
THE CASIMIR OPERATOR OF A METRIC CONNECTION WITHSKEW-SYMMETRIC TORSIONILKA AGRICOLA AND THOMAS FRIEDRICHAbstra
t. For any triple (Mn; g;r) 
onsisting of a Riemannian manifold and ametri
 
onne
tion with skew-symmetri
 torsion we introdu
e an ellipti
, se
ond orderoperator 
 a
ting on spinor �elds. In 
ase of a redu
tive spa
e and its 
anoni
al 
on-ne
tion our 
onstru
tion yields the Casimir operator of the isometry group. Severalnon-homogeneous geometries (Sasakian, nearly K�ahler, 
o
alibrated G2-stru
tures)admit unique 
onne
tions with skew-symmetri
 torsion. We study the 
orrespondingCasimir operator and 
ompare its kernel with the spa
e of r-parallel spinors.Contents1. Introdu
tion 12. An overview of S
hr�odinger-Li
hnerowi
z type formulas for Dira
 operators 23. The Casimir operator of a triple (Mn; g;r) 44. The Casimir operator of a 5-dimensional Sasakian manifold 65. An expli
it example: The 5-dimensional Stiefel manifold 106. The Casimir operator of 6-dimensional nearly K�ahler manifolds 117. The Casimir operator of 7-dimensional G2-manifolds 11Referen
es 141. Introdu
tionConsider a Riemannian manifold (Mn; g;r) equipped with a metri
 
onne
tion withskew-symmetri
 torsion T, and denote by (D1=3)2 the square of the Dira
 operator
orresponding to the 
onne
tion with torsion form T=3. We introdu
e a se
ond orderdi�erential operator 
 that di�ers from (D1=3)2 by a zero order term. This parametershift has been already used by Bismut in the proof of the lo
al index theorem forhermitian manifolds. Later, generalizing the well-known Parthasarathy formula for thesquare of the Dira
 operator of a symmetri
 spa
e, Kostant noti
ed a simple algebrai
formula for some element in the tensor produ
t of the universal enveloping algebra bythe Cli�ord algebra of a naturally redu
tive spa
e. The geometri
 interpretation ofKostant's \
ubi
 Dira
 operator" as a 1=3-parameter shifted Dira
 operator for su
ha spa
e endowed with its 
anoni
al 
onne
tion as well as the formula for the squareof any operator Ds in the family have been dis
ussed in the paper [1℄. It turns outthat in the homogenous situation, our operator 
oin
ides with the Casimir operator ofRe
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2 ILKA AGRICOLA AND THOMAS FRIEDRICHthe redu
tive spa
e, hen
e motivating its name. The integral formulas for (D1=3)2 arethen used in order to study the new operator 
 in greater detail. In general, the kernelof the operator 
 
ontains all r-parallel spinors. In 
ase that the torsion form T isr-parallel, the formula for 
 simpli�es to
 = (D1=3)2 � 116 �2 S
alg + jjTjj2� ;and then the operators 
 and (D1=3)2 
ommute with the a
tion of the torsion form onspinors. Triples (Mn; g;r) o

ur in the study of non integrable spe
ial Riemannianmanifolds in a natural way. For example, any Sasakian manifold in odd dimensions,any hermitian manifold with skew-symmetri
 Nijenhuis tensor in even dimensions, any
o
alibrated G2-manifold in dimension seven and any Spin(7)-manifold in dimensioneight admit a unique metri
 
onne
tion with skew-symmetri
 torsion and preservingthe additional geometri
 stru
ture (see [10℄ and [9℄). The torsion forms of these 
onne
-tions are models for the B-�eld in the string equations and their parallel spinor �eldsare the supersymmetries of the models. From the mathemati
al point of view, thebasi
 role of these 
onne
tions is 
losely related to the fa
t that many of the geomet-ri
 data of the non integrable geometri
 stru
ture 
an be read of its unique torsion form.We study the Casimir operator of a Riemannian manifold equipped with a metri

onne
tion. In parti
ular, we 
ompare its kernel with the spa
e of r-parallel or withthe spa
e of Riemannian Killing spinors. The low dimensions are spe
ially interesting.Therefor we investigate Sasakian manifolds in dimension �ve, nearly K�ahler manifoldsin dimension six, and 
o
alibrated G2-manifolds in dimension seven in detail. In 
asethat a non integrable geometri
 stru
ture admits a transitive automorphism group andthe spa
e is redu
tive, then its unique geometri
 
onne
tion 
oin
ides with the 
anoni
al
onne
tion of the redu
tive spa
e. Hen
eforth, our geometri
 Casimir operator is thegroup-theoreti
al Casimir operator a
ting on spinors and we 
an understand some ofits properties in a geometri
 way, for example vanishing theorems.2. An overview of S
hr�odinger-Li
hnerowi
z type formulas for Dira
operatorsConsider a Riemannian spin manifold (Mn; g;T) with a 3-form T. Then we obtain ametri
 
onne
tion with torsion T,rXY := rgXY + 12 T(X;Y;�) :We denote by S
alg and S
al the s
alar 
urvature of the Levi-Civita 
onne
tion and the
onne
tion r, respe
tively. The 
onne
tion 
an be lifted to a 
onne
tion on the spinorbundle S of M , where it takes the expressionrX := rgX + 14 (X T) �  :There is a formula for the square of the Dira
 operatorD asso
iated with the 
onne
tionr. In order to state it, let us introdu
e the �rst order di�erential operatorD := nXk=1(ek T) � rek = Dg + 14 nXk=1(ek T) � (ek T) �  ;



