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2 ILKA AGRICOLA AND THOMAS FRIEDRICHthe redutive spae, hene motivating its name. The integral formulas for (D1=3)2 arethen used in order to study the new operator 
 in greater detail. In general, the kernelof the operator 
 ontains all r-parallel spinors. In ase that the torsion form T isr-parallel, the formula for 
 simpli�es to
 = (D1=3)2 � 116 �2 Salg + jjTjj2� ;and then the operators 
 and (D1=3)2 ommute with the ation of the torsion form onspinors. Triples (Mn; g;r) our in the study of non integrable speial Riemannianmanifolds in a natural way. For example, any Sasakian manifold in odd dimensions,any hermitian manifold with skew-symmetri Nijenhuis tensor in even dimensions, anyoalibrated G2-manifold in dimension seven and any Spin(7)-manifold in dimensioneight admit a unique metri onnetion with skew-symmetri torsion and preservingthe additional geometri struture (see [10℄ and [9℄). The torsion forms of these onne-tions are models for the B-�eld in the string equations and their parallel spinor �eldsare the supersymmetries of the models. From the mathematial point of view, thebasi role of these onnetions is losely related to the fat that many of the geomet-ri data of the non integrable geometri struture an be read of its unique torsion form.We study the Casimir operator of a Riemannian manifold equipped with a metrionnetion. In partiular, we ompare its kernel with the spae of r-parallel or withthe spae of Riemannian Killing spinors. The low dimensions are speially interesting.Therefor we investigate Sasakian manifolds in dimension �ve, nearly K�ahler manifoldsin dimension six, and oalibrated G2-manifolds in dimension seven in detail. In asethat a non integrable geometri struture admits a transitive automorphism group andthe spae is redutive, then its unique geometri onnetion oinides with the anonialonnetion of the redutive spae. Heneforth, our geometri Casimir operator is thegroup-theoretial Casimir operator ating on spinors and we an understand some ofits properties in a geometri way, for example vanishing theorems.2. An overview of Shr�odinger-Lihnerowiz type formulas for DiraoperatorsConsider a Riemannian spin manifold (Mn; g;T) with a 3-form T. Then we obtain ametri onnetion with torsion T,rXY := rgXY + 12 T(X;Y;�) :We denote by Salg and Sal the salar urvature of the Levi-Civita onnetion and theonnetion r, respetively. The onnetion an be lifted to a onnetion on the spinorbundle S of M , where it takes the expressionrX := rgX + 14 (X T) �  :There is a formula for the square of the Dira operatorD assoiated with the onnetionr. In order to state it, let us introdue the �rst order di�erential operatorD := nXk=1(ek T) � rek = Dg + 14 nXk=1(ek T) � (ek T) �  ;



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 3where e1; : : : ; en denotes an orthonormal basis. It will be onvenient to introdue a4-form derived from T, �T := 12 nXk=1(ek T) ^ (ek T) :Ating on spinors, the di�erene between the endomorphisms �T and (D � Dg) is givenby the formulanXk=1(ek T) � (ek T) = 2�T � 3 jjTjj2 = nXk=1(ek T) ^ (ek T) � 3 jjTjj2 :Theorem 2.1 ([10, Thm 3.1, 3.3℄). Let (Mn; g;r) be an n-dimensional Riemannianmanifold with a metri onnetion r of skew-symmetri torsion T. Then, the squareof the Dira operator D assoiated with r ats on an arbitrary spinor �eld  as(1) D2 = �T( ) + 34 dT �  � 12 �T �  + 12 ÆT �  � D + 14 Sal �  ;where �T is the spinor Laplaian of r,�T( ) = (r)�r = � nXk=1rekrek + rrgeiei :Furthermore, the anti-ommutator of D and T is(2) D Æ T + T ÆD = dT + ÆT � 2�T � 2D:This formula for D2 has the disadvantage of still ontaining a �rst order di�erentialoperator. By shifting the parameter in the torsion of the onnetion r, we an simplifythe formula essentially. For the omputations, we need the square of T inside theCli�ord algebra. The proof of the following proposition is ompletely similar to that ofProposition 3.1 in [1℄ and will hene be omitted.Proposition 2.1. Let T be a 3-form, and denote by the same symbol