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KILLING SPINORS IN SUPERGRAVITY WITH 4-FLUXESILKA AGRICOLA AND THOMAS FRIEDRICHAbstra
t. We study the spinorial Killing equation of supergravity involving a tor-sion 3-form T as well as a 
ux 4-form F. In dimension seven, we 
onstru
t expli
it fam-ilies of 
ompa
t solutions out of 3-Sasakian geometries, nearly parallel G2-geometriesand on the homogeneous Alo�-Walla
h spa
e. The 
onstraint F � 	 = 0 de�nes anon empty subfamily of solutions. We investigate the 
onstraint T �	 = 0, too, andshow that it singles out a very spe
ial 
hoi
e of numeri
al parameters in the Killingequation, whi
h 
an also be justi�ed geometri
ally.Contents1. Introdu
tion 12. Killing Spinors with 4-Fluxes on 3-Sasakian Manifolds 33. Killing Spinors with 4-Fluxes on Nearly Parallel G2-Manifolds 54. Killing Spinors with 4-Fluxes on a Alo�-Walla
h spa
e 65. Solutions for the spe
ial (p; q)-
oupling 8Referen
es 111. Introdu
tionSupergravity models 
an be des
ribed geometri
ally by a tuple (Mn; g; T; F; 	) 
on-sisting of a Riemannian manifold, a 3-form T, a 4-form 
ux F and a spinor �eld 	.The link between these geometri
 obje
ts is the so 
alled Killing equation (see [8℄, [9℄)rgX	 + 14 � (X T) �	 + 1144 � (X F � 8 �X ^ F) �	 = 0 :This equation should be satis�ed for any tangent ve
tor X . Consequently, we deal witha highly overdetermined system of �rst order partial di�erential equations. The 3-formT has an interpretation as the torsion of a linear, metri
 
onne
tion r with totallyskew-symmetri
 torsion. 11-dimensional spa
e-time solutions are interesting and themodels with a maximal number of supersymmetries have been 
lassi�ed (see [9℄). TheKaluza-Klein redu
tion of M-theory (see [3℄, [5℄, [6℄ and [17℄) yields that dimensions4 � n � 8 are of interest, too. However, then additional algebrai
 
onstraints o

ur,for example, an algebrai
 
oupling between the torsion 3-form or the 
ux 4-form andthe spinor �eld 	, T �	 = 0 or F �	 = 0 :Re
eived by the editors 29th July 2003.2000 Mathemati
s Subje
t Classi�
ation. Primary 53 C 25; Se
ondary 81 T 30.Key words and phrases. Killing spinors, 
onne
tions with torsion, supergravity, M-theory
ompa
ti�
ations.Supported by the SFB 288 "Di�erential Geometry and Quantum Physi
s" of the DFG and theresear
h proje
t \Spe
ial Geometries in Mathemati
al Physi
s" of the Volkswagen Foundation.1