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 3where e1; : : : ; en denotes an orthonormal basis. It will be 
onvenient to introdu
e a4-form derived from T, �T := 12 nXk=1(ek T) ^ (ek T) :A
ting on spinors, the di�eren
e between the endomorphisms �T and (D � Dg) is givenby the formulanXk=1(ek T) � (ek T) = 2�T � 3 jjTjj2 = nXk=1(ek T) ^ (ek T) � 3 jjTjj2 :Theorem 2.1 ([10, Thm 3.1, 3.3℄). Let (Mn; g;r) be an n-dimensional Riemannianmanifold with a metri
 
onne
tion r of skew-symmetri
 torsion T. Then, the squareof the Dira
 operator D asso
iated with r a
ts on an arbitrary spinor �eld  as(1) D2 = �T( ) + 34 dT �  � 12 �T �  + 12 ÆT �  � D + 14 S
al �  ;where �T is the spinor Lapla
ian of r,�T( ) = (r)�r = � nXk=1rekrek + rrgeiei :Furthermore, the anti-
ommutator of D and T is(2) D Æ T + T ÆD = dT + ÆT � 2�T � 2D:This formula for D2 has the disadvantage of still 
ontaining a �rst order di�erentialoperator. By shifting the parameter in the torsion of the 
onne
tion r, we 
an simplifythe formula essentially. For the 
omputations, we need the square of T inside theCli�ord algebra. The proof of the following proposition is 
ompletely similar to that ofProposition 3.1 in [1℄ and will hen
e be omitted.Proposition 2.1. Let T be a 3-form, and denote by the same symbol its asso
iated(2; 1)-tensor, the two being related by T(X;Y;Z) = hT(X;Y ); Zi. Then its squareinside the Cli�ord algebra has no 
ontribution of degree 6, and its s
alar and fourthdegree part are given byT20 = 16 nXi;j=1 jjT(ei; ej)jj2 = jjTjj2; T24 = � 2�T:With these preparations in hand, we 
an state a more useful S
hr�odinger-Li
hnerowi
ztype formula. It links the Dira
 operator D1=3 of the 
onne
tion with torsion T=3 andthe Lapla
ian of the 
onne
tion with torsion T. The remainder is a zero order operator.Similar formulas 
an be found in [4℄.Theorem 2.2 ([2, Thm 6.2℄). The spinor Lapla
ian �T and the square of the Dira
operator D1=3 are related by(D1=3)2 = �T + 14 dT + 14 S
alg � 18 T20 :Integrating the latter formula on a 
ompa
t manifold Mn, we obtainZMn jjD1=3 jj2 = ZMn hjjr jj2 + 14 hdT �  ; i + 14S
alg jj jj2 � 18 T20 jj jj2i :



4 ILKA AGRICOLA AND THOMAS FRIEDRICHFinally, we state the Kostant-Parthasarathy formula for (D1=3)2 in the homogeneous
ase, as it is the main motivation for what follows.Theorem 2.3 ([1, Thm 3.3℄). Let M = G=H be a naturally redu
tive homogeneousspa
e, and g = h + m. Then its 
anoni
al 
onne
tion r has skew-symmetri
 torsionT(X;Y;Z) = �g([X;Y ℄m; Z) (X;Y;Z 2 m), T is r-parallel and D1=3 satis�es theidentity (D1=3)2 = 
g + 18S
alg + 116T20;where 
g denotes the Casimir operator of g.In this formula, D1=3, S
alg and T20 appear as geometri
 invariant obje
ts, whereas 
gheavily relies on the 
on
rete realization of the homogeneous spa
e M as a quotient.In fa
t, it is well known that one and the same spa
e may or may not be naturallyredu
tive depending on its realization, and that it typi
ally needs to be represented asa quotient of some larger groups in order to make it naturally redu
tive. Hen
e it wasour goal to �nd a tool similar to 
g whi
h has more intrinsi
 geometri
 meaning.3. The Casimir operator of a triple (Mn; g;r)We 
onsider a Riemannian spin manifold (Mn; g;r) with a metri
 
onne
tion r andskew-symmetri
 torsion T. Denote by �T the spinor Lapla
ian of the 
onne
tion.De�nition 3.1. The Casimir operator of the triple (Mn; g;r) is the di�erential oper-ator a
ting on spinor �elds by
 := (D1=3)2 + 18 (dT � 2�T) + 14 Æ(T) � 18 S
alg � 116 T20= �T + 18 (3 dT � 2�T + 2 Æ(T) + S
al) :Remark 3.1. For a naturally redu
tive spa
e Mn = G=H, 
 = 
g by Theorem 2.3.Example 3.1. For the Levi-Civita 
onne
tion (T = 0) of an arbitrary Riemannianmanifold, we obtain 
 = (Dg)2 � 18 S
alg = �g + 18 S
alg :The se
ond equality is just the 
lassi
al S
hr�odinger-Li
hnerowi
z formula for the Rie-mannian Dira
 operator, whereas the �rst one is in 
ase of a symmetri
 spa
e the
lassi
al Parthasarathy formula.Example 3.2. Consider a 3-dimensional manifold of 
onstant s
alar 
urvature, a 
on-stant a 2 R and the 3-form T = 2 a dM3. Then
 = (Dg)2 � aDg � 18 S
alg :The kernel of the Casimir operator 
orresponds to eigenvalues � 2 Spe
(Dg) of theRiemannian Dira
 operator su
h that8 (�2 � a�) � S
alg = 0 :In parti
ular, the kernel of 
 is in general larger then the spa
e of r-parallel spinors.Indeed, su
h spinors exist only on spa
e forms. More generally, �x a real-valued smoothfun
tion f and 
onsider the 3-form T := f � dM3. If there exists a r-parallel spinorrgX + (X T) �  = rgX + f �X �  = 0 ;