its assoiated(2; 1)-tensor, the two being related by T(X;Y;Z) = hT(X;Y ); Zi. Then its squareinside the Cli�ord algebra has no ontribution of degree 6, and its salar and fourthdegree part are given byT20 = 16 nXi;j=1 jjT(ei; ej)jj2 = jjTjj2; T24 = � 2�T:With these preparations in hand, we an state a more useful Shr�odinger-Lihnerowiztype formula. It links the Dira operator D1=3 of the onnetion with torsion T=3 andthe Laplaian of the onnetion with torsion T. The remainder is a zero order operator.Similar formulas an be found in [4℄.Theorem 2.2 ([2, Thm 6.2℄). The spinor Laplaian �T and the square of the Diraoperator D1=3 are related by(D1=3)2 = �T + 14 dT + 14 Salg � 18 T20 :Integrating the latter formula on a ompat manifold Mn, we obtainZMn jjD1=3 jj2 = ZMn hjjr jj2 + 14 hdT �  ; i + 14Salg jj jj2 � 18 T20 jj jj2i :



4 ILKA AGRICOLA AND THOMAS FRIEDRICHFinally, we state the Kostant-Parthasarathy formula for (D1=3)2 in the homogeneousase, as it is the main motivation for what follows.Theorem 2.3 ([1, Thm 3.3℄). Let M = G=H be a naturally redutive homogeneousspae, and g = h + m. Then its anonial onnetion r has skew-symmetri torsionT(X;Y;Z) = �g([X;Y ℄m; Z) (X;Y;Z 2 m), T is r-parallel and D1=3 satis�es theidentity (D1=3)2 = 
g + 18Salg + 116T20;where 
g denotes the Casimir operator of g.In this formula, D1=3, Salg and T20 appear as geometri invariant objets, whereas 
gheavily relies on the onrete realization of the homogeneous spae M as a quotient.In fat, it is well known that one and the same spae may or may not be naturallyredutive depending on its realization, and that it typially needs to be represented asa quotient of some larger groups in order to make it naturally redutive. Hene it wasour goal to �nd a tool similar to 
g whih has more intrinsi geometri meaning.3. The Casimir operator of a triple (Mn; g;r)We onsider a Riemannian spin manifold (Mn; g;r) with a metri onnetion r andskew-symmetri torsion T. Denote by �T the spinor Laplaian of the onnetion.De�nition 3.1. The Casimir operator of the triple (Mn; g;r) is the di�erential oper-ator ating on spinor �elds by
 := (D1=3)2 + 18 (dT � 2�T) + 14 Æ(T) � 18 Salg � 116 T20= �T + 18 (3 dT � 2�T + 2 Æ(T) + Sal) :Remark 3.1. For a naturally redutive spae Mn = G=H, 
 = 
g by Theorem 2.3.Example 3.1. For the Levi-Civita onnetion (T = 0) of an arbitrary Riemannianmanifold, we obtain 
 = (Dg)2 � 18 Salg = �g + 18 Salg :The seond equality is just the lassial Shr�odinger-Lihnerowiz formula for the Rie-mannian Dira operator, whereas the �rst one is in ase of a symmetri spae thelassial Parthasarathy formula.Example 3.2. Consider a 3-dimensional manifold of onstant salar urvature, a on-stant a 2 R and the 3-form T = 2 a dM3. Then
 = (Dg)2 � aDg � 18 Salg :The kernel of the Casimir operator orresponds to eigenvalues � 2 Spe(Dg) of theRiemannian Dira operator suh that8 (�2 � a�) � Salg = 0 :In partiular, the kernel of 
 is in general larger then the spae of r-parallel spinors.Indeed, suh spinors exist only on spae forms. More generally, �x a real-valued smoothfuntion f and onsider the 3-form T := f � dM3. If there exists a r-parallel spinorrgX + (X T) �  = rgX + f �X �  = 0 ;



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 5then, by a theorem of A. Lihnerowiz (see [18℄), f is onstant and (M3; g) is a spaeform.Let us ollet some elementary properties of the Casimir operator of a triple (Mn; g;r).Proposition 3.1. The kernel of the Casimir operator ontains all r-parallel spinor.Proof. By Theorem 2.1, one of the integrability onditions for a r-parallel spinor �eld is �3 dT � 2�T + 2 Æ(T) + Sal� �  = 0 : �If the torsion form T is r-parallel, the formulas for the Casimir operator simplify.Indeed, in this ase we have (see [10℄)dT = 2�T; Æ(T) = 0 :Moreover, the Rii tensor Rir is symmetri and we haveSal = Salg � 32 T20:Using the formula of Proposition 2.1 as well as the formulas of Theorem 2.1 and The-orem 2.2, we obtain a simpler expressions for the Casimir operator.Proposition 3.2. The Casimir operator of a triple (Mn; g;r) with rT = 0 an equiv-alently be written as:
 = (D1=3)2 � 116 �2 Salg + T20� = �T + 116 �2 Salg + T20� � 14 T2= �T + 18 �2 dT + Sal� :Integrating these formulas, we obtain a vanishing theorem for the kernel of the Casimiroperator.Proposition 3.3. Let (Mn; g;r) be a ompat triple suh that the torsion form isr-parallel. If one of the onditions2 Salg � �T20 or 2 Salg � 4T2 � T20;holds, the Casimir operator is non-negative in L2(S).Example 3.3. For a naturally redutive spaeM = G=H, the �rst ondition an neverhold, sine a representation theoreti argument [1, Lemma 3.6℄ shows that 2 Salg+T20is stritly positive. In onrete examples, the seond ondition typially singles outthe normal homogeneous metris among the naturally redutive ones. Notie a smallmistake in Lemma 3.5 of [1℄: in general, the fat that the negative de�nite ontributionof the salar produt omes from an abelian summand in g is not enough to onludethat 
g is non-negative.Proposition 3.4. If the torsion form is r-parallel, then the Casimir operator 
 andthe square of the Dira operator (D1=3)2 ommute with the endomorphism T,
 Æ T = T Æ 
 ; (D1=3)2 Æ T = T Æ (D1=3)2:The endomorphism T ats on the spinor bundle as a symmetri endomorphism withonstant eigenvalues.



6 ILKA AGRICOLA AND THOMAS FRIEDRICHTheorem 3.1. Let (Mn; g;r) be a ompat Riemannian spin manifold equipped witha metri onnetion r with parallel, skew-symmetri torsion, rT = 0. The endomor-phism T and the Riemannian Dira operator Dg at in the kernel of the Dira operatorD1=3. In partiular, if, for all � 2 Spe(T), the number ��=4 is not an eigenvalue ofthe Riemannian Dira operator, then the kernel of D1=3 is trivial.Proof. On a ompat manifold, the kernels of D1=3 and (D1=3)2 oinide. �If  belongs to the kernel of D1=3 and is an eigenspinor of the endomorphism T, wehave 4 � Dg = �� �  , � 2 Spe(T). Using the estimate of the eigenvalues of theRiemannian Dira operator (see [8℄) we obtain an upper bound for the minimum SalgminRiemannian salar urvature in ase that the kernel of the operator D1=3 is non trivial.Proposition 3.5. Let (Mn; g;r) be a ompat Riemannian spin manifold equippedwith a metri onnetion r with parallel, skew-symmetri torsion, rT = 0. If thekernel of the Dira operator D1=3 is non trivial, then the minimum of the Riemanniansalar urvature is bounded bymax ��2 : � 2 Spe(T)	 � 4nn� 1 Salgmin :Remark 3.2. If (n� 1)�2 = 4nSalg is in the spetrum of T and there exists a spinor�eld  in the kernel of D1=3 suh that T �  = � �  , then we are in the limiting ase ofthe inequality in [8℄. Consequently, Mn is an Einstein manifold of non-negative salarurvature and  is a Riemannian Killing spinor,rgX � �4n �X �  = 0 :Examples of this type are 7-dimensional 3-Sasakian manifolds. The possible torsionform has been disussed in [2℄, Setion 9.4. The Casimir operator of a 5-dimensional Sasakian manifoldLet (M5; g; �; �; ') be a ompat 5-dimensional Sasakian manifold and denote by r itsunique onnetion with skew-symmetri torsion and preserving the ontat struture.Then we have (see [10℄)rT = 0 ; T = � ^ d� = 2 (e12 + e34) ^ e5 ; T2 = 8 � 8 e1234and 
 = (D1=3)2 � 18 Salg � 12 = �T + 18 Salg � 32 + 2 e1234:We study the kernel of the Dira operator D1=3. The endomorphism T ats witheigenvalues �4 and 0 and, aording to Theorem 3.1, we have to distinguish two ases.If D1=3 = 0 and T � = 0, the spinor �eld is harmoni and the formulas of Proposition3.2 yield in the ompat ase the onditionZM5 �2 Salg + 8� jj jj2 � 0 :Examples of that type are the 5-dimensional Heisenberg group with its left invariantSasakian struture or ertain S1-bundles over a at torus. On these spaes, there existr-parallel spinors  0 satisfying the algebrai equation T � 0 = 0 (see [10℄, [11℄). Their