2 ILKA AGRICOLA AND THOMAS FRIEDRICHThe aim of this note is to present a geometri
 method for solving the equation under
onsideration. The main idea of our approa
h is easy to explain. We start with aRiemannian manifold admitting a spinor �eld 	 of some spe
ial type. For this, thereare many possibilities. The spinor �eld may be a Riemannian Killing spinor (see [10℄)on some irredu
ible Einstein spa
e,rgX	 = � �X �	 :The spinor �eld may be a K�ahlerian Killing spinor (see [16℄) de�ned on some spe
ialK�ahler manifold. In odd dimensions, we 
an start with an �-Einstein-Sasakian manifoldand its 
onta
t Killing spinor (see [15℄). On a redu
tive spa
e, the spinor �eld maybe an invariant spinor of the isotropy representation. In any 
ase, triples (Mn; g; 	)of the type we need have been studied very intensively in mathemati
s sin
e morethen 20 years. In parti
ular, the dimensions n � 8 and the 
orresponding spe
ialgeometries play a 
ru
ial role. The books [4℄, [11℄ 
ontain the results as well as therelevant referen
es in detail. Let us moreover assume that there exists a \
anoni
al"family (T!; F!) of forms on Mn depending on some parameter ! 2 
. We 
onsiderthe system�� �X + 14 � (X T!) + 1144(X F! � 8 �X ^ F!)� �	 = 0 ;whi
h is a highly overdetermined system of n � 2[n=2℄ algebrai
 equations in the param-eters ! 2 
. Furthermore, we 
an add the equations T! � 	 = 0 or F! � 	 = 0. Itis a matter of fa
t { quite surprising to the mathemati
ian { that the solutions often
onstitute a non empty subset of the parameter spa
e. We solve the 
orrespondingequations with the help of standard math 
omputer programs. In this way, we obtainfamilies of 3- and 4-forms solving the equation on the manifold we started with. The�rst interesting dimension in presen
e of a 4-
ux is seven. Therefore, we apply thedes
ribed method to nearly parallel G2-manifolds, to 3-Sasakian manifolds and to the7-dimensional Alo�-Walla
h spa
e. The G2-
ase has been already investigated in M-theory 
ompa
ti�
ations to dimension four (see [6℄). On a nearly parallel G2-manifold,there is a natural 
ux form. The se
ond and third 
ase are more 
exible and interest-ing. We will 
onstru
t families of torsion and 
ux forms with Killing spinors out of a3-Sasakian stru
ture. The underlying metri
 of a 3-Sasakian manifold is still Einstein(see [7℄). On the Alo�-Walla
h spa
e N(1; 1) we obtain families of non Einstein metri
sequipped with torsion forms, 
ux forms and Killing spinors. The method we use 
anprobably be applied to other dimensions and spe
ial geometries, too.Let us 
onsider a slightly more general equation depending on two real parameters(p; q) 2 R2,rgX	 + 14 � (X T) �	 + p � (X F) �	 + q � (X ^ F) �	 = 0 :We will 
onstru
t 7-dimensional solutions of this �eld equation for any pair (p; q) 2 R2of parameters. Obviously, if the 
ux form is non trivial, then the ratio between theparameters p and q is important. It turns out that in any dimension n there is onedistinguished pair of parameters, namely 4 p � (n � 4) q = 0. This 
oupling of theparameters plays a spe
ial role for our solutions. It 
an be motivated as well by theobservation that in this 
ase the a
tion of the Riemannian Dira
 operator on the spinordepends only on the torsion form T, but not on the 
ux form F. Remark that this



