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Abstract. This review article intends to introduce the reader to non-integrable geo-
metric structures on Riemannian manifolds and invariant metric connections with
torsion, and to discuss recent aspects of mathematical physics—in particular super-
string theory—where these naturally appear.

Connections with skew-symmetric torsion are exhibited as one of the main tools
to understand non-integrable geometries. To this aim a a series of key examples is
presented and successively dealt with using the notions of intrinsic torsion and char-
acteristic connection of a G-structure as unifying principles. The General Holonomy
Principle bridges over to parallel objects, thus motivating the discussion of geomet-
ric stabilizers, with emphasis on spinors and differential forms. Several Weitzenböck
formulas for Dirac operators associated with torsion connections enable us to dis-
cuss spinorial field equations, such as those governing the common sector of type II
superstring theory. They also provide the link to Kostant’s cubic Dirac operator.
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1. Background and motivation

1.1. Introduction. Since Paul Dirac’s formulation in 1928 of the field equation for a
quantized electron in flat Minkowski space, Dirac operators on Riemannian manifolds
have become a powerful tool for the treatment of various problems in geometry, anal-
ysis and theoretical physics. Meanwhile, starting from the fifties the French school
founded by M. Berger had developed the idea that manifolds should be subdivided
into different classes according to their holonomy group. The name special (inte-
grable) geometries has become customary for those which are not of general type.
Already at that early stage there were hints that parallel spinor fields would induce
special geometries, but this idea was not further investigated. At the beginning of the
seventies, A. Gray generalized the classical holonomy concept by introducing a clas-
sification principle for non-integrable special Riemannian geometries and studied the
defining differential equations of each class. The connection between these two lines of
research in mathematical physics became clear in the eighties in the context of twistor
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theory and the study of small eigenvalues of the Dirac operator, mainly developed by
the Berlin school around Th. Friedrich. In the case of homogeneous manifolds, inte-
grable geometries correspond to symmetric spaces, whose classification by E. Cartan
is a milestone in 20th century differential geometry. The much richer class of ho-
mogeneous reductive spaces—which is inaccessible to any kind of classification—has
been studied intensively since the mid-sixties, and is a main source of examples for
non-integrable geometries.

The interest in non-integrable geometries was revived in the past years through
developments of superstring theory. Firstly, integrable geometries (Calabi-Yau mani-
folds, Joyce manifolds etc.) are exact solutions of the Strominger model (1986), though
with vanishing B-field. If one deforms these vacuum equations and looks for models
with non-trivial B-field, a new mathematical approach going back a decade implies
that solutions can be constructed geometrically from non integrable geometries with
torsion. In this way, manifolds not belonging to the field of algebraic geometry (inte-
grable geometries) become candidates for interesting models in theoretical physics.

Before discussing the deep mathematical and physical backgrounds, let us give a—
very intuitive—explanation of why the traditional Yang-Mills approach needs modifi-
cation in string theory and how torsion enters the scene. Point particles move along
world-lines, and physical quantities are typically computed as line integrals of some
potential that is, mathematically speaking, just a 1-form. The associated field strength
is then its differential—a 2-form—and interpreted as the curvature of some connec-
tion. In contrast, excitations of extended 1-dimensional objects (the ‘strings’) are
‘world-surfaces’, and physical quantities have to be surface integrals of certain po-
tential 2-forms. Their field strengths are thus 3-forms and cannot be interpreted as
curvatures anymore. The key idea is to supply the (pseudo)-Riemannian manifold
underlying the physical model with a non-integrable G-structure admitting a ‘good’
metric G-connection ∇ with torsion, which in turn will play the role of a B-field
strength; and the art is to choose the G-structure so that the connection ∇ admits the
desired parallel objects, in particular spinors, interpreted as supersymmetry transfor-
mations.

My warmest thanks go to all colleagues whose countless remarks and corrections
helped improving the quality of this text, in particular to Simon Chiossi, Richard
Cleyton, Thomas Friedrich, Mario Kassuba, Nils Schoemann (Humboldt University
Berlin) as well as Pawe l Nurowski and Andrzej Trautman (Warsaw University).

I am also grateful to my Czech friends for the unabated perseverance in organizing
the excellent Srńı Winter Schools for over two decades and for inviting me to give a
series of lectures on this topic in January 2006. My notes for these lectures constituted
the basis of the present article.

1.2. Mathematical motivation. From classical mechanics, it is a well-known fact
that symmetry considerations can simplify the study of geometric problems—for ex-
ample, Noether’s theorem tells us how to construct first integrals, like momentum,
from invariance properties of the underlying mechanical system. In fact, beginning
from 1870, it became clear that the principle organizing geometry ought to be the
study of its symmetry groups. In his inaugural lecture at the University of Erlangen
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in 1872, which later became known as the “Erlanger Programm”, Felix Klein said
[Kl72, p. 34]:

Let a manifold and on it a transformation group be given; the objects
belonging to the manifold ought to be studied with respect to those prop-
erties which are not changed by the transformations of the group1.

Hence the classical symmetry approach in differential geometry was based on the
isometry group of a manifold, that is, the group of all transformations acting on the
given manifold.