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 7salar urvature equals Salg = �4. Let us desribe the 5-dimensional Heisenberggroup. Its Sasakian struture is given on R5 by the 1-forms:e1 := 12 dx1 ; e2 := 12 dy1 ; e3 := 12 dx2 ; e4 := 12 dy2;e5 = � := 12 �dz � y1 � dx1 � y2 � dx2� :The spae of all r-parallel spinors satisfying T �  0 = 0 is a 2-dimensional subspaeof the kernel of the operator D1=3. In a left-invariant frame of M5, spinors are simplyfuntions  : M5 ! �5 with values in the 5-dimensional spin representation. It turnsout that the spinors  0 are onstant. Consequently, for any disrete subgroup � ofthe Heisenberg group, the manifold M5=� equipped with its trivial spin struture isa Sasakian manifold admitting spinors in Ker(D1=3). The seond ase for spinors inthe kernel is given by D1=3 = 0 and T �  = �4 . The spinor �eld is an eigenspinorfor the Riemannian Dira operator, Dg = � . The formulas of Proposition 3.2 andProposition 3.5 yield in the ompat ase two onditions:ZM5 �Salg � 12�jj jj2 � 0 and 5 Salgmin � 16:The paper [15℄ ontains a onstrution of Sasakian manifolds admitting a spinor �eld ofthat algebrai type in the kernel of D1=3. We desribe the onstrution expliitely. Sup-pose that the Riemannian Rii tensor of a simply-onneted, 5-dimensional Sasakianmanifold is given by the formulaRig = � 2 � g + 6 � � 
 � :Its salar urvature equals Salg = � 4. In the simply-onneted and ompat ase,they are total spaes of S1 prinipal bundles over 4-dimensional Calabi-Yau orbifolds(see [5℄). There exist (see [15℄, Theorem 6.3) two spinor �elds  1,  2 suh thatrgX 1 = � 12 X �  1 + 32 �(X) � � �  1 ; T �  1 = � 4 1;rgX 2 = 12 X �  2 � 32 �(X) � � �  2 ; T �  2 = 4 2:In partiular, we obtainDg 1 =  1 ; T �  1 = � 4 1 ; and Dg 2 = � 2; T �  2 = 4 2;and therefore the spinor �elds  1 and  2 belong to the kernel of the operator D1=3.Next, we investigate the kernel of the Casimir operator. Under the ation of the torsionform, the spinor bundle S splits into three subbundles S = S0�S4�S�4 orrespondingto the eigenvalues of T. Sine rT = 0, the onnetion r preserves the splitting. Theendomorphism e1234 ats by the formulase1234 = 1 on S0 ; e1234 = � 1 on S4 � S�4:Consequently, the formula
 = �T + 18 Salg � 32 + 2 e1234shows that the Casimir operator splits into the sum 
 = 
0 � 
4 � 
�4 of threeoperators ating on setions in S0, S4 and S�4. On S0, we have
0 = �T + 18 Salg + 12 = (D1=3)2 � 18 Salg � 12 :



8 ILKA AGRICOLA AND THOMAS FRIEDRICHIn partiular, the kernel of 
0 is trivial if Salg 6= �4. The Casimir operator on S4�S�4is given by 
�4 = �T + 18 Salg � 72 = (D1=3)2 � 18 Salg � 12and a non trivial kernel an only our if �4 � Salg � 28. A spinor �eld  in thekernel of the Casimir operator 
 satis�es the equations(D1=3)2 �  = 18 (4 + Salg) ; T �  = � 4 :In partiular, we obtainZM5h(Dg � 1)2  ;  i = 18 ZM5 �4 + Salg� jj jj2;and the �rst eigenvalue of the operator (Dg � 1)2 is bounded by the salar urvature,�1(Dg � 1)2 � 18 �4 + Salgmax�:Let us onsider speial lasses of Sasakian manifolds. A �rst ase is Salg = � 4. Thenthe formula for the Casimir operator simpli�es,
0 = �T = (D1=3)2 ; 
�4 = �T � 4 = (D1=3)2:If M5 is ompat, the kernel of the operator 
0 oinides with the spae of r-parallelspinors in the bundle S0. A spinor �eld  in the kernel the operator 
�4 is an eigen-spinor of the Riemannian Dira operator,Dg( ) = � ; T �  = � 4 :Compat Sasakian manifolds admitting spinor �elds in the kernel of 
0 are quotientsof the 5-dimensional Heisenberg group (see [11℄, Theorem 4.1). Moreover, the 5-dimensional Heisenberg group and its ompat quotients admit spinor �elds in thekernel of 
�4, too. Indeed, the non trivial onnetion forms of the Levi-Civita onne-tion are!12 = e5 = !34; !15 = e2; !25 = � e2; !35 = e4; !45 = � e2;and a omputation of the Riemannian Dira operator yields the formulaDg( ) = 5Xk=1 ek � ek( ) on S0 ; Dg( ) = 5Xk=1 ek � ek( ) �  on S�4 :Spinors in the kernel of 
�4 our on Sasakian �-Einstein manifolds of type Rig =� 2 � g + 6 � � 
 �, too. This example has been disussed above.A seond ase is Salg = 28. Then
0 = �T + 4 = (D1=3)2 � 4 ; 
�4 = �T = (D1=3)2 � 4 :The kernel of 
0 is trivial and the kernel of 
�4 oinides with the spae of r-parallelspinors in the bundle S�4. Sasakian manifolds admitting spinor �elds of that type havebeen desribed in [10℄, Theorem 7.3 and Example 7.4.