KILLING SPINORS IN SUPERGRAVITY WITH 4-FLUXES 3is not the ratio appearing in the original equation of supergravity, sin
e we 
onsiderpositive de�nite metri
s. The equation in arbitrary dimension reads then asrgX	 + 14 � (X T) �	 + n� 44 � (X F) �	 + (X ^ F) �	 = 0 :In Se
tion 5, we dis
uss in more detail the 7-dimensional solutions of this spe
ial equa-tion whi
h we 
onstru
ted.2. Killing Spinors with 4-Fluxes on 3-Sasakian ManifoldsThe stru
ture group of a 3-Sasakian geometry is the subgroup SU(2) � G2 � SO(7),the isotropy group of four spinors in dimension seven. We des
ribe the subgroup SU(2)in su
h a way that the ve
tors e1; e2; e7 2 R7 are �xed. More pre
isely, let the Liealgebra su(2) be generated by the following 2-forms in R7:e34 + e56; e35 � e46; e36 + e56:The real spin representation �7 splits under the a
tion of SU(2) into a 4-dimensionaltrivial representation �07 and the unique non trivial 4-dimensional representation �17.We use the standard realization of the 8-dimensional Spin(7)-representation as givenin [4, p.97℄ or [11, p.13℄ (see [2℄, too). Denote by 	1; : : : ;	8 its basis. The spa
e �07is spanned by the spinors 	3;	4;	5;	6. We 
onsider the following SU(2)-invariant2-forms on R7:de1 := e35 + e46; de2 := e45 � e36; de7 := e34 � e56:Using this notation, we introdu
e a family of invariant 3-forms in R7 depending on 10parameters, T = Xi;j=1;2;7 tij � ei ^ dej + t � e1 ^ e2 ^ e7:The spa
e of SU(2)-invariant 4-forms on R7 has also dimension ten,F = Xi;j;k=1;2;7fijk � ei ^ ej ^ dek + f � e3 ^ e4 ^ e5 ^ e6:All together, on a 3-Sasakian manifold there exists a 
anoni
al family 
 of forms de-pending on 20 parameters. The key point of our 
onsiderations is the following algebrai
observation.Proposition 2.1. Fix parameters (p; q) 2 R2. For any spinor 0 6= 	 2 �07, the setof all pairs (T; F) 
onsisting of SU(2)-invariant forms and satisfying, for any ve
torX 2 R7, the equation�12 �X + 14 � (X T) + p � (X F) + q � (X ^ F)� �	 = 0is a 7-dimensional aÆne spa
e. The 
ondition F � 	 = 0 de�nes a 6-dimensionalsubspa
e. If 4 p � 3 q 6= 0, the 
ondition T � 	 = 0 de�nes a 6-dimensional aÆnesubspa
e, too. If 4 p � 3 q = 0, we have T �	 = (14=3) �	 for all torsion forms in thefamily. Both 
onstraints T �	 = 0 and F �	 = 0 
annot be ful�lled simultaneously.Proof. Given a spinor 	 = a	3 + b	4 + 
	5 + d	6, we solve the overdeterminedsystem with respe
t to the 
oeÆ
ients of the 3-form T and the 
oeÆ
ients of the 4-form F. It turns out that solutions exist and 
an be given expli
itely. For simpli
ity,we provide the formulas in 
ase that 	 = 	3 is one of the basi
 spinors. The set of



4 ILKA AGRICOLA AND THOMAS FRIEDRICHall solutions is an aÆne spa
e parameterized by f127; f172; f177; f271; f272; f277; f . Theother 
oordinates are given by the formulast12 = � 4 (p + q) f272 = � t21; t17 = � 4 (p + q) f277 = � t71;t27 = 4 (p + q) f177 = t72;t11 = � 23 + 4p3 f � 8p3 f127 + 8p3 f172 � 43(p + 3q) f271;t22 = 23 � 4p3 f + 8p3 f127 � 8p3 f271 + 43(p + 3q) f172;t77 = 23 � 4p3 f � 8p3 f172 � 8p3 f271 � 43(p + 3q) f127;t = 23 + 8p3 f127 � 8p3 f172 � 8p3 f271 + 43(2p + 3q) f;f122 = � f177; f121 = � f277; f171 = f272 :The equation F �	3 = 0 des
ribes a 6-dimensional linear subspa
e,f � 2 f127 + 2 f172 + 2 f271 = 0:On the other side, the equation T �	3 = 0 de�nes a 6-dimensional aÆne subspa
e� 7 + (8 p � 6 q)�f � 2 f127 + 2 f172 + 2 f271� = 0:The interse
tion of these spa
es is empty. �Remark 2.1. The 
ases T = 0 and F = 0 have been dis
ussed already in [2℄. Underthis 
onstraint the algebrai
 system has a unique solution.Remark 2.2. From the geometri
 point of view, there is an interesting 
ase, namely4 p � 3 q = 0. This is not the ratio of the parameters p; q appearing in supergravity. Inthis 
ase, the 
onstraint T �	 = 0 is never satis�ed for a non trivial spinor. In Se
tion5, we will dis
uss this family of solutions in more detail.Consider a simply 
onne
ted 3-Sasakian manifold M7 of dimension seven and denoteits three 
onta
t stru
tures by �1; �2, and �7. It is known that M7 is then an Einsteinspa
e, and examples (also non homogeneous ones) 
an be found in the paper [7℄. Thetangent bundle of M7 splits into the 3-dimensional part spanned by �1; �2; �7 and its4-dimensional orthogonal 
omplement. We restri
t the exterior derivatives d�1; d�2 andd�7 to this 
omplement. In an adapted orthonormal frame, these forms 
oin
ide withthe algebrai
 forms de1; de2 and de7. The spa
e of Riemannian Killing spinorsrgX	 = 12 X �	is non trivial and has at least dimension three (see [13℄). Moreover, the proof ofthis fa
t shows that all the Riemannian Killing spinors are se
tions in the subbundle
orresponding to the SU(2)-representation �07. Now we apply Proposition 2.1 and weobtain the following result.Theorem 2.1. Let M7 be 3-Sasakian manifold in dimension seven and �x a Riemann-ian Killing spinor 	. Then there exists a 7-dimensional family of torsion forms T and
ux forms F de�ned by the 
onta
t stru
tures su
h thatrgX	 + 14 � (X T) �	 + p � (X F) �	 + q � (X ^ F) �	 = 0 :The 
ondition F �	 = 0 restri
ts to a subfamily of dimension six. If 4 p � 3 q 6= 0, the
ondition T � 	 = 0 de�nes again a 6-dimensional subfamily. If 4 p � 3 q = 0, then