By the mid-fifties, a second intrinsic group associated to a Riemannian manifold
turned out to be deeply related to fundamental features like curvature and parallel
objects. The so-called holonomy group determines how a vector can change under
parallel transport along a closed loop inside the manifold (only in the flat case the
transported vector will coincide with the original one). Berger’s theorem (1955) clas-
sifies all possible restricted holonomy groups of a simply connected, irreducible and
non-symmetric Riemannian manifold (M, g) (see [Ber55], [Sim62] for corrections and
simplifications in the proof and [Br96] for a status report). The holonomy group can
be either SO(n) in the generic case or one of the groups listed in Table 1 (here and
in the sequel, ∇g denotes the Levi-Civita connection). Manifolds having one of these
holonomy groups are called manifolds with special (integrable) holonomy, or special
(integrable) geometries for short. We put the case n = 16 and Hol(M) = Spin(9)
into brackets, because Alekseevski and Brown/Gray showed independently that such
a manifold is necessarily symmetric ([Ale68], [BG72]). The point is that Berger proved
that the groups on this list were the only possibilities, but he was not able to show
whether they actually occurred as holonomy groups of compact manifolds. It took an-
other thirty years to find out that—with the exception of Spin(9)—this is indeed the
case: The existence of metrics with holonomy SU(m) or Sp(m) on compact manifolds
followed from Yau’s solution of the Calabi Conjecture posed in 1954 [Yau78]. Explicit
non-compact metrics with holonomy G2 or Spin(7) are due to R. Bryant [Br87] and
R. Bryant and S. Salamon [BrS89], while compact manifolds with holonomy G2 or
Spin(7) were constructed by D. Joyce only in 1996 (see [Joy96a], [Joy96b] [Joy96c]
and the book [Joy00], which also contains a proof of the Calabi Conjecture). Later,
compact exceptional holonomy manifolds have also been constructed by other methods
by Kovalev ([Kov03]).

As we will explain later, the General Holonomy Principle relates manifolds with
Hol(M) = SU(n), Sp(n), G2 or Spin(7) with ∇g-parallel spinors (see Section 3). Al-
ready in the sixties it had been observed that the existence of such a spinor implies
in turn the vanishing of the Ricci curvature ([Bon66] and Proposition 2.2) and re-
stricts the holonomy group of the manifold ([Hit74], [McKW89]), but the difficulties
in constructing explicit compact manifolds with special integrable Ricci-flat metrics
inhibited further research on the deeper meaning of this result.

There was progress in this direction only in the homogeneous case. Symmetric
spaces are the ”integrable” geometries inside the much larger class of homogeneous

1
”
Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die

der Mannigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch
die Transformationen der Gruppe nicht geändert werden.“
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dimM Hol(M) name parallel object curvature

4n Sp(n)Sp(1)
quaternionic-

Kähler manifold
− Ric = λg

2n U(n)
Kähler

manifold
∇gJ = 0 −

2n SU(n)
Calabi-Yau

manifold
∇gJ = 0 Ric = 0

4n Sp(n)
hyper-Kähler

manifold
∇gJ = 0 Ric = 0

7 G2
parallel

G2-manifold
∇gω3 = 0 Ric = 0

8 Spin(7)
parallel

Spin(7)-manifold
∇gβ4 = 0 Ric = 0

[16] [Spin(9)]
[parallel

Spin(9)-manifold]
− −

Table 1. Possible Riemannian holonomy groups (‘Berger’s list’).

reductive spaces. Given a non-compact semisimple Lie group G and a maximal com-
pact subgroup K such that rankG = rankK, consider the associated symmetric space
G/K. The Dirac operator can be twisted by a finite-dimensional irreducible unitary
representation τ of K, and it was shown by Parthasarathy, Wolf, Atiyah and Schmid
that for suitable τ most of the discrete series representations of G can be realized on
the L2-kernel of this twisted Dirac operator ([Par72], [Wol74], [AS77]). The crucial
step is to relate the square of the Dirac operator with the Casimir operator ΩG of G;
for trivial τ , the corresponding formula reads

(1) D2 = ΩG +
1

8
scal .

Meanwhile many people began looking for suitable generalizations of the classical ho-
lonomy concept. One motivation for this was that the notion of Riemannian holonomy
is too restrictive for vast classes of interesting Riemannian manifolds; for example, con-
tact or almost Hermitian manifolds cannot be distinguished merely by their holonomy
properties (they have generic holonomy SO(n)), and the Levi-Civita connection is not
adapted to the underlying geometric structure (meaning that the defining objects are
not parallel).

In 1971 A. Gray introduced the notion of weak holonomy ([Gra71]), ”one of his
most original concepts” and ”an idea much ahead of its time” in the words of N.
Hitchin [Hit01]. This concept turned out to yield interesting non-integrable geometries
in dimensions n ≤ 8 and n = 16. In particular, manifolds with weak holonomy U(n)
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and G2 became known as nearly Kähler and nearly parallel G2-manifolds, respectively.
But whereas metrics of compact Ricci-flat integrable geometries have not been realized
explicitly (so far), there are many well-known homogeneous reductive examples of non-
integrable geometries ([Gra70], [Fer87], [BFGK91], [FKMS97], [BG99], [Fin05] and
many others). The relation to Dirac operators emerged shortly after Th. Friedrich
proved in 1980 a seminal inequality for the first eigenvalue λ1 of the Dirac operator
on a compact Riemannian manifold Mn of non-negative curvature [Fri80]

(2) (λ1)
2 ≥ n

4(n− 1)
min
Mn

(scal) ,

In this estimate, equality occurs precisely if the corresponding eigenspinor ψ satisfies
the Killing equation

∇g
Xψ = ±1

2

√
min(scal)

n(n− 1)
X · ψ =: µX · ψ .