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 9If � 4 < Salg < 28, the kernel of the operator 
0 is trivial and the kernel of 
�4depends on the geometry of the Sasakian struture. Let us disuss Einstein-Sasakianmanifolds. Their salar urvature equals Salg = 20 and the Casimir operators are
0 = �T + 3 ; 
�4 = �T � 1 = (D1=3)2 � 3 :If M5 is simply-onneted, there exist two Riemannian Killing spinors (see [15℄)rgX 1 = 12 X �  1; Dg( 1) = � 52  1; T �  1 = 4 1;rgX 2 = � 12 X �  2; Dg( 2) = 52  2; T �  2 = � 4 2:We ompute the Casimir operator
( 1) = � 34  1; 
( 2) = � 34  2:In partiular, the Casimir operator of a Einstein-Sasakian manifold has negative eigen-values. The Riemannian Killing spinors are parallel setions in the bundles S�4 withrespet to the at onnetions r�r+X := rgX � 12 X �  in S4; r�X := rgX + 12 X �  in S�4:We ompare these onnetions with our anonial onnetion r:�r�X � rX� �  � = � i2 g(X; �) �  � ;  � 2 S�4 :The latter equation means that the bundle S4 � S�4 equipped with the onnetion ris equivalent to the 2-dimensional trivial bundle with the onnetion formA = i2 � � � �1 00 1 � :The urvature of r on these bundles is given by the formulaRr = i2 d� � � �1 00 1 � = i (e1 ^ e2 + e3 ^ e4) � � 1 00 �1 � :Sine the divergene div(�) = 0 of the Killing vetor �eld vanishes, the Casimir operatoron S4 � S�4 is the following operator ating on pairs of funtions:
4 � 
�4 = �T � 1 = � � 34 + � � i 00 i � � :Here � means the usual Laplaian ofM5 ating on funtions and � is the di�erentiationin diretion of the vetor �eld �. In partiular, the kernel of 
 oinides with solutionsf :M5 ! C of the equation �(f) � 34 f � i �(f) = 0 :The L2-symmetri di�erential operators � and i � ommute. Therefore, we an diago-nalize them simultaneously. The latter equation is solvable if and only if there exists aommon eigenfuntion�(f) = �f; i �(f) = � f ; 4 (� + �) � 3 = 0 :



10 ILKA AGRICOLA AND THOMAS FRIEDRICHThe Laplaian � is the sum of the non-negative horizontal Laplaian and the operator(i �)2. Now, the onditions �2 � � ; 4 (� + �) � 3 = 0restrit the eigenvalue of the Laplaian, 0 � � � 3. On the other side, by theLihnerowiz-Obata Theorem (see [3℄) we have 5 � �, a ontradition. In partiu-lar, we provedTheorem 4.1. The Casimir operator of a ompat 5-dimensional Sasakian-Einsteinmanifold has trivial kernel.The same argument estimates the eigenvalues of the Casimir operator. It turns outthat the smallest eigenvalues of 
 is negative and equals �3=4. The eigenspinors arethe Riemannian Killing spinors. The next eigenvalue of the Casimir operator is at least�2(
) � 174 � p5 � 2:014:5. An expliit example: The 5-dimensional Stiefel manifoldThe 5-dimensional Stiefel manifold V4;2 = SO(4)=SO(2) admits a homogeneous Einstein-Sasakian metri. This metri an be onstruted via the Kaluza-Klein approah ob-serving that V4;2 is a prinipal SO(2)-bundle over the 4-dimensional Einstein-K�ahlermanifold G4;2 of all oriented 2-planes in R4 . As a homogeneous spae, the geometryand the Dira operator of V4;2 have been desribed in [8℄. We will use these formulas inour omputation, with a slight hange in normalization: we set the salar urvature of a5-dimensional Einstein-Sasakian manifold equal to 20, whereas