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 5then, by a theorem of A. Li
hnerowi
z (see [18℄), f is 
onstant and (M3; g) is a spa
eform.Let us 
olle
t some elementary properties of the Casimir operator of a triple (Mn; g;r).Proposition 3.1. The kernel of the Casimir operator 
ontains all r-parallel spinor.Proof. By Theorem 2.1, one of the integrability 
onditions for a r-parallel spinor �eld is �3 dT � 2�T + 2 Æ(T) + S
al� �  = 0 : �If the torsion form T is r-parallel, the formulas for the Casimir operator simplify.Indeed, in this 
ase we have (see [10℄)dT = 2�T; Æ(T) = 0 :Moreover, the Ri

i tensor Ri
r is symmetri
 and we haveS
al = S
alg � 32 T20:Using the formula of Proposition 2.1 as well as the formulas of Theorem 2.1 and The-orem 2.2, we obtain a simpler expressions for the Casimir operator.Proposition 3.2. The Casimir operator of a triple (Mn; g;r) with rT = 0 
an equiv-alently be written as:
 = (D1=3)2 � 116 �2 S
alg + T20� = �T + 116 �2 S
alg + T20� � 14 T2= �T + 18 �2 dT + S
al� :Integrating these formulas, we obtain a vanishing theorem for the kernel of the Casimiroperator.Proposition 3.3. Let (Mn; g;r) be a 
ompa
t triple su
h that the torsion form isr-parallel. If one of the 
onditions2 S
alg � �T20 or 2 S
alg � 4T2 � T20;holds, the Casimir operator is non-negative in L2(S).Example 3.3. For a naturally redu
tive spa
eM = G=H, the �rst 
ondition 
an neverhold, sin
e a representation theoreti
 argument [1, Lemma 3.6℄ shows that 2 S
alg+T20is stri
tly positive. In 
on
rete examples, the se
ond 
ondition typi
ally singles outthe normal homogeneous metri
s among the naturally redu
tive ones. Noti
e a smallmistake in Lemma 3.5 of [1℄: in general, the fa
t that the negative de�nite 
ontributionof the s
alar produ
t 
omes from an abelian summand in g is not enough to 
on
ludethat 
g is non-negative.Proposition 3.4. If the torsion form is r-parallel, then the Casimir operator 
 andthe square of the Dira
 operator (D1=3)2 
ommute with the endomorphism T,
 Æ T = T Æ 
 ; (D1=3)2 Æ T = T Æ (D1=3)2:The endomorphism T a
ts on the spinor bundle as a symmetri
 endomorphism with
onstant eigenvalues.



6 ILKA AGRICOLA AND THOMAS FRIEDRICHTheorem 3.1. Let (Mn; g;r) be a 
ompa
t Riemannian spin manifold equipped witha metri
 
onne
tion r with parallel, skew-symmetri
 torsion, rT = 0. The endomor-phism T and the Riemannian Dira
 operator Dg a
t in the kernel of the Dira
 operatorD1=3. In parti
ular, if, for all � 2 Spe
(T), the number ��=4 is not an eigenvalue ofthe Riemannian Dira
 operator, then the kernel of D1=3 is trivial.Proof. On a 
ompa
t manifold, the kernels of D1=3 and (D1=3)2 
oin
ide. �If  belongs to the kernel of D1=3 and is an eigenspinor of the endomorphism T, wehave 4 � Dg = �� �  , � 2 Spe
(T). Using the estimate of the eigenvalues of theRiemannian Dira
 operator (see [8℄) we obtain an upper bound for the minimum S
algminRiemannian s
alar 
urvature in 
ase that the kernel of the operator D1=3 is non trivial.Proposition 3.5. Let (Mn; g;r) be a 
ompa
t Riemannian spin manifold equippedwith a metri
 
onne
tion r with parallel, skew-symmetri
 torsion, rT = 0. If thekernel of the Dira
 operator D1=3 is non trivial, then the minimum of the Riemannians
alar 
urvature is bounded bymax ��2 : � 2 Spe
(T)	 � 4nn� 1 S
algmin :Remark 3.2. If (n� 1)�2 = 4nS
alg is in the spe
trum of T and there exists a spinor�eld  in the kernel of D1=3 su
h that T �  = � �  , then we are in the limiting 
ase ofthe inequality in [8℄. Consequently, Mn is an Einstein manifold of non-negative s
alar
urvature and  is a Riemannian Killing spinor,rgX � �4n �X �  = 0 :Examples of this type are 7-dimensional 3-Sasakian manifolds. The possible torsionform has been dis
ussed in [2℄, Se
tion 9.4. The Casimir operator of a 5-dimensional Sasakian manifoldLet (M5; g; �; �; ') be a 
ompa
t 5-dimensional Sasakian manifold and denote by r itsunique 
onne
tion with skew-symmetri
 torsion and preserving the 
onta
t stru
ture.Then we have (see [10℄)rT = 0 ; T = � ^ d� = 2 (e12 + e34) ^ e5 ; T2 = 8 � 8 e1234and 
 = (D1=3)2 � 18 S
alg � 12 = �T + 18 S
alg � 32 + 2 e1234:We study the kernel of the Dira
 operator D1=3. The endomorphism T a
ts witheigenvalues �4 and 0 and, a