The first non-trivial compact examples of Riemannian manifolds with Killing spinors
were found in dimensions 5 and 6 in 1980 and 1985, respectively ([Fri80], [FG85]).
The link to non-integrable geometry was established shortly after; for instance, a
compact, connected and simply connected 6-dimensional Hermitian manifold is nearly
Kähler if and only if it admits a Killing spinor with real Killing number µ [Gru90].
Similar results hold for Einstein-Sasaki structures in dimension 5 and nearly parallel
G2-manifolds in dimension 7 ([FK89], [FK90]). Remarkably, the proof of inequality
(2) relies on introducing a suitable spin connection—an idea much in line with recent
developments. A. Lichnerowicz established the link to twistor theory by showing that
on a compact manifold the space of twistor spinors coincides—up to a conformal change
of the metric—with the space of Killing spinors [Lich88].

1.3. Physical motivation – torsion in gravity. The first attempts to introduce
torsion as an additional ’datum’ for describing physics in general relativity goes back
to Cartan himself [Car24a]. Viewing torsion as some intrinsic angular momentum, he
derived a set of gravitational field equations from a variational principle, but postu-
lated that the energy-momentum tensor should still be divergence-free, a condition too
restrictive for making this approach useful. The idea was taken up again in broader
context in the late fifties. The variation of the scalar curvature (and an additional
Lagrangian generating the energy-momentum tensor) on a space-time endowed with
a metric connection with torsion yielded the two fundamental equations of Einstein-
Cartan theory, first formulated by Kibble [Kib61] and Sciama (see his article in [In62]).
The first equation is (formally) Einstein’s classical field equation of general relativity
with an effective energy momentum tensor Teff depending on torsion, the second one
can be written in index-free notation as

Q(X, Y ) +
n∑

i=1

(
Q(Y, ei) ei

)
·X −

(
Q(X, ei) ei

)
· Y = 8πS(X, Y ) .

Here, Q denotes the torsion of the new connection ∇, S the spin density and e1, . . . , en

any orthonormal frame. A. Trautman provided an elegant formulation of Einstein-
Cartan theory in the language of principal fibre bundles [Tra73a]. The most striking
predictions of Einstein-Cartan theory are in cosmology. In the presence of very dense
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spinning matter, nonsingular cosmological models may be constructed because the
effective energy momentum tensor Teff does not fulfill the conditions of the Penrose-
Hawking singularity theorems anymore [Tra73b]. The first example of such a model
was provided by W. Kopczyński [Kop73], while J. Tafel found a large class of such
models with homogeneous spacial sections [Taf75]. For a general review of gravity
with spin and torsion including extensive references, we refer to the article [HHKN76].

In the absence of spin, the torsion vanishes and the whole theory reduces to Ein-
stein’s original formulation of general relativity. In practice, torsion turned out to be
hard to detect experimentally, since all tests of general relativity are based on exper-
iments in empty space. Einstein-Cartan theory is pursued no longer, although some
concepts that it inspired are still of relevance (see [HMMN95] for a generalization with
additional currents and shear, [Tra99] for optical aspects, [RT03] for the link to the
classical theory of defects in elastic media). Yet, it may be possible that Einstein-
Cartan theory will prove to be a better classical limit of a future quantum theory of
gravitation than the theory without torsion.

1.4. Physical motivation – torsion in superstring theory. Superstring theory
(see for example [GSW87], [LT89]) is a physical theory aiming at describing nature
at small distances (≃ 10−25 m). The concept of point-like elementary particles is re-
placed by one-dimensional objects as building blocks of matter—the so-called strings.
Particles are then understood as resonance states of strings and can be described to-
gether with their interactions up to very high energies (small distances) without inter-
nal contradictions. Besides gravitation, string theory incorporates many other gauge
interactions and hence is an excellent candidate for a more profound description of
matter than the standard model of elementary particles. Quantization of superstrings
is only possible in the critical dimension 10, while M-theory is a non-perturbative
description of superstrings with ”geometrized” coupling, and lives in dimension 11.
Mathematically speaking, a 10- or 11-dimensional configuration space Y (a priori not
necessarily smooth) is assumed to be the product

Y 10,11 = V 3-5 ×M5-8

of a low-dimensional spacetime V describing the ‘external’ part of the theory (typically,
Minkowski space or a space motivated from general relativity like anti-de-Sitter space),
and a higher-dimensional ‘internal space’ M with some special geometric structure.
The metric is typically a direct or a warped product. On M , internal symmetries of
particles are described by parallel spinor fields, the most important of which being
the existing supersymmetries: a spinor field has spin 1/2, so tensoring with it swaps
bosons and fermions. By the General Holonomy Principle (see Theorem 2.7), the
holonomy group has to be a subgroup of the stabilizer of the set of parallel spinors
inside Spin(9, 1). These are well known and summarized in Table 2. We shall explain
how to derive this result and how to understand the occurring semidirect products in
Section 3.4.