the metri as desribedin the latter paper has salar urvature 20=3. In order to �x the notation, let Eij bethe standard basis of the Lie algebra so(4). The subalgebra so(2) is generated by thematrix E34 andX1 := p3E13; X2 := p3E14; X3 := p3E23; X4 := p3E24; � = X5 := 32 E12onstitute an orthonormal basis de�ning the metri of V4;2. The formula for the Rie-mannian Dira operator has been omputed in [8℄:Dg( ) = p3 5Xi=1 Xi �Xi( ) + S( ) ; S := 5i2 2664 0 0 0 00 0 0 00 0 0 10 0 �1 0 3775 :Using the ommutator relations for [Xi;Xj ℄ as well as the matrix of the endomorphismT = � ^ d� we ompute the square of the operator D1=3,(D1=3)2( ) = � 3 5Xi=1 X2i ( ) + M1 �  + M2 � E34( ) + M3 �X5( ):Here the matries M1;M2 and M3 are given byM1 := 94 2664 0 0 0 00 0 0 00 0 1 00 0 0 1 3775 ; M2 := 6i2664 1 0 0 00 �1 0 00 0 0 00 0 0 0 3775 ; M3 := p32664 0 0 0 00 0 0 00 0 0 �10 0 1 0 3775 :Aording to the lift of the isotropy representation into the spin module (see [8℄), aspinor �eld is a triple  = ( +;  �;  �) of maps  � : SO(4)! C and  � : SO(4)! C 2



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 11suh that E34( �) = �i  � and E34( �) = 0. The map  � is a setion in the bundleS4 � S�4 and ( +;  �) are setions in S0. Speially over V4;2 the latter bundle splitsinto the sum of two line bundles. The Casimir operator 
 = 
0�
4�
�4 is equivalentto the operators
0 = � 3 5X�=1X2� + 3 ; 
4 � 
�4 = � 3 5X�=1X2� � 34 � p3i �X5ating on funtions f : SO(4)! C satisfying the quasi-periodiity onditions E34(f) =� i f and E34(f) = 0, respetively.6. The Casimir operator of 6-dimensional nearly K�ahler manifoldsLet (M6; g;J ) be a 6-dimensional nearly K�ahler manifold. Then M6 is an Einsteinmanifold of positive salar urvature,Rig = 52 a g; Salg = 15 a > 0 :The Nijenhuis tensor N does not vanish. There exists a unique onnetion r withskew-symmetri torsion T. This onnetion is Gray's harateristi onnetion (see[16℄) and its geometri data are given byrT = 0 ; 4T = N ; Rir = 2 a g :Moreover, we have2�T = dT = a �! ^ !� = 2 a �e1234 + e1256 + e3456�; T20 = 2 a ;where ! denotes the fundamental form of the nearly K�ahler struture. A general refer-ene for all these formulas is the paper [10℄. We ompute the symmetri endomorphismdT in the spinor bundle :2 dT + Sal = 16 a � diag( 0 ; 0 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1):Consequently, the Casimir operator
 = �T + 18(2 dT + Sal) = (D1=3)2 � 2 ais non-negative. Its kernel oinides with the two-dimensional spae of all r-parallelspinors. These spinor �elds are the Riemannian Killing spinors on M6. The Diraoperator (D1=3)2 is bounded from below by(D1=3)2 � 215 Salg > 0 :7. The Casimir operator of 7-dimensional G2-manifoldsLet (M7; g; !3) be a 7-dimensional oalibrated G2-manifold (d �!3 = 0) suh that thesalar produt (d!3; �!3) is onstant. There exists a unique onnetion r preservingthe G2-struture with skew-symmetri torsionT = � � d!3 + 16 (d!3; �!3) � !3; Æ(T) = 0 :The Riemannian salar urvature is given by the formulaSalg = 118 (d!3; �!3)2 � 12 T20 = 2 (T; !3)2 � 12 T20 :



12 ILKA AGRICOLA AND THOMAS FRIEDRICHMoreover, there exists a parallel spinor �eld  0 suh thatr 0 = 0 ; T �  0 = � 16 (d!3; �!3) �  0 :A general referene for these fats are the papers [10℄ and [12℄. The Casimir operatoris given by the formula