ording to Theorem 3.1, we have to distinguish two 
ases.If D1=3 = 0 and T � = 0, the spinor �eld is harmoni
 and the formulas of Proposition3.2 yield in the 
ompa
t 
ase the 
onditionZM5 �2 S
alg + 8� jj jj2 � 0 :Examples of that type are the 5-dimensional Heisenberg group with its left invariantSasakian stru
ture or 
ertain S1-bundles over a 
at torus. On these spa
es, there existr-parallel spinors  0 satisfying the algebrai
 equation T � 0 = 0 (see [10℄, [11℄). Their
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alar 
urvature equals S
alg = �4. Let us des
ribe the 5-dimensional Heisenberggroup. Its Sasakian stru
ture is given on R5 by the 1-forms:e1 := 12 dx1 ; e2 := 12 dy1 ; e3 := 12 dx2 ; e4 := 12 dy2;e5 = � := 12 �dz � y1 � dx1 � y2 � dx2� :The spa
e of all r-parallel spinors satisfying T �  0 = 0 is a 2-dimensional subspa
eof the kernel of the operator D1=3. In a left-invariant frame of M5, spinors are simplyfun
tions  : M5 ! �5 with values in the 5-dimensional spin representation. It turnsout that the spinors  0 are 
onstant. Consequently, for any dis
rete subgroup � ofthe Heisenberg group, the manifold M5=� equipped with its trivial spin stru
ture isa Sasakian manifold admitting spinors in Ker(D1=3). The se
ond 
ase for spinors inthe kernel is given by D1=3 = 0 and T �  = �4 . The spinor �eld is an eigenspinorfor the Riemannian Dira
 operator, Dg = � . The formulas of Proposition 3.2 andProposition 3.5 yield in the 
ompa
t 
ase two 
onditions:ZM5 �S
alg � 12�jj jj2 � 0 and 5 S
algmin � 16:The paper [15℄ 
ontains a 
onstru
tion of Sasakian manifolds admitting a spinor �eld ofthat algebrai
 type in the kernel of D1=3. We des
ribe the 
onstru
tion expli
itely. Sup-pose that the Riemannian Ri

i tensor of a simply-
onne
ted, 5-dimensional Sasakianmanifold is given by the formulaRi
g = � 2 � g + 6 � � 
 � :Its s
alar 
urvature equals S
alg = � 4. In the simply-
onne
ted and 
ompa
t 
ase,they are total spa
es of S1 prin
ipal bundles over 4-dimensional Calabi-Yau orbifolds(see [5℄). There exist (see [15℄, Theorem 6.3) two spinor �elds  1,  2 su
h thatrgX 1 = � 12 X �  1 + 32 �(X) � � �  1 ; T �  1 = � 4 1;rgX 2 = 12 X �  2 � 32 �(X) � � �  2 ; T �  2 = 4 2:In parti
ular, we obtainDg 1 =  1 ; T �  1 = � 4 1 ; and Dg 2 = � 2; T �  2 = 4 2;and therefore the spinor �elds  1 and  2 belong to the kernel of the operator D1=3.Next, we investigate the kernel of the Casimir operator. Under the a
tion of the torsionform, the spinor bundle S splits into three subbundles S = S0�S4�S�4 
orrespondingto the eigenvalues of T. Sin
e rT = 0, the 
onne
tion r preserves the splitting. Theendomorphism e1234 a
ts by the formulase1234 = 1 on S0 ; e1234 = � 1 on S4 � S�4:Consequently, the formula
 = �T + 18 S
alg � 32 + 2 e1234shows that the Casimir operator splits into the sum 
 = 
0 � 
4 � 
�4 of threeoperators a
ting on se
tions in S0, S4 and S�4. On S0, we have
0 = �T + 18 S
alg + 12 = (D1=3)2 � 18 S
alg � 12 :



