 :Finally, if the 4-forms dT and �T are proportional, there are at most three parameterswith rs-parallel spinors.Proof. We use the integrability onditions for parallel spinors from Theorem 6.1. Let  be a rs-parallel spinor of length one. Then we obtain3sZMnhdT �  ;  i � 8s2 ZMnh�T �  ;  i + 14 ZMn Salg � 6s2 ZMn T20 = 0 :On the other side, the antiommutator relation between Ds and T as well as the sym-metry property of the Dira operator in L2 yields0 = ZMnhT �  ; Ds i = ZMnhDsT �  ;  i = ZMnhdT �  ;  i � 8sZMnh�T �  ;  i :If the mean values of h�T �  ;  i does not vanish, then the seond equation determinesthe parameter s, s = 18 ZMnhdT �  ;  i.ZMnh�T �  ;  i :If the mean values of h�T �  ;  i vanishes, then the mean value of hdT �  ;  i vanishes,too. The �rst formula yields the result. �Remark 7.1. In Proposition 8.5, we disuss an example of a non-at onnetion onthe ompat, 7-dimensional Alo�-Wallah spae N(1; 1) suh that rs0 and r�s0 admitparallel spinors for suitable s0, hene showing that both ases from Theorem 7.1 anatually our in non-trivial situations. The "trivial" ases we knew about before are,of ourse, Lie groups (Example 7.1). Example 8.1 illustrates how a parallel spinor anour for zero salar urvature and dT proportional to �T. In the same vein, we onstruton N(1; 1) a spinorial onnetion de�ned by a 4-form R suh that rR and r�R admitparallel spinors (Proposition 8.13).If the torsion form T of the linear onnetion is r-parallel, we have dT = 2 � �T andÆ(T) = 0. This situation ours if Mn = G=H is a redutive spae and T is thetorsion form of its natural onnetion (see [20℄) or for Sasakian manifolds, nearly K�ahlermanifolds, nearly parallel G2-manifolds equipped with their unique onnetion preservingthe orresponding geometri struture (see [15℄). A diret onsequene of Theorem 6.2and Theorem 7.1 is the following



18 ILKA AGRICOLA AND THOMAS FRIEDRICHCorollary 7.1. Let (Mn; g;T) be a ompat Riemannian manifold and suppose that theexterior di�erential of the 3-form T is proportional to the 4-form �T, dT = 2 � �T. Ifa onnetion rs with s 6= 1=4 admits a parallel spinor �eld, the �rst eigenvalue of theDira operator Ds=3 is bounded by6 � vol(Mn; g) � �21(Ds=3) � ZMn Salg :If r1=4 = r admits a parallel spinor �eld,vol(Mn; g) � �21(D1=12) � 18 ZMn Salg + 116 ZMn T20 :Remark 7.2. On a naturally redutive spae M = G=K, r1=4 is the anonial onne-tion and [1, Corollary 3.1.℄ shows that a r1=4-parallel spinor realizes indeed this lowerbound for �21(D1=12) provided the Casimir operator 
g is non-negative.In ase that the torsion form of the triple (Mn; g;T) arises from some speial non-integrable geometri struture (see [14℄), then usually only one onnetion in the familyadmits rs-parallel spinors. A uniqueness of that type requires additional arguments in-volving the speial geometri struture. For example, onsider a 5-dimensional Sasakianmanifold (M5; g; �; �; '). Denote by r its unique onnetion with skew-symmetri tor-sion and preserving the ontat struture. Its torsion is given by the formula T = �^d�(see [15℄). In an adapted loal frame, we have the formulasT = � ^ d� = 2 � (e12 + e34) ^ e5; d� = 2 � (e12 + e34):We onsider the family rs of onnetions. The �rst admissible ase s = 1=4 is theonnetion r preserving the ontat struture we started with. In the papers [15℄, [16℄the integrability onditions for r1=4-parallel spinors have been disussed ompletely. Inpartiular, there are ompat examples. For any Sasakian struture, we have2 � rgX� = X d� :Suppose that there exists a rs-parallel spinor  � for some parameter s 6= 1=4. Weintrodue the vetor �eld �� via the algebrai equation �� �  � = i �  �. Then �� isrs-parallel, rgX�� = � 2s � T(X; ��;�) :Let us onsider the inner produt f := g(� ; ��) of the two vetor �elds. Its di�erentialis given by the formula 2 � df = (4s � 1) �� d� :In partiular, �(f) = ��(f) = 0. Next, we ompute the ommutator of the vetor �elds�� ; ��� = rg��� � rg��� = � (1=2 + 2s) �� d� = � 4s+ 14s� 1 � df :First we disuss the ase that s 6= �1=4. Sine ��; ���(f) = 0, we onlude thatjjgrad(f)jj2 = 0 holds and then we obtain �� d� = 0. Consequently, �� is propor-tional to the vetor �eld �. In partiular, � is rs-parallel,rgX� = � 2s � T(X; �;�) = 2s �X d� :If s 6= 1=4, the latter equation ontradits the di�erential equation for the Killing vetor�eld � of a Sasakian struture. Finally, we study the remaining ase s = � 1=4. Thenwe have 3s � dT � 8s2 � �T + 14 � Sals = � 8 � e1234 + 14 � Sal�1=4:



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 19The endomorphism e1234 ats on spinors with onstant eigenvalues �1. Therefore, if  � isa r�1=4-parallel spinor, the salar urvature Sal�1=4 is onstant and  � is an eigenspinorof this endomorphism, e1234 � � = � � �. Sine the onnetion r1=4 preserves the ontatstruture, the ovariant derivative r1=4X  � satis�es the same algebrai equation. Withrespet to 0 = r�1=4X  � = r1=4X  � � 12 � (X T) �  �we onlude that for any vetor X the spinor  � satis�es the equatione1234 � (X T) �  � = � � (X T) �  � :Inserting X = e1 we obtain e1234 � e25 �  � = � � e25 �  � and e1234 �  � = � �  �. Therelations in the Cli�ord algebra yield immediately that  � = 0. All together, we proved:Proposition 7.2. Let (M5; g; �; �; ') be a 5-dimensional Sasakian manifold and denoteby r its unique onnetion with skew-symmetri torsion T and preserving the ontatstruture. If a onnetion rs in the family through r admits a parallel spinor �eld, thens = 1=4 and the onnetion is r.8. Torsion forms with parallel spinors on Alo�-Wallah spaesThe goal of this setion is to onstrut on the Alo�-Wallah manifoldN(1; 1) = SU(3)=S1a two-parameter family of metris g = gs;y that admits, for every gs;y, two inequivalentoalibrated G2-strutures. Moreover, we investigate the torsion forms of their uniqueonnetions (see [15℄) as well as other geometri data of these onnetions. We usethe omputations available in [2, p.109 �℄, whih we hene shall not reprodue here.Consider the embedding S1 ! SU(3) given by ei� 7! diag(ei�; ei�; e�2i�). The Lie algebrasu(3) splits into su(3) = m + R, where R denotes the Lie algebra of S1 dedued fromthe given embedding. The spae m has a preferred diretion, namely the subspae m0generated by the matri L := diag(3i;�3i; 0). Let Eij (i < j) be the matrix with 1at the plae (i; j) and zero elsewhere, and de�ne Aij = Eij � Eji; ~Aij = i(Eij + Eji).We set m1 := LinfA12; ~A12g, m2 := LinfA13; ~A13g and m3 := LinfA23; ~A23g. The summ1 � m2 � m3 is an algebrai omplement of m0 inside m, and in fat all spaes miare pairwise perpendiular with respet to the Killing form B(X;Y ) := �Re(trXY )=2.Hene, the following formulags;y := 1s2 B��m0 + B��m1 + 1yB��m2 + 1yB��m3de�nes a two-parameter family of metris on N(1; 1) := SU(3)=S1. It is a subfamilyof the family onsidered in [2, p.109 �℄; in partiular, (s = 1; y = 2) orresponds tothe 3-Sasakian metri that has three Killing spinors with Killing number 1=2, and (s =1; y = 2=5) is the Einstein metri with one Killing spinor with Killing number �3=10(see [2, Thm 12, p.116℄). An orthonormal basis of m is given byX1 = A12; X2 = ~A12; X3 = pyA13; X4 = py ~A13; X5 = pyA23; X6 = py ~A23;and X7 = s � L=3. The isotropy representation Ad (�) leaves the vetors X1;X2 and X7invariant, and ats as a rotation by 3� in the (X3;X4)-plane and in the (X5;X6)-plane.We use the standard realization of the 8-dimensional Spin(7)-representation �7 as givenin [2, p.97℄ or [13, p.13℄, and denote by  i; i = 1; : : : 8 its basis (ui in the notationof [2℄). One then heks that  3;  4;  5 and  6 are �xed under the lift ~Ad (�) of theisotropy representation to Spin(7). Thus, they de�ne onstant setions in the spinor



20 ILKA AGRICOLA AND THOMAS FRIEDRICHbundle S = SU(3)� ~Ad �7. The Levi-Civita onnetion of N(1; 1) is desribed by a map� : m 7! so(7), whose lift ~� : m 7! spin(7) is given by3 ([2, p.112℄)~�(X1) = + 12s e2 � e7 � �12 � y4� [e3 � e5 + e4 � e6℄~�(X2) = � 12s e1 � e7 � �12 � y4� [e4 � e5 � e3 � e6℄~�(X3) = + y4s e4 � e7 � y4 [e2 � e6 � e1 � e5℄~�(X4) = � y4s e3 � e7 + y4 [e1 � e6 + e2 � e5℄~�(X5) = � y4s e6 � e7 � y4 [e1 � e3 + e2 � e4℄~�(X6) = + y4s e5 � e7 � y4 [e1 � e4 � e2 � e3℄~�(X7) = s2 [2e1 � e2 + e3 � e4 � e5 � e6℄� 12se1 � e2 � y4se3 � e4 + y4se5 � e6:We now make the following Ansatz for an algebrai 3-form on m,T = �X1 ^X3 ^X5 + � X1 ^X4 ^X6 + X2 ^X4 ^X5 + Æ X2 ^X3 ^X6+ �X1 ^X2 ^X7 + � X3 ^X4 ^X7 + � X5 ^X6 ^X7:For notational onveniene, we shall write Xijk for Xi^Xj ^Xk, and similarly for formsof any degree. In order to de�ne a global form on N(1; 1), an algebrai form on m needsto be invariant under the isotropy representation. This is true for X127, X347, and X567,whereas for example X135 does not exist globally. However, one easily heks that thetwo 2-forms X35 +X46; X45 �X36 are isotropy invariant, and this will suÆe to hekthat all forms to follow are indeed well-de�ned on N(1; 1). In any event, X1 T atson algebrai spinors by Cli�ord multipliation with � e3 � e5 + � e4 � e6 + � e2 � e7, andsimilarly for X2; : : : ;X7.Proposition 8.1. The spinor �eld  3 satis�es the equation rgX 3 + (X T) �  3 = 0exatly for one 3-form T := T3,T3 := �12 � y4 + 1 + y6s � s3� [X135 + X146℄ + �12 � y4 � 1 + y6s + s3� [X245 � X236℄+ �2y � 16s � 2s3 � X127 + �4 + y12s � 2s3 � [X347 � X567℄:Proof. A omputer omputation yields that the overdetermined system of equationsrgXi 3+(Xi T) � 3 = 0 (for i = 1; : : : ; 7) redues to a linear system of seven equationsin the seven variables �; : : : ; � with two free parameters s; y > 0:12s+1�y2����+� = 0; � 12s+1�y2�+Æ�� = 0; y4s���Æ+� = 0; y4s��++� = 0;� y4s + ��  + � = 0; � y4s + � + Æ + � = 0; 2s� 1 + y2s + �+ � � � = 0:One then veri�es that the oeÆients given in the proposition are its unique solution. �3Notie the following typo in the referene: the right de�nition of d on page 112 is d := pxy=z +pyz=x�pxz=y. For our metris, x = 1 and y = z.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 21Proposition 8.2. The spinor �eld  4 satis�es the equation rgX 4 + (X T) �  4 = 0exatly for one 3-form T := T4,T4 := �12 � y4 � 1 + y6s + s3� [X135 + X146℄ + �12 � y4 + 1 + y6s � s3� [X245 � X236℄+ �2y � 16s � 2s3 � X127 + �4 + y12s � 2s3 � [X347 � X567℄:Proof. The linear system determined by rgXi 4 + (Xi T) �  4 = 0 reads as12s�1+ y2+�+�+� = 0; 12s+1� y2�+Æ+� = 0; y4s+�+Æ+� = 0; y4s+��+� = 0;y4s + ��  � � = 0; y4s + � + Æ � � = 0; �2s+ 1 + y2s � �� � + � = 0:Its unique solution leads to the formulas above. �Proposition 8.3. The spinor �eld  5 satis�es the equation rgX 5 + (X T) �  5 = 0exatly for one 3-form T := T5,T5 := �16 + y12 + y � 16s � [X135 + X146 + X245 � X236℄ + �23 � 2y3 � 2y + 16s � X127+ �13 � y3 � 4� y12s � [X347 � X567℄:Proof. The linear system rgXi 5 + (Xi T) �  5 = 0 is of slightly di�erent type,y4s+ y2��+Æ+� = 0; y4s+ y2���+� = 0; y4s+ y2����� = 0; y4s+ y2��+Æ�� = 0;12s � 1 + y2 +  � Æ + � = 0; 12s � 1 + y2 + �+ � + � = 0; y � 12s + �� � + � = 0:The main reason for this is that  5 and  6 span the kernel of the �rst summand of~�(X7), hene the last equation ontains no term linear in s. �Proposition 8.4. The spinor �eld  6 satis�es the equation rgX 6 + (X T) �  6 = 0exatly for one 3-form T := T6,T6 := �16 + y12 � y � 16s � [X135 + X146 + X245 � X236℄ + ��23 + 2y3 � 2y + 16s � X127+ ��13 + y3 � 4� y12s � [X347 � X567℄:Proof. The linear system rgXi 6 + (Xi T) �  6 = 0 isy4s� y2+��Æ+� = 0; y4s� y2+�++� = 0; y4s� y2+�+�� = 0; y4s� y2+��Æ�� = 0;� 12s � 1 + y2 +  � Æ � � = 0; � 12s � 1 + y2 + �+ � � � = 0; 1� y2s � �+ � � � = 0: �Remark 8.1. For s = y = 1, all four 3-forms T3; : : : ;T6 oinide, reeting the fatthat the undeformed metri has  3; : : : ;  6 as parallel spinors for the onnetion de�nedby T := 14 [X135 + X146 + X245 � X236℄ � 12 X127 � 14 [X347 �X567℄ :



22 ILKA AGRICOLA AND THOMAS FRIEDRICHThe 3-forms T3 and T4 are equal for the family of metris de�ned by 2s2 = 1 + y,whereas T5 = T6 as soon as y = 1. Even more interestingly, there exists a metri forwhih T3 = �T4:Proposition 8.5. Consider the metri gs0;y0 on N(1; 1) de�ned by s0 = p3=2 andy0 = 2, and the 3-formT := p3=6 (X135 +X146 �X245 +X236):Then,  3 is parallel with respet to the onnetion r4�T, and  4 is parallel with respetto the onnetion r�4�T. Furthermore, both onnetions are not at.It is a subtle and omputationally diÆult question in as muh T an be adapted toa given spinor in order to make it parallel. For this, a more systemati approah isrequired. There are preisely 13 isotropy invariant 3-forms on m, hene the most general3-form we an onsider is a linear ombination ofX135 +X146; X235 +X246; X357 +X467; X145 �X136; X245 �X236; X457 �X367;X127; X347; X567; X134; X234; X156; X256:We studied the question whether there exists a ontinuous family of 3-forms Ta;b of thisgeneral type suh that a given linear ombination a 3 + b  5 is parallel with respet torTa;b . It turns out that this is possible if and only if s = y. We state the result of thislengthy alulation without proof.Proposition 8.6. The spinor �eld  a;b := a �  3 + b �  5; ab 6= 0, satis�es the equationrgX a;b + (X Ta;b) �  a;b = 0 if and only if s = y and if Ta;b is given byTa;b = a2(�7s2 + 8s+ 2) + b2(s2 + 4s� 2)12s(a2 + b2) [X135 +X146℄ + s2 + 4s� 212s [X245 �X236℄+ a2(�8s2 + s+ 4) + b2(�4s2 + 5s� 4)12s(a2 + b2) [X347 �X567℄ + �4s2 + 2s� 16s X127+ ab (�2s2 + s+ 1)3s(a2 + b2) [X134 �X156℄ + ab (s2 + s� 2)3s(a2 + b2) [X357 +X467℄For ab = 0, this di�erential form Ta;b is again a linear ombination of the seven basi3-forms we started with, and oinides indeed for a = 1; b = 0 and a = 0; b = 1 with the3-forms T3; T5 evaluated at the parameter value s = y, respetively. Remark that theonnetions with torsion Ta;b onstitute a S1-parameter family of onnetions admittingparallel spinors on the same Riemannian manifold. The 3-Sasakian metri (s = 1; y = 2)and the Einstein metri (s = 1; y = 2=5) are of partiular interest. For theoretialreasons to be explained in the next setion, both must admit a family of torsion formssuh that the three Killing spinors of the 3-Sasakian metri ( 3;  4;  6 in our notation)are parallel with respet to the onnetion it de�nes. In fat, suh a family exists fors = 1 and arbitrary y (but not for arbitrary s).Proposition 8.7. For the metris gs;y on N(1; 1), the spinor �eld  a;b; := a 3+b  4+  6; ab 6= 0, satis�es the equation rgX a;b;+(X Ta;b;) � a;b; = 0 if and only if s = 1and if Ta;b; is given byTa;b; = P (a; b; )[X567 �X347℄ + P (a; ; b)[X135 +X146℄ + P (b; ; a)[X245 �X236℄+ Q(a; b; )[X235 +X246 +X145 �X136℄ +Q(b; ; a)[X357 +X467 +X156 �X134℄+ Q(a; ; b)[X457 �X367 +X234 �X256℄ + 2y � 56 X127;



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 23with the following de�nitions for the oeÆients P and Q:P (a; b; ) := (a2 + b2)(4� y) + 2(8� 5y)12(a2 + b2 + 2) ; Q(a; b; ) := ab (y � 1)3(a2 + b2 + 2) :Let us disuss the spinor �elds  3 and  5 from the point of view of G2-geometry. Ingeneral, a spinor �eld  of length one de�nes on a 7-dimensional Riemannian manifolda 3-form of general type by the formula (see [2℄, [19℄)!(X;Y;Z) := �hX � Y � Z �  ;  i :Computing the forms of the spinors  3;  5 we obtain!3 = �X127 + X135 +X146 + X236 � X245 � X347 + X567 ;!5 = �X127 � X135 �X146 + X236 � X245 + X347 � X567 :The onnetions r3 and r5 with torsion forms 4�T3 and 4�T5 preserve the G2-strutures!3 and !5, respetively. Moreover, a diret omputation yields the formulas�T3 ; !3� = 4 � s2 + y + 16 � s > 0 ;�T5 ; !5� = � 4 � s+ 2 � s � y + y � 16 � s :Sine the onnetion preserving a G2-struture is unique (see [15℄), the G2-strutures !3and !5 are not equivalent. We remark that !3 and !5 are oalibrated G2-strutures,d � !3 = 0 ; d � T3 = 0 ; d � !5 = 0 ; d � T5 = 0 :Indeed, for any vetor, the inner produt X �!3 is orthogonal to 7 �T3� (T3 ; !3) �!3.The formula expressing the torsion form T of an admissible G2-struture by the 3-form! ( see [15℄ and [17℄) yields now d�!3 = 0 immediately. The odi�erential of the torsionform is given by the formula (see [15℄ and [17℄)4 � d � T3 = d�3 ^ �!3 ; �3 = (4 � T3 ; !3) :In our example the funtion �3 is onstant, i.e., d �T3 = 0. The same argument appliesfor !5. The lass of all oalibrated G2-strutures splits into the sum W1 �W3 of a 1-dimensional lass W1 (the so alled nearly parallel G2-strutures) and a 27-dimensionallass W3 (see [11℄). Nearly parallel G2-strutures are haraterized by the onditionthat the torsion form T of its unique onnetion is proportional to !. On the otherside, the G2-strutures of typeW3 are the oalibrated strutures suh that T and ! areorthogonal, (T ; !) = 0 (see [15℄). Using this haraterization we obtain immediatelyProposition 8.8. The G2-struture !3 is nearly parallel if and only if s = 1 and y = 2.The G2-struture !3 is never of type W3. The G2-struture !5 is nearly parallel if andonly if s = 1 and y = 2=5. This metri is a universal deformation of the 3-Sasakianmetri (see [19℄). The G2-struture !5 is of type W3 if and only if 2 � s � (2 + y) = 1� y.In general, the salar urvatures Salg ; Salr of a oalibrated G2-struture (M7; g; !)an be expressed by its torsion form T (see [17℄) :Salg = 2 � (T ; !)2 � 12 � jjTjj2 ; Salr = Salg � 32 � jjTjj2 = 2 � (T ; !)2 � 2 � jjTjj2 :We use the forms !3 ; 4 � T3 as well as the forms !5 ; 4 � T5 in order to ompute theRiemannian salar urvature of the metri depending on the parameters s; y. In both