Since its early days, string theory has been intricately related with some branches
of algebraic geometry. This is due to the fact that the integrable, Ricci-flat geome-
tries with a parallel spinor field with respect to the Levi-Civita connection are exact
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# of inv. spinors stabilizer groups

1 Spin(7) ⋉ R8

2 G2, SU(4) ⋉ R
8

3 Sp(2) ⋉ R8

4 SU(3), (SU(2) × SU(2)) ⋉ R8

8 SU(2), R8

16 {e}

Table 2. Possible stabilizers of invariant spinors inside Spin(9, 1).

solutions of the Strominger model for a string vacuum with vanishing B-field and con-
stant dilaton. This rich and active area of mathematical research lead to interesting
developments such as the discovery of mirror symmetry.

1.5. First developments since 1980. In the early eighties, several physicists inde-
pendently tried to incorporate torsion into superstring and supergravity theories in
order to get a more physically flexible model, possibly inspired by the developments in
classical gravity ([VanN81], [GHR84], [HP87], [dWSHD87], [Roc92]). In fact, simple
supergravity is equivalent to Einstein-Cartan theory with a massless, anticommuting
Rarita-Schwinger field as source. But contrary to general relativity, one difficulty
stems from the fact that there are several models in superstring theory (type I, II,
heterotic. . . ) that vary in the excitation spectrum and the possible interactions.

In his article ”Superstrings with torsion” [Str86], A. Strominger describes the basic
model in the common sector of type II superstring theory as a 6-tuple (Mn, g,∇, T,Φ,Ψ)
consisting of a Riemannian spin manifold (Mn, g), a 3-form T , a dilaton function Φ
and a spinor field Ψ. The field equations can be written in the following form (recall
that ∇g denotes the Levi-Civita connection):

Ricij −
1

4
TimnTjmn + 2∇g

i ∂jΦ = 0 , δ(e−2ΦT ) = 0 ,

(∇g
X +

1

4
X T )ψ = 0, (2dΦ − T ) · ψ = 0 .

If one introduces a new metric connection ∇ whose torsion is given by the 3-form T ,

∇XY := ∇g
XY +

1

2
T (X, Y,−) ,

one sees that the third equation is equivalent to ∇Ψ = 0. The remaining equations can
similarly be rewritten in terms of ∇. For constant dilaton Φ, they take the particularly
simple form [IP01]

(3) Ric∇ = 0 , δg(T ) = 0 , ∇Ψ = 0 , T · Ψ = 0 ,

and the second equation (δg(T ) = 0) now follows from the first equation (Ric∇ = 0).
For M compact, it was shown in [Agr03, Theorem 4.1] that a solution of all equa-
tions necessarily forces T = 0, i. e. an integrable Ricci-flat geometry with classical
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holonomy given by Berger’s list. By a careful analysis of the integrability condi-
tions, this result could later be extended to the non-compact case ([AFNP05], see
also Section 5.5). Together with the well-understood Calabi-Yau manifolds, Joyce
manifolds with Riemannian holonomy G2 or Spin(7) thus became of interest in re-
cent times (see [AW01], [CKL01]). From a mathematical point of view, this result
stresses the importance of tackling easier problems first, for example partial solutions.
As first step in the investigation of metric connections with totally skew-symmetric
torsion, Dirac operators, parallel spinors etc., Th. Friedrich and S. Ivanov proved that
many non-integrable geometric structures (almost contact metric structures, nearly
Kähler and weak G2-structures) admit a unique invariant connection ∇ with totally
skew-symmetric torsion [FI02], thus being a natural replacement for the Levi-Civita
connection. Non-integrable geometries could then be studied by their holonomy prop-
erties.

In fact, in mathematics the times had ben ripe for a new look at the intricate re-
lationship between holonomy, special geometries, spinors and differential forms: in
1987, R. Bryant found the first explicit local examples of metrics with exceptional
Riemannian holonomy (see [Br87] and [BrS89]), Chr. Bär described their relation to
Killing spinors via the cone construction [Bär93]. Building on the insightful vision of
Gray, S. Salamon realized the centrality of the concept of intrinsic torsion ([Sal89]
and, for recent results, [Fin98], [CS02], [CS04]). Swann successfully tried weakening
holonomy [Sw00], and N. Hitchin characterized non-integrable geometries as critical
points of some linear functionals on differential forms [Hit01]. In particular, he mo-
tivated a generalization of Calabi-Yau-manifolds [Hit00] and of G2-manifolds [Wi04],
and discovered a new, previously unknown special geometry in dimension 8 (”weak
PSU(3)-structures”, see also [Wi06]). Friedrich reformulated the concepts of non-
integrable geometries in terms of principal fiber bundles [Fri03b] and discussed the ex-
ceptional dimension 16 suggested by A. Gray years before ([Fr01], [Fr03a]). Analytic
problems—in particular, the investigation of the Dirac operator—on non-integrable
Riemannian manifolds contributed to a further understanding of the underlying ge-
ometry ([Bis89], [AI00], [Gau97]). Finally, the Italian school and collaborators devoted
over the past years a lot of effort to the explicit construction of homogeneous exam-
ples of non-integrable geometries with special properties in small dimensions (see for
example [AGS00], [FG03], [FPS04], [Sal01] and the literature cited therein), making
it possible to test the different concepts on explicit examples.