8 ILKA AGRICOLA AND THOMAS FRIEDRICHIn parti
ular, the kernel of 
0 is trivial if S
alg 6= �4. The Casimir operator on S4�S�4is given by 
�4 = �T + 18 S
alg � 72 = (D1=3)2 � 18 S
alg � 12and a non trivial kernel 
an only o

ur if �4 � S
alg � 28. A spinor �eld  in thekernel of the Casimir operator 
 satis�es the equations(D1=3)2 �  = 18 (4 + S
alg) ; T �  = � 4 :In parti
ular, we obtainZM5h(Dg � 1)2  ;  i = 18 ZM5 �4 + S
alg� jj jj2;and the �rst eigenvalue of the operator (Dg � 1)2 is bounded by the s
alar 
urvature,�1(Dg � 1)2 � 18 �4 + S
algmax�:Let us 
onsider spe
ial 
lasses of Sasakian manifolds. A �rst 
ase is S
alg = � 4. Thenthe formula for the Casimir operator simpli�es,
0 = �T = (D1=3)2 ; 
�4 = �T � 4 = (D1=3)2:If M5 is 
ompa
t, the kernel of the operator 
0 
oin
ides with the spa
e of r-parallelspinors in the bundle S0. A spinor �eld  in the kernel the operator 
�4 is an eigen-spinor of the Riemannian Dira
 operator,Dg( ) = � ; T �  = � 4 :Compa
t Sasakian manifolds admitting spinor �elds in the kernel of 
0 are quotientsof the 5-dimensional Heisenberg group (see [11℄, Theorem 4.1). Moreover, the 5-dimensional Heisenberg group and its 
ompa
t quotients admit spinor �elds in thekernel of 
�4, too. Indeed, the non trivial 
onne
tion forms of the Levi-Civita 
onne
-tion are!12 = e5 = !34; !15 = e2; !25 = � e2; !35 = e4; !45 = � e2;and a 
omputation of the Riemannian Dira
 operator yields the formulaDg( ) = 5Xk=1 ek � ek( ) on S0 ; Dg( ) = 5Xk=1 ek � ek( ) �  on S�4 :Spinors in the kernel of 
�4 o

ur on Sasakian �-Einstein manifolds of type Ri
g =� 2 � g + 6 � � 
 �, too. This example has been dis
ussed above.A se
ond 
ase is S
alg = 28. Then
0 = �T + 4 = (D1=3)2 � 4 ; 
�4 = �T = (D1=3)2 � 4 :The kernel of 
0 is trivial and the kernel of 
�4 
oin
ides with the spa
e of r-parallelspinors in the bundle S�4. Sasakian manifolds admitting spinor �elds of that type havebeen des
ribed in [10℄, Theorem 7.3 and Example 7.4.



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 9If � 4 < S
alg < 28, the kernel of the operator 
0 is trivial and the kernel of 
�4depends on the geometry of the Sasakian stru
ture. Let us dis
uss Einstein-Sasakianmanifolds. Their s
alar 
urvature equals S
alg = 20 and the Casimir operators are
0 = �T + 3 ; 
�4 = �T � 1 = (D1=3)2 � 3 :If M5 is simply-
onne
ted, there exist two Riemannian Killing spinors (see [15℄)rgX 1 = 12 X �  1; Dg( 1) = � 52  1; T �  1 = 4 1;rgX 2 = � 12 X �  2; Dg( 2) = 52  2; T �  2 = � 4 2:We 
ompute the Casimir operator
( 1) = � 34  1; 
( 2) = � 34  2:In parti
ular, the Casimir operator of a Einstein-Sasakian manifold has negative eigen-values. The Riemannian Killing spinors are parallel se
tions in the bundles S�4 withrespe
t to the 
at 
onne
tions r�r+X := rgX � 12 X �  in S4; r�X := rgX + 12 X �  in S�4:We 
ompare these 
onne
tions with our 
anoni
al 
onne
tion r:�r�X � rX� �  � = � i2 g(X; �) �  � ;  � 2 S�4 :The latter equation means that the bundle S4 � S�4 equipped with the 
onne
tion ris equivalent to the 2-dimensional trivial bundle with the 
onne
tion formA = i2 � � � �1 00 1 � :The 
urvature of r on these bundles is given by the formulaRr = i2 d� � � �1 00 1 � = i (e1 ^ e2 + e3 ^ e4) � � 1 00 �1 � :Sin
e the divergen
e div(�) = 0 of the Killing ve
tor �eld vanishes, the Casimir operatoron S4 � S�4 is the following operator a
ting on pairs of fun
tions:
4 � 
�4 = �T � 1 = � � 34 + � � i 00 i � � :Here � means the usual Lapla
ian ofM5 a
ting on fun
tions and � is the di�erentiationin dire
tion of the ve
tor �eld �. In parti
ular, the kernel of 
 
oin
ides with solutionsf :M5 ! C of the equation �(f) � 34 f � i �(f) = 0 :The L2-symmetri
 di�erential operators � and i � 
ommute. Therefore, we 
an diago-nalize them simultaneously. The latter equation is solvable if and only if there exists a
ommon eigenfun
tion�(f) = �f; i �(f) = � f ; 4 (� + �) � 3 = 0 :



10 ILKA AGRICOLA AND THOMAS FRIEDRICHThe Lapla
ian � is the sum of the non-negative horizontal Lapla
ian and the operator(i �)2. Now, the 
onditions �2 � � ; 4 (� + �) � 3 = 0restri
t the eigenvalue of the Lapla
ian, 0 � � � 3. On the other side, by theLi
hnerowi
z-Obata Theorem (see [3℄) we have 5 � �, a 
ontradi
tion. In parti
u-lar, we provedTheorem 4.1. The Casimir operator of a 
ompa
t 5-dimensional Sasakian-Einsteinmanifold has trivial kernel.The same argument estimates the eigenvalues of the Casimir operator. It turns outthat the smallest eigenvalues of 
 is negative and equals �3=4. The eigenspinors arethe Riemannian Killing spinors. The next eigenvalue of the Casimir operator is at least�2(
) � 174 � p5 � 2:014:5. An expli
it example: The 5-dimensional Stiefel manifoldThe 5-dimensional Stiefel manifold V4;2 = SO(4)=SO(2) admits a homogeneous Einstein-Sasakian metri
. This metri
 