KILLING SPINORS IN SUPERGRAVITY WITH 4-FLUXES 5T �	 = (14=3) �	 for any torsion form in the family. Both 
onstraints together implythat the spinor �eld 	 is ne
essarily zero.All 3-Sasakian manifolds are Einstein. In Se
tion 4, we will generalize this family ofsolutions. In parti
ular, we 
onstru
t homogeneous solutions on 
ertain non-Einsteinmanifolds. The qualitative behavior of these solutions does not di�er from the torsionand 
ux forms in the 3-Sasakian 
ase, but the metri
 is allowed to depend on severalparameters, and is hen
e more 
exible.3. Killing Spinors with 4-Fluxes on Nearly Parallel G2-ManifoldsFix a spinor 	 2 �7 in the 7-dimensional spin representation, and 
onsider the 
orre-sponding 3-form !3 2 �3(R7) de�ned by the formula!3(X; Y; Z) := � �X � Y � Z �	 ; 	�:The 3-form a
ts on the spinor by !3 � 	 = � 7 � 	 (see [14℄). The pair (!3 ; �!3)generates a 2-dimensional parameter spa
e.Proposition 3.1. The equation�X + r4 � (X !3) + p � (X �!3) + q � (X ^ �!3)� �	 = 0holds for all ve
tors X 2 R7 if and only if 16 p = � 4 + 12 q � 3 r.Proof. A dire
t 
omputation using the matri
es of the spin representation yields theresult. �Corollary 3.1. Fix parameters (p; q) 2 R2. There a 1-parameter family of admissiblepairs, namely T = h12q � 16p3f � 43i � !3 and F = f � (�!3):If 4 p � 3 q = 0, then the torsion form does not depend on the 
ux form,T = � 43 � !3 and F = f � (�!3):Consider a simply 
onne
ted, nearly parallel G2-manifold M7. It is an Einstein spa
eand we normalize the metri
 by the 
ondition that the s
alar 
urvature equals 168.There exists a Riemannian Killing spinor (see [14℄)rgX	 = X �	 :The triple (T; F; 	) de�ned above is a solution of the Killing equationrgX	 + 14 � (X T) �	 + p � (X F) �	 + q � (X ^ F) �	 = 0 :In parti
ular, nearly parallel G2-manifolds admit a torsion form T and a 
ux form Fsu
h that its Riemannian Killing spinor is a Killing spinor with respe
t to the pair(T; F). The 1-parameter family has been 
omputed in the Corollary.