24 ILKA AGRICOLA AND THOMAS FRIEDRICHases the result is the same :Salg = 8 + 24y � 2y2 � 2 + y2s2 :In a similar way we ompute the salar urvature of the onnetion r3 and r5 :Sal3 = � 43s2 � �8 + 32s4 + 4y + 5y2 + 2s2(�4� 28y + 3y2)� ;Sal5 = � 43s2 � �8� 4y + 5y2 + 8s(�2 + y + y2) + 2s2(4� 20y + 7y2)� :In partiular, we obtain a family of oalibrated G2-strutures on N(1; 1) with vanishingsalar urvature of the assoiated onnetion. Moreover, a numerial omputation yieldsthat there exist two pairs of parameters where both salar urvatures Sal3 and Sal5vanish, namely (s ; y) � (0:62066 ; 0:852508) and (1:49934 ; 1:66564). The Rii tensorRir of the anonial onnetion of a G2-struture (M7; g; !) an be expressed by thederivative dT of the torsion form (see [15℄),Rir(Xi ; Xj) = 12 � �Xi dT ; Xj �!� :Using the ommutator relations in the Lie algebra we ompute the exterior derivativesdX1 = � 2s �X27 + y � (X35 + X46) ;dX2 = 2s �X17 + y � (X45 � X36) ;dX7 = � 2s �X12 � ys � (X34 � X56) :The torsion form T3 an be written asT3 = � (y � 2)(5s2 � 1� y)3sy X127 + 1y h12 � y4 + 1 + y6s � s3iX1 ^ dX1+ 1y h12 � y4 � 1 + y6s + s3iX2 ^ dX2 � sy h4 + y12s � 2s3 iX7 ^ dX7 :We an now ompute the exterior derivative as well as the Rii tensor. Let us disussthe ases (s; y) = (1; 4) and (s; y) = (p3=2 ; 2) where the formulas simplify.Example 8.1. In ase of s = 1 and y = 4 we obtainT3 = � 14X2 ^ dX2 ; dT3 = 8X3456 � 4X1457 + 4X1367:The salar urvatures are Sal3 = 0 and Salg = 54 . Moreover, we obtain� 2 � �T3 = (T23)4 = 14 � dT3;i.e., dT3 is proportional to �T3 (see Theorem 7.1).Example 8.2. In ase of s =p3=2 and y = 2 we obtainT3 = 14X7 ^ dX7 ; dT3 = 43(X1234 � X1256 � X3456):The salar urvatures Sal3 and Salg are positive.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 25The 3-form !a;b orresponding to the spinor a �  3 + b �  5 is given by the formula!a;b = � (a2 + b2)(X127 � X236 + X245) + 2ab(X134 � X156 + X357 + X467)+ (a2 � b2)(X135 + X146 � X347 + X567):We ompute the inner produt with the torsion form of Proposition 8.6 :(Ta;b ; !a;b) = b2(1� 5 s� 2 s2) + a2(1 + s+ 4 s2)6 s :In partiular, the G2-struture is of pure type W3 if and only ifb2(1� 5 s� 2 s2) + a2(1 + s+ 4 s2) = 0 ; y = s :Finally, we will onstrut non trivial 4-forms on N(1; 1) suh that the underlying onne-tions admit parallel spinors. Remark that spinorial onnetions related to 4-forms areof ompletely di�erent type. For example, they do not preserve the hermitian produtof spinors and, in general, the holonomy group of a spinorial onnetion of that typeis non ompat. Nevertheless, for the family of metris gs;y, the qualitative results arequite similar to those for 3-forms, though they annot be dedued one from eah other.Theorem 8.1. On N(1; 1) with the metri gs;y, there exist four spinorial onnetionsde�ned by 4-forms admitting  3;  4;  5 and  6 as parallel spinors, respetively; and thereexists, for s = 1, arbitrary y and any linear ombination of  3;  4;  6 preisely one 4-form whih makes this partiular ombination parallel.Again, the exposition of results will make the statement more preise. No proofs will begiven, sine they are similar to the orresponding omputations for 3-forms. With thesame notations as before, onsider now the following Ansatz for a global 4-form :R = �X1234 + � X1256 +  X3456 + Æ X1347 + "X1567 + � X2347 + �X2567+ � (X1235 +X1246) + � (X1357 +X1467) + � (X1245 �X1236)+ ! (X1457 �X1367) + � (X2457 �X2367) + % (X2357 +X2467):Proposition 8.9. The spinor �eld  3 satis�es the equation rgX 3 + (X R) � 3 = 0 ifand only if R = R3, withR3 := �y4 � 12 + 1 + y8s � s2� [X1457 �X1367℄ + �12 � y4 + 1 + y8s � s2� [X2357 +X2467℄+ ��s2 + y + 38s � [X1234 �X1256℄ + �s2 + 1� 3y8s �X3456:Proposition 8.10. The spinor �eld  4 satis�es the equation rgX 4 + (X R) �  4 = 0if and only if R = R4, withR4 := �y4 � 12 � 1 + y8s + s2� [X1457 �X1367℄ + �12 � y4 � 1 + y8s + s2� [X2357 +X2467℄+ ��s2 + y + 38s � [X1234 �X1256℄ + �s2 + 1� 3y8s �X3456:Proposition 8.11. The spinor �eld  5 satis�es the equation rgX 5 + (X R) �  5 = 0if and only if R = R5, withR5 := �12 � y4 + y � 38s � [X1234 �X1256℄ + ��12 + 3y4 + 1 + 3y8s �X3456+ 1� y8s [(X1457 �X1367)� (X2357 +X2467)℄:



26 ILKA AGRICOLA AND THOMAS FRIEDRICHProposition 8.12. The spinor �eld  6 satis�es the equation rgX 6 + (X R) �  6 = 0if and only if R = R6, withR6 := ��12 + y4 + y � 38s � [X1234 �X1256℄ + �12 � 3y4 + 1 + 3y8s �X3456+ y � 18s [(X1457 �X1367)� (X2357 +X2467)℄:Remark 8.2. For s = y = 1, no two of the four 4-forms R3; : : : ; R6 oinide, reetingthe di�erent behavior of spinorial onnetions de�ned by 4-forms when ompared toonnetions de�ned by 3-forms. The 4-forms R3 and R4 are equal for the family ofmetris de�ned by 4s2 = 1 + y, whereas R5 and R6 are never equal. As for 3-forms,there exists a metri for whih R3 = �R4:Proposition 8.13. Consider the metri gs0;y0 on N(1; 1) de�ned by s0 = p5=2 andy0 = 2, and the 4-formR := �p5=10 [(X1457 �X1367) + (X2357 +X2467)℄:Then,  3 is parallel with respet to the onnetion rR, and  4 is parallel with respet tothe onnetion r�R. Furthermore, both onnetions are not at.Proposition 8.14. For the metris gs;y on N(1; 1), the spinor �eld  a;b; := a 3 +b  4 +   6; ab 6= 0, satis�es the equation rgX a;b; + (X Ra;b;) �  a;b; = 0 if and onlyif s = 1 and if Ra;b; is given byRa;b; = P (a; b; )[X1234 �X1256℄� P (a; ; b)[X2467 +X2357℄ + P (b; ; a)[X1457 �X1367℄+ Q(a; b; )[(X2457 �X2367)� (X1357 +X1467)℄ +Q(b; ; a)[(X1235 +X1246) ++ (X2567 �X2347)℄ +Q(a; ; b)[(X1567 �X1347)� (X1245 �X1236)℄ + 5� 3y8 X3456;with the following de�nitions for the oeÆients P and Q:P (a; b; ) := (a2 + b2)(y � 1) + 2(3y � 7)8(a2 + b2 + 2) ; Q(a; b; ) := ab (y � 3)4(a2 + b2 + 2) :9. Torsion forms with parallel spinors on 3-Sasakian manifoldsThe Alo�-Wallah spae N(1; 1) admits a 3-Sasakian struture, and some speial torsionforms with parallel spinors disussed in Setion 8 are losely related to the underlyingontat strutures of N(1; 1). This observation yielded the idea that any 3-Sasakianmanifold should admit natural onnetions with skew-symmetri torsion and parallelspinors. In this setion, we will make this remark preise. In partiular, for a �xed3-Sasakian metri, we will onstrut a whole family of onnetions with parallel spinors.The struture group of a 3-Sasakian geometry is the subgroup SU(2) � G2 � SO(7),the isotropy group of four spinors in dimension seven. In order to keep the realizationof the spin representation we used in Setion 8, we desribe the subgroup SU(2) in suha way that the vetors e1; e2; e7 2 R7 are �xed. More preisely, the Lie algebra su(2) isgenerated by the following 2-forms in R7 :e34 + e56 ; e35 � e46 ; e36 + e56 :The real spin representation �7 splits under the ation of SU(2) into a 4-dimensionaltrivial representation �07 and the unique non trivial 4-dimensional representation �17. In



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 27our spin basis, the spae �07 is spanned by the spinors  3;  4;  5;  6. We onsider thefollowing SU(2)-invariant 2-forms on R7 :de1 := e35 + e46 ; de2 := e45 � e36 ; de7 := e34 � e56 :Using this notation, we introdue a family of invariant 3-forms in R7 depending on 10parameters, T = Xi;j=1;2;7xij � ei ^ dej + w � e1 ^ e2 ^ e7The key point of our onsiderations in this setion is the following algebrai observationProposition 9.1. For any spinor  2 �07, there exists a unique invariant 3-form Tsuh that �X � 2 �X T	 �  = 0 holds for any vetor X 2 R7 .Proof. Given a spinor  = a 3+ b  4+   5+ d 6, we solve the overdetermined system(X � 2 �X T) �  = 0 with respet to the oeÆients of the 3-form. It turns out that asolution exists and is given by the following expliit formulasx11 = a2 � b2 � 2 + d26(a2 + b2 + 2 + d2) ; x12 = ab+ d3(a2 + b2 + 2 + d2) ; x17 = a� bd3(a2 + b2 + 2 + d2) ;x21 = ab� d3(a2 + b2 + 2 + d2) ; x22 = �a2 + b2 � 2 + d26(a2 + b2 + 2 + d2) ; x27 = b+ ad3(a2 + b2 + 2 + d2) ;x71 = a+ bd3(a2 + b2 + 2 + d2) ; x72 = b� ad3(a2 + b2 + 2 + d2) ; x77 = �a2 � b2 + 2 + d26(a2 + b2 + 2 + d2) :and w = � 1=6. The map (a; b; ; d) ! xij(a; b; ; d) is the Veronese map from P3 intothe sphere S8 of radius 1=12. �Consider a simply onneted 3-Sasakian manifold M7 of dimension seven and denoteits three ontat strutures by �1; �2, and �7. It is known that M7 is then an Einsteinspae, and examples (also non homogeneous ones) an be found in the paper [4℄ by Boyerand Galiki. The tangent bundle of M7 splits into the 3-dimensional part spannedby �1; �2; �7 and its 4-dimensional orthogonal omplement. We restrit the exteriorderivatives d�1; d�2 and d�7 to this omplement. In an adapted orthonormal frame, theseforms oinide with the algebrai forms de1; de2 and de7. Now we apply Proposition 9.1.The spae of Riemannian Killing spinorsrgX + 12 �X �  = 0is non trivial and has at least dimension three (see [18℄). Moreover, the proof of this fatshows that all the Riemannian Killing spinors are setions in the subbundle orrespond-ing to the SU(2)-representation �07. Consequently, for any Killing spinor, there exists aunique torsion form T of the desribed type suh thatrTX = rgX + (X T) �  = 0 :Theorem 9.1. Any 3-Sasakian manifold in dimension seven admits a P2-parameterfamily of metri onnetions with skew-symmetri torsion and parallel spinors. Theholonomy group of these onnetions is a subgroup of G2.The spae of SU(2)-invariant 4-forms on R7 has dimension ten,T = Xi;j;k=1;2;7xijk � ei ^ ej ^ dek + w � e3 ^ e4 ^ e5 ^ e6 :



28 ILKA AGRICOLA AND THOMAS FRIEDRICH!1;9 = !8;16 !1;10 = �!8;15 !1;11 = !8;14 !1;12 = !8;13 !1;13 = �!8;12!1;14 = �!8;11 !1;15 = !8;10 !1;16 = �!8;9 !2;9 = !8;15 !2;10 = !8;16!2;11 = �!8;13 !2;12 = !8;14 !2;13 = !8;11 !2;14 = �!8;12 !2;15 = �!8;9!2;16 = �!8;10 !3;9 = �!8;14 !3;10 = !8;13 !3;11 = !8;16 !3;12 = !8;15!3;13 = �!8;10 !3;14 = !8;9 !3;15 = �!8;12 !3;16 = �!8;11 !4;9 = �!8;13!4;10 = �!8;14 !4;11 = �!8;15 !4;12 = !8;16 !4;13 = !8;9 !4;14 = !8;10!4;15 = !8;11 !4;16 = �!8;12 !5;9 = !8;12 !5;10 = �!8;11 !5;11 = !8;10!5;12 = �!8;9 !5;13 = !8;16 !5;14 = !8;15 !5;15 = �!8;14 !5;16 = �!8;13!6;9 = !8;11 !6;10 = !8;12 !6;11 = �!8;9 !6;12 = �!8;10 !6;13 = �!8;15!6;14 = !8;16 !6;15 = !8;13 !6;16 = �!8;14 !7;9 = �!8;10 !7;10 = !8;9!7;11 = !8;12 !7;12 = �!8;11 !7;13 = !8;14 !7;14 = �!8;13 !7;15 = !8;16!7;16 = �!8;15Table 1. First group of equations de�ning spin(9) inside so(16).We study spinorial onnetions depending on 4-forms. Again, any spinor in �07 de�nesa unique 4-form being a solution of the orresponding overdetermined linear system andwe an apply the same onstrution as above. Let us formulate the results.Proposition 9.2. For any spinor  2 �07 there exists a unique invariant 4-form T suhthat �X � 2 �X T	 �  = 0 holds for any vetor X 2 R7 .Theorem 9.2. Any 3-Sasakian manifold in dimension seven admits a P2-parameterfamily of spinorial onnetions de�ned by 4-forms and with parallel spinors. The spino-rial holonomy group of these onnetions is a subgroup of GL(7;R).Appendix A. The Lie algebra spin(9) inside so(16)The Lie algebra so(16) of all antisymmetri matries is parameterized by 120 parameters!i;j, 1 � i < j � 16. We realize the 36-dimensional subalgebra spin(9) by 84 expliitequations. The �rst group of 56 equations involves forms of type !8;� and !i;�, where1 � i < 8 < �; � � 16, and is given in Table 1. The seond group of 28 equationsinvolves the forms !i;j ; !�;� for 1 � i; j � 8 < �; � � 16, and is given in Table 2.Consider a 3-form T 2 T(spin(9);R16 ) in the antisymmetri prolongation of the spin(9)-representation in R16 . Then the 2-forms e1 T; e8 T; e9 T; e16 T are elements ofspin(9). Using the �rst equation !1;9 = !8;16 de�ning this subalgebra, we onlude thatT1;8;9 = 0 ; T1;8;16 = 0 ; T8;9;16 = 0 ; T1;9;16 = 0:In a similar way, the �rst 56 equations de�ning spin(9) yield that, for 1 � i; j < 8 and8 < �; � � 16, the following omponents of T vanish,Ti;8;� = 0 ; T8;�;� = 0:The seond 28 equations immediately imply now that Ti;j;8 = 0, i.e., the interior produte8 T = 0 vanishes for any 3-form in the antisymmetri prolongation. Sine the groupSpin(9) ats transitively on the sphere in R16 , we onlude that T = 0.