an be 
onstru
ted via the Kaluza-Klein approa
h ob-serving that V4;2 is a prin
ipal SO(2)-bundle over the 4-dimensional Einstein-K�ahlermanifold G4;2 of all oriented 2-planes in R4 . As a homogeneous spa
e, the geometryand the Dira
 operator of V4;2 have been des
ribed in [8℄. We will use these formulas inour 
omputation, with a slight 
hange in normalization: we set the s
alar 
urvature of a5-dimensional Einstein-Sasakian manifold equal to 20, whereas the metri
 as des
ribedin the latter paper has s
alar 
urvature 20=3. In order to �x the notation, let Eij bethe standard basis of the Lie algebra so(4). The subalgebra so(2) is generated by thematrix E34 andX1 := p3E13; X2 := p3E14; X3 := p3E23; X4 := p3E24; � = X5 := 32 E12
onstitute an orthonormal basis de�ning the metri
 of V4;2. The formula for the Rie-mannian Dira
 operator has been 
omputed in [8℄:Dg( ) = p3 5Xi=1 Xi �Xi( ) + S( ) ; S := 5i2 2664 0 0 0 00 0 0 00 0 0 10 0 �1 0 3775 :Using the 
ommutator relations for [Xi;Xj ℄ as well as the matrix of the endomorphismT = � ^ d� we 
ompute the square of the operator D1=3,(D1=3)2( ) = � 3 5Xi=1 X2i ( ) + M1 �  + M2 � E34( ) + M3 �X5( ):Here the matri
es M1;M2 and M3 are given byM1 := 94 2664 0 0 0 00 0 0 00 0 1 00 0 0 1 3775 ; M2 := 6i2664 1 0 0 00 �1 0 00 0 0 00 0 0 0 3775 ; M3 := p32664 0 0 0 00 0 0 00 0 0 �10 0 1 0 3775 :A

ording to the lift of the isotropy representation into the spin module (see [8℄), aspinor �eld is a triple  = ( +;  �;  �) of maps  � : SO(4)! C and  � : SO(4)! C 2
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h that E34( �) = �i  � and E34( �) = 0. The map  � is a se
tion in the bundleS4 � S�4 and ( +;  �) are se
tions in S0. Spe
ially over V4;2 the latter bundle splitsinto the sum of two line bundles. The Casimir operator 
 = 
0�
4�
�4 is equivalentto the operators
0 = � 3 5X�=1X2� + 3 ; 
4 � 
�4 = � 3 5X�=1X2� � 34 � p3i �X5a
ting on fun
tions f : SO(4)! C satisfying the quasi-periodi
ity 
onditions E34(f) =� i f and E34(f) = 0, respe
tively.6. The Casimir operator of 6-dimensional nearly K�ahler manifoldsLet (M6; g;J ) be a 6-dimensional nearly K�ahler manifold. Then M6 is an Einsteinmanifold of positive s
alar 
urvature,Ri
g = 52 a g; S
alg = 15 a > 0 :The Nijenhuis tensor N does not vanish. There exists a unique 
onne
tion r withskew-symmetri
 torsion T. This 
onne
tion is Gray's 
hara
teristi
 
onne
tion (see[16℄) and its geometri
 data are given byrT = 0 ; 4T = N ; Ri
r = 2 a g :Moreover, we have2�T = dT = a �! ^ !� = 2 a �e1234 + e1256 + e3456�; T20 = 2 a ;where ! denotes the fundamental form of the nearly K�ahler stru
ture. A general refer-en
e for all these formulas is the paper [10℄. We 
ompute the symmetri
 endomorphismdT in the spinor bundle :2 dT + S
al = 16 a � diag( 0 ; 0 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1):Consequently, the Casimir operator
 = �T + 18(2 dT + S
al) = (D1=3)2 � 2 ais non-negative. Its kernel 
oin
ides with the two-dimensional spa
e of all r-parallelspinors. These spinor �elds are the Riemannian Killing spinors on M6. The Dira
operator (D1=3)2 is bounded from below by(D1=3)2 � 215 S
alg > 0 :7. The Casimir operator of 7-dimensional G2-manifoldsLet (M7; g; !3) be a 7-dimensional 
o
alibrated G2-manifold (d �!3 = 0) su
h that thes
alar produ
t (d!3; �!3) is 
onstant. There exists a unique 
onne
tion r preservingthe G2-stru
ture with skew-symmetri
 torsionT = � � d!3 + 16 (d!3; �!3) � !3; Æ(T) = 0 :The Riemannian s
alar 
urvature is given by the formulaS
alg = 118 (d!3; �!3)2 � 12 T20 = 2 (T; !3)2 � 12 T20 :