 = (D1=3)2 � 14 (T; !3)2 + 18 (dT � 2�T)= �T + 14 (T; !3)2 + 18 (3 dT � 2�T � 2T20):There are two speial types of oalibrated G2-strutures. A nearly parallel G2-manifoldis haraterized by the equation d!3 = � a (�!3). The paper [14℄ ontains examples ofompat nearly parallel G2-manifolds and their relation to Riemannian Killing spinors.The torsion form as well as the Riemannian Rii tensor are given by the formulasT = � a6 !3; Rig = 38 a2 � g; Salg = 218 a2; T20 = 736 a2:The torsion form of a nearly parallel G2-manifold is r-parallel (see [10℄ , Corollary 4.9)and dT = 2�T. The Casimir operator is given by
 = (D1=3)2 � 49144 a2:The r-parallel spinor  0 is the Riemannian Killing spinor and satis�es the equations(see [10℄) Dg 0 = � 78 a 0; T �  0 = 76 a 0:In partiular,  0 belongs to the kernel of the Casimir operator. Consider now anarbitrary spinor �eld  in its kernel. Sine the 3-form !3 ats in the spinor bundle withtwo eigenvalues �7 and +1, there are two possibilities. If
( ) = 0; T �  = 76 a ;we obtain in the ompat ase the equation49144 a2 ZM7 jj jj2 = ZM7 jj(Dg + 724 a) jj2:Consequently, there exists an eigenvalue � 2 Spe(Dg) of the Riemannian Dira oper-ator suh that �� + 724 a�2 � 49144 a2; 78 a � j�j:The latter onditions imply that � = � 78 aand we are in the limiting ase of the well-known estimate for the eigenvalues of theRiemannian Dira operator (see [8℄). The spinor �eld  is a Riemannian Killing spinor,i.e.,  is r-parallel. In a similar way, we disuss the seond possibility
( ) = 0 ; T �  = � 16 a :



THE CASIMIR OPERATOR OF A CONNECTION WITH SKEW-SYMMETRIC TORSION 13Then we obtain the inequalities�� � 124 a�2 � 49144 a2; 78 a � j�j:and a solution � does not exist. Let us summarize the result:Theorem 7.1. Let (M7; g; !3) be a ompat, nearly parallel G2-manifold (d!3 = � a �(�!3)) and denote by r its unique onnetion with skew-symmetri torsion. The kernelof the Casimir operator of the triple (M7; g;r) oinides with the spae of r-parallelspinors, Ker(
) = � : r = 0 ; T �  = 76 a �  	 = Ker(r):A oalibrated G2-struture of type W3 in the Fernandez/Gray lassi�ation is hara-terized by the equations d � !3 = 0 and (d!3; �!3) = 0 (see [7℄, [9℄). The geometridata are T = � � d!3; Salg = � 12 T20 ; r 0 = 0 ; T �  0 = 0;see [10℄, [12℄. In ontrast to the nearly parallel ase, oalibrated G2-manifolds of typeW3 do not satisfy the ondition dT = 2�T. The Casimir operator is given by theformula 
 = (D1=3)2 + 18 (dT � 2�T) = �T + 18 (3 dT � 2�T � 2T20) :Examples of G2-strutures of type W3 on nilpotent Lie groups are disussed in thepaper [10℄, on the Alo�-Wallah spae N(1; 1) in [2℄. We reall these examples andompute the relevant endomorphisms.Example 7.1. There exists a G2-struture of type W3 on the produt of R1 by theHeisenberg group. In this ase, we have T20 = 4 and3 dT� 2�T = diag(8; 0; 8;�16; 8;�16; 8; 0); dT� 2�T = diag(0; 8; 0;�8; 0;�8; 0; 8):A seond example on the produt of R1 by a 3-dimensional omplex, solvable Lie grouphas been desribed in [10℄, too. Remark that in both examples 3 dT� 2�T � 2T20 is anon-positive endomorphism ating on spinors. Consequently, the Casimir operator isdominated by the spinorial Laplaian,ZM7h