ON THE HOLONOMY OF CONNECTIONS WITH SKEW-SYMMETRIC TORSION 292 � !1;2 = !11;12 + !13;14 � !15;16 + !9;10 2 � !1;3 = �!10;12 + !13;15 + !14;16 + !9;112 � !1;4 = !10;11 + !13;16 � !14;15 + !9;12 2 � !1;5 = �!10;14 � !11;15 � !12;16 + !9;132 � !1;6 = !10;13 � !11;16 + !12;15 + !9;14 2 � !1;7 = !10;16 + !11;13 � !12;14 + !9;152 � !1;8 = �!10;15 + !11;14 + !12;13 + !9;16 2 � !2;3 = !10;11 � !13;16 + !14;15 + !9;122 � !2;4 = !10;12 + !13;15 + !14;16 � !9;11 2 � !2;5 = !10;13 + !11;16 � !12;15 + !9;142 � !2;6 = !10;14 � !11;15 � !12;16 � !9;13 2 � !2;7 = !10;15 + !11;14 + !12;13 � !9;162 � !2;8 = !10;16 � !11;13 + !12;14 + !9;15 2 � !3;4 = !11;12 � !13;14 + !15;16 + !9;102 � !3;5 = �!10;16 + !11;13 + !12;14 + !9;15 2 � !3;6 = !10;15 + !11;14 � !12;13 + !9;162 � !3;7 = �!10;14 + !11;15 � !12;16 � !9;13 2 � !3;8 = !10;13 + !11;16 + !12;15 � !9;142 � !4;5 = !10;15 � !11;14 + !12;13 + !9;16 2 � !4;6 = !10;16 + !11;13 + !12;14 � !9;152 � !4;7 = �!10;13 + !11;16 + !12;15 + !9;14 2 � !4;8 = �!10;14 � !11;15 + !12;16 � !9;132 � !5;6 = �!11;12 + !13;14 + !15;16 + !9;10 2 � !5;7 = !10;12 + !13;15 � !14;16 + !9;112 � !5;8 = �!10;11 + !13;16 + !14;15 + !9;12 2 � !6;7 = !10;11 + !13;16 + !14;15 � !9;122 � !6;8 = !10;12 � !13;15 + !14;16 + !9;11 2 � !7;8 = !11;12 + !13;14 + !15;16 � !9;10Table 2. Seond group of equations de�ning spin(9) inside so(16).Proposition A.1. The antisymmetri prolongation of the unique irreduible 16-dimensionalof the Lie algebra spin(9) vanishes,T(spin(9);R16 ) = 0:Referenes[1℄ I. Agriola, Connetions on naturally redutive spaes, their Dira operator and homogeneousmodels in string theory, Comm. Math. Phys. 232 (2003), 535-563.[2℄ H. Baum, Th. Friedrih, R. Grunewald, I. Kath, Twistors and Killing spinors on Riemannianmanifolds, Teubner-Texte zur Mathematik, Band 124, Teubner-Verlag Stuttgart / Leipzig, 1991.[3℄ J. M. Bismut, A loal index theorem for non-K�ahlerian manifolds, Math. Ann. 284 (1989), 681-699.[4℄ C. P. Boyer and K. Galiki, 3-Sasakian manifolds, in Essays on Einstein manifolds, (ed. by C.LeBrun and M. Wang), International Press 1999.[5℄ F. M. Cabrera, M. D. Monar, A. F. Swann, Classi�ation of G2-strutures, Journ. Lond. Math.So. II. Ser. 53 (1996), 407-416.[6℄ E. Cartan, Sur une g�en�eralisation de la notion de ourbure de Riemann et les espaes �a torsion,C. R. A. S. 174 (1922), 593-595.[7℄ , Sur les vari�et�es �a onnexion aÆne et la th�eorie de la relativit�e g�en�eralis�ee (premi�erepartie), Ann. E. Norm. Sup. 40 (1923), 325-412 et Ann. E. Norm. Sup. 41 (1924), 1-25.[8℄ , Sur les vari�et�es �a onnexion aÆne et la th�eorie de la relativit�e g�en�eralis�ee (deuxi�emepartie), Ann. E. Norm. Sup. 42 (1925), 17-88.[9℄ , Les r�eentes g�en�eralisations de la notion d'espae, Bull. S. Math.48 (1924), 294-320.[10℄ M. Fernandez, A lassi�ation of Riemannian manifolds with struture group Spin(7), Ann. Mat.Pura Appl. 143 (1986), 101-122.[11℄ M. Fernandez and A. Gray, Riemannian manifolds with struture group G2, Ann. Mat. PuraAppl. 132 (1982), 19-45.
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