12 ILKA AGRICOLA AND THOMAS FRIEDRICHMoreover, there exists a parallel spinor �eld  0 su
h thatr 0 = 0 ; T �  0 = � 16 (d!3; �!3) �  0 :A general referen
e for these fa
ts are the papers [10℄ and [12℄. The Casimir operatoris given by the formula
 = (D1=3)2 � 14 (T; !3)2 + 18 (dT � 2�T)= �T + 14 (T; !3)2 + 18 (3 dT � 2�T � 2T20):There are two spe
ial types of 
o
alibrated G2-stru
tures. A nearly parallel G2-manifoldis 
hara
terized by the equation d!3 = � a (�!3). The paper [14℄ 
ontains examples of
ompa
t nearly parallel G2-manifolds and their relation to Riemannian Killing spinors.The torsion form as well as the Riemannian Ri

i tensor are given by the formulasT = � a6 !3; Ri
g = 38 a2 � g; S
alg = 218 a2; T20 = 736 a2:The torsion form of a nearly parallel G2-manifold is r-parallel (see [10℄ , Corollary 4.9)and dT = 2�T. The Casimir operator is given by
 = (D1=3)2 � 49144 a2:The r-parallel spinor  0 is the Riemannian Killing spinor and satis�es the equations(see [10℄) Dg 0 = � 78 a 0; T �  0 = 76 a 0:In parti
ular,  0 belongs to the kernel of the Casimir operator. Consider now anarbitrary spinor �eld  in its kernel. Sin
e the 3-form !3 a
ts in the spinor bundle withtwo eigenvalues �7 and +1, there are two possibilities. If
( ) = 0; T �  = 76 a ;we obtain in the 
ompa
t 
ase the equation49144 a2 ZM7 jj jj2 = ZM7 jj(Dg + 724 a) jj2:Consequently, there exists an eigenvalue � 2 Spe
(Dg) of the Riemannian Dira
 oper-ator su
h that �� + 724 a�2 � 49144 a2; 78 a � j�j:The latter 
onditions imply that � = � 78 aand we are in the limiting 
ase of the well-known estimate for the eigenvalues of theRiemannian Dira
 operator (see [8℄). The spinor �eld  is a Riemannian Killing spinor,i.e.,  is r-parallel. In a similar way, we dis
uss the se
ond possibility
( ) = 0 ; T �  = � 16 a :



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 13Then we obtain the inequalities�� � 124 a�2 � 49144 a2; 78 a � j�j:and a solution � does not exist. Let us summarize the result:Theorem 7.1. Let (M7; g; !3) be a 
ompa
t, nearly parallel G2-manifold (d!3 = � a �(�!3)) and denote by r its unique 
onne
tion with skew-symmetri
 torsion. The kernelof the Casimir operator of the triple (M7; g;r) 
oin
ides with the spa
e of r-parallelspinors, Ker(
) = � : r = 0 ; T �  = 76 a �  	 = Ker(r):A 
o
alibrated G2-stru
ture of type W3 in the Fernandez/Gray 
lassi�
ation is 
hara
-terized by the equations d � !3 = 0 and (d!3; �!3) = 0 (see [7℄, [9℄). The geometri
data are T = � � d!3; S
alg = � 12 T20 ; r 0 = 0 ; T �  0 = 0;see [10℄, [12℄. In 
ontrast to the nearly parallel 
ase, 
o
alibrated G2-manifolds of typeW3 do not satisfy the 
ondition dT = 2�T. The Casimir operator is given by theformula 
 = (D1=3)2 + 18 (dT � 2�T) = �T + 18 (3 dT � 2�T � 2T20) :Examples of G2-stru
tures of type W3 on nilpotent Lie groups are dis
ussed in thepaper [10℄, on the Alo�-Walla
h spa
e N(1; 1) in [2℄. We re
all these examples and
ompute the relevant endomorphisms.Example 7.1. There exists a G2-stru
ture of type W3 on the produ
t of R1 by theHeisenberg group. In this 
ase, we have T20 = 4 and3 dT� 2�T = diag(8; 0; 8;�16; 8;�16; 8; 0); dT� 2�T = diag(0; 8; 0;�8; 0;�8; 0; 8):A se
ond example on the produ
t of R1 by a 3-dimensional 
omplex, solvable Lie grouphas been des
ribed in [10℄, too. Remark that in both examples 3 dT� 2�T � 2T20 is anon-positive endomorphism a
ting on spinors. Consequently, the Casimir operator isdominated by the spinorial Lapla
ian,ZM7h
( ) ;  i � ZM7h�T( ) ;  i:Example 7.2. In [2℄, we 
onstru
ted on the Alo�-Walla
h spa
e N(1; 1) = SU(3)=S1 afamily of metri
s depending on a parameter 0 < y < 1 as well as G2-stru
tures of typeW3 (see Proposition 8:8). In the notation of that paper, the spinor  5 is the r-parallelspinor and algebrai
ally the torsion form is given by 4 � T5 withT5 = � y + 24 [X135 +X146 +X245 �X236℄ + 3yy � 1X127 + 2 + 2y � y22y � 2 [X347 �X567℄:Using the stru
ture equations of the underlying geometry, we 
ompute the exteriorderivative,dT5 = (2 + 4y)[X2357 +X2467 �X1457 +X1367℄ + 3y(�2� 2y + y3)(y � 1)2 X3456+ 10 + 9y + 12y2 + 5y3(y � 1)2 [X1234 �X1256℄:



14 ILKA AGRICOLA AND THOMAS FRIEDRICHInserting the matri
es of the 7-dimensional spin representation, we 
ompute the endo-morphism 3 (4 dT5)+ (4T5)2� 3 jj4T5jj2. It turns out that this endomorphism has theeigenvalues diag(a; a; b; b; 0; 
; a; a), where 
 := 64(7 + 10y + y2) > 0 anda := � 72(2 + y + y2 � y3 + y4)(y � 1)2 < 0; b := 16(20 + 7y + 33y2 + 13y3 � y4)(y � 1)2 > 0:The endomorphism 4 dT5 � 2�4 T5 = 4 dT5 + (4T5)2 � jj4T5jj2 has the eigenvaluesdiag(a�; a�; b�; b�; 0; 
�; a�; a�), where 
� := 64(5 + 6y + y2) > 0 anda� := 24(�2 + y)(1 + y)21� y < 0 ; b� := 16(4 � 7y � 10y2 + y3)(y � 1) :Let us �nally 
onsider arbitrary 
o
alibrated G2-stru
tures. The following exampleon N(1; 1) is des
ribed in the paper [2℄, in
luding the 
omputation of the 
anoni
al
onne
tion and its geometri
 data.Example 7.3. In [2℄, Proposition 8:5, we 
onstru
ted on N(1; 1) a 
o
alibrated G2-stru
ture with some spe
ial symmetry property. Its torsion form is given by 4 � Twith T = p36 [X135 + X146 � X245 + X236℄:Using the stru
ture equations of the underlying geometry we 
ompute the exteriorderivative, dT = �X2357 � X2467 � X1457 + X1367;and �nally the endomorphism14 (4T; !3)2 + 18 (12 dT � 2�4T � 2 jj4Tjj2) = diag�103 ; 103 ; 0; 12; 103 ; 103 ; 103 ; 103 �:In parti
ular, the Casimir operator of this G2-stru
ture is non-negative,ZN(1;1)h
( ) ;  i � ZN(1;1)h�T( ) ;  i � 0 :and its kernel 
oin
ides with the spa
e of r-parallel spinors.Referen
es[1℄ I. Agri
ola, Conne
tions on naturally redu
tive spa
es, their Dira
 operator and homogeneousmodels in string theory, Comm. Math. Phys. 232 (2003), 535-563.[2℄ I. Agri
ola and Th. Friedri
h, On the holonomy of 
onne
tions with skew-symmetri
 torsion,math.dg/0305069.[3℄ M. Berger, P. Gaudu
hon and E. Mazet, Le spe
tre d'une vari�et�e riemannienne, Le
ture Notesin Mathemati
s 194, Springer 1971.[4℄ J. M. Bismut, A lo
al index theorem for non-K�ahlerian manifolds, Math. Ann. 284 (1989), 681-699.[5℄ C. Boyer and K. Gali
ki, Einstein manifolds and 
onta
t geometry, Pro
. Amer. Math. So
. 129(2001), 2419-2430.[6℄ F. M. Cabrera, M. D. Monar and A. F. Swann, Classi�
ation of G2-stru
tures, London Math.So
. 53 (1996), 407-416.[7℄ M. Fernandez and A. Gray, Riemannian manifolds with stru
ture group G2, Ann. Mat. PuraAppl. 132 (1982), 19-45.[8℄ Th. Friedri
h, Der erste Eigenwert des Dira
 Operators einer kompakten Riemanns
hen Man-nigfaltigkeit ni
htnegativer Skalarkr�ummung, Math. Na
hr. 97 (1980), 117-146.[9℄ Th. Friedri
h, On types of non-integrable geometries, Suppl. Rend. Cir
. Mat. di Palermo Ser.II, 71 (2003), 99-113.



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 15[10℄ Th. Friedri
h and S. Ivanov, Parallel spinors and 
onne
tions with skew-symmetri
 torsion instring theory, Asian Journ. Math. 6 (2002), 303-336.[11℄ Th. Friedri
h and S. Ivanov, Almost 
onta
t manifolds, 
onne
tions with torsion and parallelspinors, to appear in Crelle Journal.[12℄ Th. Friedri
h and S. Ivanov, Killing spinor equations in dimension 7 and geometry of integrableG2-manifolds, to appear in Journ. Geom. Phys.[13℄ Th. Friedri
h and I. Kath, Einstein manifolds of dimension �ve with small eigenvalues of theDira
 operator, Journ. Di�. Geom. 19 (1989), 263-279.[14℄ Th. Friedri
h, I. Kath, A. Moroianu and U. Semmelmann, On nearly parallel G2-stru
tures,Journ. Geom. Phys. 23 (1997), 259-286.[15℄ Th. Friedri
h and E.C. Kim, The Einstein-Dira
 equation on Riemannian spin manifolds, Journ.Geom. Phys. 33 (2000), 128-172.[16℄ A. Gray, The stru
ture of nearly K�ahler manifolds, Math. Ann. 223 (1976), 233-248.[17℄ B. Kostant, A 
ubi
 Dira
 operator and the emergen
e of Euler number multiplets of represen-tations for equal rank subgroups, Duke Math. Journ. 100 (1999), 447-501.[18℄ A. Li
hnerowi
z, Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett.Math. Phys. 13 (1987), 331-344.agri
ola�mathematik.hu-berlin.defriedri
�mathematik.hu-berlin.deInstitut f�ur MathematikHumboldt-Universit�at zu BerlinSitz: WBC AdlershofD-10099 Berlin, Germany