The first non-integrable geometry that raised the interest of string theorists was the
squashed 7-sphere with its weak G2-structure, although the first steps in this direction
were still marked by confusion about the different holonomy concepts. A good overview
about G2 in string theory is the survey article by M. Duff ([Duf02]). It includes specu-
lations about possible applications of weak Spin(9)-structures in dimension 16, which
a priori are of too high dimension to be considered in physics. In dimension three, it
is well known (see for example [SSTP88]) that the Strominger equation ∇Ψ = 0 can
be solved only on a compact Lie group with biinvariant metric, and that the torsion
of the invariant connection ∇ coincides with the Lie bracket. In dimension four, the
Strominger model leads to a HKT structure (see Section 2.4 for more references), i.e.
a hyper-Hermitian structure that is parallel with respect to ∇, and—in the compact
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case—the manifold is either a Calabi-Yau manifold or a Hopf surface [IP01]. Hence,
the first interesting dimension for further mathematical investigations is five.

Obviously, besides the basic correspondence outlined here, there is still much more
going on between special geometries and detailed properties of physical models con-
structed from them. Some weak geometries have been rederived by physicists looking
for partial solutions by numerical analysis of ODE’s and heavy special function ma-
chinery [GKMW01].

As an example of the many interesting mathematical problems appearing in the
context of string theory, the physicists Ramond and Pengpan observed that there
is an infinite set of irreducible representations of Spin(9) partitioned into triplets
S = ∪i{µi, σi, τ i}, whose representations are related in a remarkable way. For example,
the infinitesimal character value of the Casimir operator is constant on triplets, and
dimµi +dim σi = dim τ i if numbered appropriately. These triplets are used to describe
massless supermultiplets, for example N = 2 hypermultiplets in (3 + 1) dimensions
with helicity U(1) or N = 1 supermultiplets in eleven dimensions, where SO(9) is the
light-cone little group [BRX02]. To explain this fact, B. Kostant introduced an element
in the tensor product of the Clifford algebra and the universal enveloping algebra of a
Lie group called ”Kostant’s cubic Dirac operator”, and derived a striking formula for
its square ([GKRS98], [Kos99]). The triplet structure of the representations observed
for Spin(9) is due to the fact that the Euler characteristic of F4/Spin(9) is three, hence
the name ”Euler multiplets” has become common for describing this effect. In Section
5.3, we will show that Kostant’s operator may be interpreted as the symbol of a usual
Dirac operator which is induced by a non-standard connection on a homogeneous nat-
urally reductive space ([Agr02],[Agr03]). In particular, this Dirac operator satisfies a
remarkably simple formula which is a direct generalization of Parthasarathy’s formula
on symmetric spaces [Par72]. This established the link between Kostant’s algebraic
considerations and recent models in string theory; in particular, it made homogeneous
naturally reductive spaces to key examples for string theory and allowed the deriva-
tion of strong vanishing theorems on them. In representation theory this opened the
possibility to realize infinite-dimensional representations in kernels of twisted Dirac
operators on homogeneous spaces ([HP02], [MZ04]), as it had been carried out on
symmetric spaces in the seventies ([Par72], [Wol74], [AS77]).

2. Metric connections with torsion

2.1. Types of connections and their lift into the spinor bundle. Let us begin
with some general remarks on torsion. The notion of torsion of a connection was in-
vented by Elie Cartan, and appeared for the first time in a short note at the Académie
des Sciences de Paris in 1922 [Car22]. Although the article contains no formulas, Car-
tan observed that such a connection may or may not preserve geodesics, and initially
turns his attention to those who do so. In this sense, Cartan was the first to inves-
tigate this class of connections. At that time, it was not customary — as it became
in the second half of the 20th century — to assign to a Riemannian manifold only its
Levi-Civita connection. Rather, Cartan demands (see [Car24b]):

Given a manifold embedded in affine (or projective or conformal etc.)
space, attribute to this manifold the affine (or projective or conformal
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etc.) connection that reflects in the simplest possible way the relations
of this manifold with the ambient space2.

He then goes on to explain in very general terms how the connection should be adapted
to the geometry under consideration. We believe that this point of view should be
taken into account in Riemannian geometry, too.

We now give a short review of the 8 classes of geometric torsion tensors. Consider a
Riemannian manifold (Mn, g). The difference between its Levi-Civita connection ∇g

and any linear connection ∇ is a (2, 1)-tensor field A,

∇XY = ∇g
XY + A(X, Y ) , X, Y ∈ TMn .

The vanishing of the symmetric or the antisymmetric part of A has immediate geo-
metric interpretations. The connection ∇ is torsion-free if and only if A is symmetric.
The connection ∇ has the same geodesics as the Levi-Civita connection ∇g if and only
if A is skew-symmetric. Following Cartan, we study the algebraic types of the torsion
tensor for a metric connection. Denote by the same symbol the (3, 0)-tensor derived
from a (2, 1)-tensor by contraction with the metric. We identify TMn with (TMn)∗

using g from now on. Let T be the n2(n−1)/2-dimensional space of all possible torsion
tensors,

T =
{
T ∈ ⊗3TMn | T (X, Y, Z) = −T (Y,X, Z)

} ∼= Λ2TMn ⊗ TMn .

A connection ∇ is metric if and only if A belongs to the space

Ag := TMn ⊗ (Λ2TMn) =
{
A ∈ ⊗3TMn | A(X, V,W ) + A(X,W, V ) = 0

}
.