6 ILKA AGRICOLA AND THOMAS FRIEDRICH4. Killing Spinors with 4-Fluxes on a Alo�-Walla
h spa
eThe goal of this se
tion is to 
onstru
t on the Alo�-Walla
h manifold N(1; 1) =SU(3)=S1 a two-parameter family of metri
s g = gs;y that admits, for every gs;y , alarge family of torsion and 
ux forms making a �xed spinor parallel. We use the 
om-putations available in [4, p.109 �℄, whi
h we hen
e shall not reprodu
e here. Considerthe embedding S1 ! SU(3) given by ei� 7! diag(ei� ; ei�; e�2i�). The Lie algebra su(3)splits into su(3) = m + R, where R denotes the Lie algebra of S1 dedu
ed from thegiven embedding. The spa
e m has a preferred dire
tion, namely the subspa
e m0generated by the matri
 L := diag(3i;�3i; 0). Let Eij (i < j) be the matrix with 1at the pla
e (i; j) and zero elsewhere, and de�ne Aij = Eij � Eji; ~Aij = i(Eij + Eji).We set m1 := LinfA12; ~A12g, m2 := LinfA13; ~A13g and m3 := LinfA23; ~A23g. The summ1 � m2 � m3 is an algebrai
 
omplement of m0 inside m, and in fa
t all spa
es miare pairwise perpendi
ular with respe
t to the Killing form B(X; Y ) := �Re(trXY )=2.Hen
e, the following formulags;y := 1s2 B��m0 + B��m1 + 1yB��m2 + 1yB��m3de�nes a two-parameter family of metri
s on N(1; 1) := SU(3)=S1. It is a subfamily ofthe family 
onsidered in [4, p.109 �℄; in parti
ular, (s = 1; y = 2) 
orresponds to the3-Sasakian metri
 that has three Riemannian Killing spinors with Killing number 1=2,and (s = 1; y = 2=5) is the Einstein metri
 with one Killing spinor with Killing number�3=10 (see [4, Thm 12, p.116℄). An orthonormal basis of m is given byX1 = A12; X2 = ~A12; X3 = pyA13; X4 = py ~A13; X5 = pyA23; X6 = py ~A23;and X7 = s � L=3. The isotropy representation Ad (�) leaves the ve
tors X1; X2 andX7 invariant, and a
ts as a rotation by 3� in the (X3; X4)-plane and in the (X5; X6)-plane. We use the realization of the 8-dimensional Spin(7)-representation �7 as givenin Se
tion 2. One then 
he
ks that 	3;	4;	5 and 	6 are �xed under the lift ~Ad (�)of the isotropy representation to Spin(7). Thus, they de�ne 
onstant se
tions in thespinor bundle S = SU(3)� ~Ad �7. The Levi-Civita 
onne
tion of N(1; 1) is des
ribedby a map � : m 7! so(7), whose lift ~� : m 7! spin(7) 
an be found either in [4, p.112℄or in [2℄.In order to de�ne a global form on N(1; 1), an algebrai
 form on m needs to be invariantunder the isotropy representation. It turns out that there are pre
isely 13 isotropyinvariant 3-forms on m, hen
e the most general 3-form we 
an 
onsider isT := �3 (X135+X146) + �3 (X235 +X246) + 
3 (X357+X467) + Æ3 (X145 �X136)+ "3 (X245�X236) + �3 (X457�X367) + �3X127 + �3X347+ �3X567 + �3X134 + !3X234 + �3X156 + %3X256:For notational 
onvenien
e, we shall write Xijk for Xi^Xj^Xk , and similarly for formsof any degree. By Hodge duality, the Ansatz for a 4-form isF := �4X1234+ �4X1256+ 
4X3456 + Æ4X1347+ "4X1567 + �4X2347 + �4X2567+ �4 (X1235+X1246) + �4 (X1357+X1467) + �4 (X1245�X1236)+ !4 (X1457�X1367) + �4 (X2457 �X2367) + %4 (X2357+X2467):