( ) ;  i � ZM7h�T( ) ;  i:Example 7.2. In [2℄, we onstruted on the Alo�-Wallah spae N(1; 1) = SU(3)=S1 afamily of metris depending on a parameter 0 < y < 1 as well as G2-strutures of typeW3 (see Proposition 8:8). In the notation of that paper, the spinor  5 is the r-parallelspinor and algebraially the torsion form is given by 4 � T5 withT5 = � y + 24 [X135 +X146 +X245 �X236℄ + 3yy � 1X127 + 2 + 2y � y22y � 2 [X347 �X567℄:Using the struture equations of the underlying geometry, we ompute the exteriorderivative,dT5 = (2 + 4y)[X2357 +X2467 �X1457 +X1367℄ + 3y(�2� 2y + y3)(y � 1)2 X3456+ 10 + 9y + 12y2 + 5y3(y � 1)2 [X1234 �X1256℄:



14 ILKA AGRICOLA AND THOMAS FRIEDRICHInserting the matries of the 7-dimensional spin representation, we ompute the endo-morphism 3 (4 dT5)+ (4T5)2� 3 jj4T5jj2. It turns out that this endomorphism has theeigenvalues diag(a; a; b; b; 0; ; a; a), where  := 64(7 + 10y + y2) > 0 anda := � 72(2 + y + y2 � y3 + y4)(y � 1)2 < 0; b := 16(20 + 7y + 33y2 + 13y3 � y4)(y � 1)2 > 0:The endomorphism 4 dT5 � 2�4 T5 = 4 dT5 + (4T5)2 � jj4T5jj2 has the eigenvaluesdiag(a�; a�; b�; b�; 0; �; a�; a�), where � := 64(5 + 6y + y2) > 0 anda� := 24(�2 + y)(1 + y)21� y < 0 ; b� := 16(4 � 7y � 10y2 + y3)(y � 1) :Let us �nally onsider arbitrary oalibrated G2-strutures. The following exampleon N(1; 1) is desribed in the paper [2℄, inluding the omputation of the anonialonnetion and its geometri data.Example 7.3. In [2℄, Proposition 8:5, we onstruted on N(1; 1) a oalibrated G2-struture with some speial symmetry property. Its torsion form is given by 4 � Twith T = p36 [X135 + X146 � X245 + X236℄:Using the struture equations of the underlying geometry we ompute the exteriorderivative, dT = �X2357 � X2467 � X1457 + X1367;and �nally the endomorphism14 (4T; !3)2 + 18 (12 dT � 2�4T � 2 jj4Tjj2) = diag�103 ; 103 ; 0; 12; 103 ; 103 ; 103 ; 103 �:In partiular, the Casimir operator of this G2-struture is non-negative,ZN(1;1)h
( ) ;  i � ZN(1;1)h�T( ) ;  i � 0 :and its kernel oinides with the spae of r-parallel spinors.Referenes[1℄ I. Agriola, Connetions on naturally redutive spaes, their Dira operator and homogeneousmodels in string theory, Comm. Math. Phys. 232 (2003), 535-563.[2℄ I. Agriola and Th. Friedrih, On the holonomy of onnetions with skew-symmetri torsion,math.dg/0305069.[3℄ M. Berger, P. Gauduhon and E. Mazet, Le spetre d'une vari�et�e riemannienne, Leture Notesin Mathematis 194, Springer 1971.[4℄ J. M. Bismut, A loal index theorem for non-K�ahlerian manifolds, Math. Ann. 284 (1989), 681-699.[5℄ C. Boyer and K. Galiki, Einstein manifolds and ontat geometry, Pro. Amer. Math. So. 129(2001), 2419-2430.[6℄ F. M. Cabrera, M. D. Monar and A. F. Swann, Classi�ation of G2-strutures, London Math.So. 53 (1996), 407-416.[7℄ M. Fernandez and A. Gray, Riemannian manifolds with struture group G2, Ann. Mat. PuraAppl. 132 (1982), 19-45.[8℄ Th. Friedrih, Der erste Eigenwert des Dira Operators einer kompakten Riemannshen Man-nigfaltigkeit nihtnegativer Skalarkr�ummung, Math. Nahr. 97 (1980), 117-146.[9℄ Th. Friedrih, On types of non-integrable geometries, Suppl. Rend. Cir. Mat. di Palermo Ser.II, 71 (2003), 99-113.
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