In particular, dimAg = dim T , reflecting the fact that metric connections can be
uniquely characterized by their torsion.

Proposition 2.1 ([Car25, p.51], [TV83], [Sal89]). The spaces T and Ag are isomor-
phic as O(n) representations, an equivariant bijection being

T (X, Y, Z) = A(X, Y, Z) − A(Y,X, Z) ,

2A(X, Y, Z) = T (X, Y, Z) − T (Y, Z,X) + T (Z,X, Y ) .

For n ≥ 3, they split under the action of O(n) into the sum of three irreducible repre-
sentations,

T ∼= TMn ⊕ Λ3(Mn) ⊕ T ′.

The last module will also be denoted A′ if viewed as a subspace of Ag and is equivalent
to the Cartan product of representations TMn ⊗ Λ2TMn,

T ′ =
{
T ∈ T |

X,Y,Z

S T (X, Y, Z) = 0,
n∑

i=1

T (ei, ei, X) = 0 ∀X, Y, Z
}

for any orthonormal frame e1, . . . , en. For n = 2, T ∼= Ag ∼= R2 is O(2)-irreducible.

2
≪Étant donné une variété plongée dans l’espace affine (ou projectif, ou conforme etc.), attribuer

à cette variété la connexion affine (ou projective, ou conforme etc.) qui rende le plus simplement
compte des relations de cette variété avec l’espace ambiant.≫
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The eight classes of linear connections are now defined by the possible components
of their torsions T in these spaces. The nice lecture notes by Tricerri and Vanhecke
[TV83] use a similar approach in order to classify homogeneous spaces by the algebraic
properties of the torsion of the canonical connection. They construct homogeneous
examples of all classes, study their “richness” and give explicit formulas for the pro-
jections on every irreducible component of T in terms of O(n)-invariants.

Definition 2.1 (Connection with vectorial torsion). The connection ∇ is said to have
vectorial torsion if its torsion tensor lies in the first space of the decomposition in
Proposition 2.1, i.e. if it is essentially defined by some vector field V on M . The
tensors A and T can then be directly expressed through V as

A(X, Y ) = g(X, Y )V − g(V, Y )X, T (X, Y, Z) = g
(
g(V,X)Y − g(V, Y )X,Z

)
.

These connections are particularly interesting on surfaces, in as much that every metric
connection on a surface is of this type.

In [TV83], F. Tricerri and L. Vanhecke showed that if M is connected, complete,
simply-connected and V is ∇-parallel, then (M, g) has to be isometric to the hyperbolic
space. V. Miquel studied in [Miq82] and [Miq01] the growth of geodesic balls of such
connections, but did not investigate the detailed shape of geodesics. The study of
the latter was outlined in [AT04] (see Example 2.7), whereas [AF05] and [IPP05] are
devoted to holonomy aspects and a possible role in superstring theory.

Notice that there is some similarity to Weyl geometry. In both cases, we consider
a Riemannian manifold with a fixed vector field V on it ([CP99], [Gau95]). A Weyl
structure is a pair consisting of a conformal class of metrics and a torsion-free non-
metric connection preserving the conformal structure. This connection is constructed
by choosing a metric g in the conformal class and is then defined by the formula

∇w
XY := ∇g

XY + g(X, V ) · Y + g(Y, V )X − g(X, Y )V .

Weyl geometry deals with the geometric properties of these connections, but in spite
of the resemblance, it turns out to be a rather different topic. Yet in special geometric
situations it may happen that ideas from Weyl geometry can be useful.

Definition 2.2 (Connection with skew-symmetric torsion). The connection ∇ is said
to have (totally) skew-symmetric torsion if its torsion tensor lies in the second compo-
nent of the decomposition in Proposition 2.1, i.e. it is given by a 3-form. They are by
now — for reasons to be detailed later — a well-established tool in superstring theory
and weak holonomy theories (see for example [Str86], [LT89], [GKMW01], [CKL01],
[FP02], [Duf02], [AF04a] etc.). In Examples 2.2 to 2.5, we describe large classes
of interesting manifolds that carry natural connections with skew-symmetric torsion.
Observe that we can characterize these connections geometrically as follows:

Corollary 2.1. A connection ∇ on (Mn, g) is metric and geodesic-preserving if and
only if its torsion T lies in Λ3(TMn). In this case, 2A = T holds,

∇XY = ∇g
XY +

1

2
T (X, Y,−) ,

and the ∇-Killing vector fields coincide with the Riemannian Killing vector fields.
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In contrast to the case of vectorial torsion, manifolds admitting invariant metric
connections ∇ with ∇-parallel skew-symmetric torsion form a vast class that is worth
a separate investigation ([Ale03], [CS04], [Sch06]).

Suppose now that we are given a metric connection ∇ with torsion on a Riemannian
spin manifold (Mn, g) with spin bundle ΣMn. We slightly modify our notation and
write ∇ as

∇XY := ∇g
XY + AXY ,

where AX defines an endomorphism TMn → TMn for every X. The condition for ∇
to be metric

g(AXY, Z) + g(Y,AXZ) = 0

means that AX preserves the scalar product g, which can be expressed as AX ∈ so(n).
After identifying so(n) with Λ2(Rn), AX can be written relative to some orthonormal
frame

AX =
∑

i<j

αijei ∧ ej .