KILLING SPINORS IN SUPERGRAVITY WITH 4-FLUXES 7In parti
ular, the parameter spa
e 
 of pairs (T;F) of possible 3- and 4-forms hasnow six dimensions more than in the 3-Sasakian 
ase. Noti
e that for the 3-form T,X T = �(X � T+ T �X)=2, whereas the 4-form F satis�esX F = �12(X � F� F �X); X ^ F = 12(X � F + F �X):Theorem 4.1. For every metri
 gs;y on N(1; 1) and pair (p; q) 2 R2, there exists a10-dimensional aÆne spa
e 
0 of forms (T;F) su
h that the spinor �eld 	3 satis�esthe Killing spinor equationrX	 := rgX	 + 14(X T)	 + p (X F)	+ q (X ^ F)	 = 0:Furthermore, the additional 
ondition F � 	3 = 0 singles out a 9-dimensional aÆnesubspa
e of 
0. For 4 p� 3 q 6= 0, the set of forms inside 
0 satisfying T�	3 = 0 is againa 9-dimensional aÆne subspa
e, but its interse
tion with forms su
h that F �	3 = 0 isempty. For 4 p � 3 q = 0, there are no 3-forms in 
0 su
h that T �	 = 0.Proof. Evaluating the Killing spinor equation in all dire
tions X = X1; : : : ; X7, oneobserves that of the resulting seven 8-dimensional spinorial equations, half is trivial,hen
e the linear system in �3; : : : ; %3; �4; : : : ; %4 to be solved 
onsists only of 7� 4 = 28equations (with 4 parameters s; y; p; q). This system turns out to be highly redundant.In order to state its general solution, we de
ided to express it as fun
tions of theparameters of F. The 10 
oeÆ
ients �4; �4; 
4; "4; �4; �4; �4; !4; �4; %4 
an be 
hosenfreely, the three remaining ones are given by(�) Æ4 = "4 � 2�4; �4 = �4 + 2�4; �4 = �4:The 
oeÆ
ients of T are then expressed as fun
tions of the 
oeÆ
ients of F, hen
eyielding 13 formulas. These are of two types: the �rst set is independent of the metri
and relatively simple,�3 = 4(p+ q)�4; 
3 = �4(p+ q)�4; Æ3 = �4(p+ q)�4; �3 = �4(p+ q)�4;�3 = 4(p+ q)(�4+ 2�4); !3 = �4(p+ q)"4; �3 = 4(p+ q)�4; %3 = �4(p+ q)("4 � 2�4):The se
ond set of formulas is more 
ompli
ated and, in parti
ular, dependent on themetri
 parameters s; y,�3 = � 13s ��2� 6s+ 3ys+ 4s2 � 2y � 4ps(��4 + �4 + 
4 + 2!4 � %4) + 12qs %4� ;"3 = � 13s �2� 6s+ 3ys� 4s2 + 2y � 4ps(�4 � �4 � 
4 + !4 � 2%4)� 12qs !4� ;�3 = + 23s ��1� 4s2 + 2y + 2ps(�4 � �4 + 2
4 � 2!4 � 2%4) + 6qs 
4� ;�3 = + 13s �4� 8s2 + y � 4ps(��4 � 2�4 + 
4 + 2!4 + 2%4) + 12qs �4� ;�3 = � 13s �4� 8s2 + y � 4ps(2�4 + �4 + 
4 + 2!4 + 2%4)� 12qs �4� :This shows the main part of the Theorem. The equation F � 	3 = 0 yields for the
oeÆ
ients of F four 
onditions; three of them 
oin
ide with the equations (�), whilstthe last one is the linear equation��4 + �4 + 
4 + 2!4 + 2%4 = 0 :



8 ILKA AGRICOLA AND THOMAS FRIEDRICHSurprisingly, none of the parameters s; y; p; q o

urs. The 
onstraint T �	3 = 0 givesonly one 
ondition, namely,s(6q � 8p)(��4 + �4 + 
4 + 2!4 + 2%4) = 1 + y + 4s2 :Sin
e 1 + y + 4s2 > 0, all remaining 
laims follow. �5. Solutions for the spe
ial (p; q)-
ouplingThe 
oupling 4 p � 3 q = 0 between the di�erent parts involving the 
ux term of theKilling equation plays a spe
ial role (see Theorem 2.1 and Theorem 4.1). Let us dis
ussthe solutions in this 
ase in more detail. The Killing equation reads as (n = 7)rgX	 + 14 � (X T) �	 + 34 � (X F) �	 + (X ^ F) �	 = 0 :The �rst series of examples are nearly parallel G2-manifolds. We normalize the s
alar
urvature by the 
ondition S
al = 168. Then there exists a Riemannian Killing spinor	 
orresponding to the G2-stru
ture !3,rgX	 = X �	 ; !3 �	 = � 7 �	 :The pair 3�T = � 4�!3 and F = f �(�!3) together with the spinor 	 solves the equation,where f 2 R1 is an arbitrary real parameter. The torsion form has a geometri
 meaning.It de�nes the unique linear, metri
 