Since the lift into spin(n) of ei ∧ ej is Ei · Ej/2, AX defines an element in spin(n)
and hence an endomorphism of the spinor bundle. In fact, we need not introduce a
different notation for the lift of AX . Rather, observe that if AX is written as a 2-form,

(1) its action on a vector Y as an element of so(n) is just AXY = Y AX , so our
connection takes on vectors the form

∇XY = ∇g
XY + Y AX ,

(2) the action of AX on a spinor ψ as an element of spin(n) is just AXψ = (1/2)AX ·
ψ, where · denotes the Clifford product of a k-form by a spinor. The lift of the
connection ∇ to the spinor bundle ΣMn (again denoted by ∇) is thus given by

∇Xψ = ∇g
Xψ +

1

2
AX · ψ .

We denote by (−,−) the Hermitian product on the spinor bundle ΣMn induced by
g. When lifted to the spinor bundle, ∇ satisfies the following properties that are
well known for the lift of the Levi-Civita connection. In fact, the proof easily follows
from the corresponding properties for the Levi-Civita connection [Fri00, p. 59] and the
Hermitian product [Fri00, p. 24].

Lemma 2.1. The lift of any metric connection ∇ on TMn into the spinor bundle
ΣMn satisfies

∇X(Y · ψ)=(∇XY ) · ψ + Y · (∇Xψ) , X(ψ1, ψ2) = (∇Xψ1, ψ2) + (ψ1,∇Xψ2) .

Any spinorial connection with the second property is again called metric. The first
property (chain rule for Clifford products) makes only sense for spinorial connections
that are lifts from the tangent bundle, not for arbitrary spin connections.

Example 2.1 (Connection with vectorial torsion). For a metric connection with vec-
torial torsion given by V ∈ TM , AX = 2X ∧ V , since

Y (2X∧V )=2(X∧V )(Y,−)=(X⊗V )(Y,−)−(V ⊗X)(Y,−)=g(X, Y )V −g(Y, V )X .
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Example 2.2 (Connection with skew-symmetric torsion). For a metric connection
with skew-symmetric torsion defined by some T ∈ Λ3(M), AX = X T . Examples of
manifolds with a geometrically defined torsion 3-form are given in the next section.

Example 2.3 (Connection defined by higher order differential forms). As example of
a metric spinorial connection not induced from the tangent bundle, consider

∇Xψ := ∇g
Xψ + (X ωk) · ψ + (X ∧ ηl) · ψ

for some forms ωk ∈ Λk(M), ηl ∈ Λl(M) (k, l ≥ 4). These are of particular interest
in string theory as they are used for the description of higher dimensional membranes
([AF03], [Pu06]).

Example 2.4 (General case). The class A′ of Proposition 2.1 cannot be directly
interpreted as vectors or forms of a given degree, but it is not complicated to construct
elements in A′ either. For simplicity, assume n = 3, and let ∇ be the metric connection
with vectorial torsion V = e1. Then

AX = X ∧ e1 =
( 3∑

i=1

g(X, ei)ei

)
∧ e1 = g(X, e2) e2 ∧ e1 + g(X, e3) e3 ∧ e1 .

Thus, the new form ÃX := g(X, e2)e2 ∧ e1 − g(X, e3)e3 ∧ e1 defines a metric linear
connection as well. One easily checks that, as a tensor in Ag, it is orthogonal to
Λ3(M)⊕X(M), hence it lies in A′. Connections of this type have not yet been investi-
gated as a class of their own, but they are used as an interesting tool in several contexts
— for example, in closed G2-geometry ([Br03], [CI03]). The canonical connection of
an almost Kähler manifold is also of this type.

What makes metric connections with torsion so interesting is the huge variety of
geometric situations that they unify in a mathematically useful way. Let us illustrate
this fact by some examples.

2.2. Naturally reductive spaces. Naturally reductive spaces are a key example of
manifolds with a metric connection with skew-symmetric torsion.

Consider a Riemannian homogeneous space M = G/H . We suppose that M is
reductive, i.e. the Lie algebra g of G splits as vector space direct sum of the Lie
algebra h of H and an Ad(H)-invariant subspace m: g = h ⊕ m and Ad(H)m ⊂ m,
where Ad : H → SO(m) is the isotropy representation of M . We identify m with
T0M and we pull back the Riemannian metric 〈 , 〉0 on T0M to an inner product
〈 , 〉 on m. By a theorem of Wang ([KN69, Ch. X, Thm 2.1]), there is a one-to-one
correspondence between the set of G-invariant metric affine connections and the set
of linear mappings Λm : m → so(m) such that

Λm(hXh−1) = Ad(h)Λm(X)Ad(h)−1 for X ∈ m and h ∈ H .

A homogeneous Riemannian metric g on M is said to be naturally reductive (with
respect to G) if the map [X,−]m : m → m is skew-symmetric,

g
(
[X, Y ]m, Z

)
+ g

(
Y, [X,Z]m

)
= 0 for all X, Y, Z ∈ m .