onne
tion r = rg + (1=2) �T preserving the nearlyparallel G2-stru
ture (see [12, Example 5:2℄). Moreover, the spinor �eld 	 is r-paralleland the Killing equation de
ouples intorgX	 + 14 � (X T) �	 = 0 and 3 � (X F) �	 + 4 � (X ^ F) �	 = 0 :Compa
t nearly parallel G2-manifolds are studied, for example, in [14℄. The 1-parameterfamily of 
ux forms asso
iated with a nearly parallel G2-manifold has already been in-vestigated in supergravity (see [6℄).A larger family of solutions arises from a 7-dimensional 3-Sasakian manifold M7. It isan Einstein spa
e, and the s
alar 
urvature is normalized automati
ally to S
al = 42.There exist four Riemannian Killing spinors (see [13℄). Let us �x one of them. In thefamily of torsion and 
ux forms 
onsidered in Se
tion 3, there exists a 7-dimensionalaÆne subspa
e of solutions. The torsion forms are 
ompletely determined by the 
uxforms ( p = 3=4 and q = 1 in the notation of Se
tion 2),t12 = � 7 f272 = � t21; t17 = � 7 f277 = � t71;t27 = 7 f177 = t72;t11 = � 23 + f � 2 f127 + 2 f172 � 5 f271;t22 = 23 � f + 2 f127 � 2 f271 + 5 f172;t77 = 23 � f � 2 f172 � 2 f271 � 5 f127;t = 23 + 2 f127 � 2 f172 � 2 f271 + 6 f;f122 = � f177; f121 = � f277; f171 = f272 :



KILLING SPINORS IN SUPERGRAVITY WITH 4-FLUXES 9All torsion forms in the 7-dimensional family of solutions a
t on the spinor by theformula T � 	 = (14=3) � 	. The equation F � 	 = 0 de�nes a 6-dimensional aÆnesubspa
e, 
 := f � 2 f127 + 2 f172 + 2 f271 = 0 :We 
ompute the a
tion of the symmetri
 endomorphisms T and F on the 8-dimensionalspa
e of spinors expli
itely. In order to formulate the result, let us introdu
e thefollowing (3� 3)-matrix F�,24 f � 2f127 � 2f172 � 2f271 � 4 f177 � 4 f277� 4 f177 f + 2f127 + 2f172 � 2f271 4 f272� 4 f277 4 f272 f + 2f127 � 2f172 + 2f271 35 :We order the basis in �7 in su
h a way that 	 is the last element in the basis. Thenthe tra
eless and symmetri
 endomorphisms T and F are given by the matri
esF = 24 �f � Id4 0 00 F� 00 0 
 35 ; T = 24 (
 � 23) � Id4 0 00 (
 � 23) � Id3 00 0 143 � 7 
 35 + 7F :Remark that F� is an arbitrary symmetri
 (3� 3)-matrix. It a
ts in the 3-plane gen-erated by the Riemannian Killing spinors orthogonal to the �xed Riemannian Killing	. Let us look at the family of solutions from the point of view of G2-stru
tures. Thespinor 	 de�nes su
h a stru
ture on M7 (see Se
tion 2). Sin
e it is a RiemannianKilling spinor, the G2-stru
ture is nearly parallel (see [14℄). On the other side, a 3-Sasakian stru
ture on M7 is topologi
ally a SU(2)-redu
tion of the frame bundle. Sin
eSU(2) � G2 � SO(7), any 3-Sasakian manifold indu
es a family of G2-stru
tures. Thespinor 	 singles out one of them. In any 
ase, we have an underlying G2-stru
ture !3 onM7. In our parametrization of the family (T; F) the 
ase F = 0 yields again the 
anon-i
al torsion form of the unique 
onne
tion preserving the nearly parallel G2-stru
ture(see again [12, Example 5.1℄). Moreover, the 
onditionT = 24 � 23 � Id4 0 00 � 23 � Id3 00 0 143 35de�nes a 1-parameter subfamily of 
ux forms. This is exa
tly the above mentionedsolution line of the nearly parallel G2-stru
ture. Consequently, if the nearly parallelG2-stru
ture arises from an underlying 3-Sasakian geometry, we 
an embed the 
anon-i
al solution (T = !3; F = f � (�!3)) into a larger family of solutions. Then the Killingequation does not de
ouple anymore. We have the same pi
ture for the solutions onN(1; 1). In this 
ase, the underlying G2-stru
ture is not nearly parallel, but only 
o-
alibrated and additional parameters for the metri
 o

ur.A spe
ial 
oupling between the (p; q)-parameters in the Killing equation with 
uxeso

urs in any dimension. We explain one way to understand this e�e
t. First of all,one easily veri�es the following algebrai
 formulas 
on
erning the a
tion of exteriorforms of degree three and four on spinors:nXi=1 ei � �ei T� = 3 � T; nXi=1 ei � �ei F� = 4 � F; nXi=1 ei � �ei ^ F� = � (n � 4) � F :
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ting the equationrgX	 + 14 � (X T) �	 + p � (X F) �	 + q � (X ^ F) �	 = 0 ;we obtain Dg	 + 34 T �	 + �4 p � (n� 4) q� � F �	 = 0 :If 4 p � (n�4) q = 0, the a
tion of the Riemannian Dira
 operator Dg on the spinor 	depends only on the torsion form, but not on the 
ux form. In this 
ase we obtain a linkbetween the spe
trum of the Riemannian Dira
 operator and the admissible algebrai

onstraints given by the torsion form. We 
an apply well-known estimates for the Dira
spe
trum of a Riemannian manifold in order to ex
lude some of these solutions. Forexample, we obtain (see [10℄)Proposition 5.1. Let (Mn; g; T; F; 	) be a 
ompa
t solution of the equationrgX	 + 14 � (X T) �	 + n� 44 � (X F) �	 + (X ^ F) �	 = 0with the 
onstraint T �	 = 
 � 	. Then the eigenvalue 
 is bounded by the minimumS
al0 of the s
alar 
urvature of the Riemannian manifold,
2 � 4n9 (n� 1) � S
al0 :The solutions on 3-Sasakian manifolds dis
ussed before realize the lower bound, sin
ethey 
ome from a Riemannian Killing spinor. In 
ase of the homogeneous solutionson the Alo�-Walla
h spa
e N(1; 1) the eigenvalue 
2 is stri
tly greater then the lowerbound.Remark 5.1. On an 8-dimensional manifold the equation 
orresponding to the spe
ial(p; q)-parameters simpli�es,rgX	 + 14 � (X T) �	 + F �X �	 = 0 :Our method for the 
onstru
tion of torsion and 
ux forms solving the equation at handapplies in dimension eight, too. The key point is the following Proposition. Its proofrelies on a 
omputer 
omputation. We have to solve a system of 128 linear equationsin 126 variable, and turns out to have suÆ
iently many solutions.Proposition 5.2. Let 	 = 	+ + 	� be an 8-dimensional spinor with non trivial posi-tive and negative part, 	� 6= 0. Then there exists a family depending on 25 parametersof 3-forms T 2 �3(R8) and 4-forms F 2 �4(R8) su
h that, for any ve
tor X 2 R8, thefollowing equation holds: 14 � (X T) �	 + F �X �	 = 0 :Consider an 8-dimensional Lie group (G8; g) equipped with a biinvariant Riemannianmetri
. The formula T0(X; Y; Z) := � g([X ; Y ℄ ; Z)de�nes the 
anoni
al torsion form of the Lie group. The a
tion of the Levi-Civita
onne
tion on a spinor �eld 	 : G8 ! �8 is given by the formulargX	 = d	(X) + 14 (X T0) �	 :
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