The family of metric connections ∇t defined by Λt
m(X)Y := (1− t)/2 [X, Y ]m has then

skew-symmetric torsion T t(X, Y ) = −t[X, Y ]m. The connection ∇1 is of particular in-
terest and is called the canonical connection. Naturally reductive homogeneous spaces
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equipped with their canonical connection are a well studied (see for example [AZ79])
generalization of symmetric spaces since they satisfy ∇1T 1 = ∇1R1 = 0, where R1

denotes the curvature tensor of ∇1 (Ambrose-Singer, [AS58]). In fact, a converse holds:

Theorem 2.1 ([TV84b, Thm 2.3]). A connected, simply connected and complete Rie-
mannian manifold (M, g) is a naturally reductive homogeneous space if and only if
there exists a skew-symmetric tensor field T of type (1, 2) such that ∇ := ∇g − T is
a metric connection with ∇T = ∇R = 0.

The characterization of naturally reductive homogeneous spaces given in [AS58]
through the property that their geodesics are orbits of one-parameter subgroups of
isometries is actually wrong; Kaplan’s 6-dimensional Heisenberg group is the most
prominent counterexample (see [Kap83] and [TV84b]). Naturally reductive spaces have
been classified in small dimensions by Kowalski, Tricerri and Vanhecke, partially in
the larger context of commutative spaces (in the sense of Gel’fand): the 3-dimensional
naturally reductive homogeneous spaces are SU(2), the universal covering group of
SL(2,R) and the Heisenberg group H3, all with special families of left-invariant metrics
([TV83]). A simply connected four-dimensional naturally reductive space is either sym-
metric or decomposable as direct product ([KVh83]). In dimension 5, it is either sym-
metric, decomposable or locally isometric to SO(3)×SO(3)/SO(2), SO(3)×H3/SO(2)
(or any of these with SO(3) replaced by SL(2,R)), to the five-dimensional Heisenberg
group H5 or to the Berger sphere SU(3)/SU(2) (or SU(2, 1)/SU(2)), all endowed with
special families of metrics ([KVh85]).

Other standard examples of naturally reductive spaces are

• Geodesic spheres in two-point homogeneous spaces,with the exception of the
complex and quaternionic Cayley planes [Zil82], [TV84a]

• Geodesic hyperspheres, horospheres and tubes around totally geodesic non-flat
complex space forms, described and classified in detail by S. Nagai [Na95],
[Na96], [Na97]

• Simply connected ϕ-symmetric spaces [BlVh87]. They are Sasaki manifolds
with complete characteristic field for which reflections with respect to the in-
tegral curves of that field are global isometries.

• All known left-invariant Einstein metrics on compact Lie groups [AZ79]. In
fact, every simple Lie group apart from SO(3) and SU(2) carries at least one
naturally reductive Einstein metric other than the biinvariant metric. Similarly,
large families of naturally reductive Einstein metrics on compact homogeneous
spaces were constructed in [WZ85]. In contrast, non-compact naturally reduc-
tive Einstein manifolds are necessarily symmetric [GZ84].

2.3. Almost Hermitian manifolds. An almost Hermitian manifold (M2n, g, J) is
a manifold with a Riemannian metric g and a g-compatible almost complex structure
J : TM2n → TM2n. We denote by Ω(X, Y ) := g(JX, Y ) its Kähler form and by N
the Nijenhuis tensor of J , defined by

N(X, Y ) := [JX, JY ] − J [X, JY ] − J [JX, Y ] − [X, Y ]

= (∇g
XJ)JY − (∇g

Y J)JX + (∇g
JXJ)Y − (∇g

JY J)X ,
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where the second expression follows directly from the vanishing of the torsion of ∇g

and the identity

(4) (∇g
XJ)(Y ) = ∇g

X(JY ) − J(∇g
XY ) .

The reader is probably acquainted with the first canonical Hermitian connection3 (see
the nice article [Gau97] by Paul Gauduchon, which we strongly recommend for further
reading on Hermitian connections)

∇XY := ∇g
XY +

1

2
(∇g

XJ)JY .

Indeed, the condition ∇J = 0 is equivalent to the identity (4), and the antisymmetry
of the difference tensor g((∇g

XJ)JY, Z) in Y and Z can for example be seen from the
standard identity4

(5) 2 g
(
(∇g

XJ)Y, Z
)

= dΩ(X, Y, Z) − dΩ(X, JY, JZ) + g
(
N(Y, Z), JX

)
.

Sometimes, one finds the alternative formula −1/2J(∇g
XJ)Y for the difference tensor

of ∇; but this is the same, since J2 = −1 implies ∇g
XJ

2 = 0 = (∇g
XJ)J +J(∇XJ), i.e.

∇gJ ∈ u(n)⊥ ⊂ so(2n). Let us now express the difference tensor of the connection ∇
using the Nijenhuis tensor and the Kähler form. Since ∇g

XΩ(Y, Z) = g
(
(∇g

XJ)Y, Z
)
,

the differential dΩ is just

(6) dΩ(X, Y, Z) = g
(
(∇g

XJ)Y, Z
)
− g

(
(∇g

Y J)X,Z
)

+ g
(
(∇g

ZJ)X, Y
)
.

Together with the expression for N in terms of covariant derivatives of J , this yields

g
(
(∇g

XJ)JY, Z
)

= g
(
N(X, Y ), Z

)
+ dΩ(JX, JY, JZ) − g

(
(∇g

Y J)JZ,X
)

− g
(
(∇g

JZJ)Y,X
)
.

A priori, (∇g
XJ)Y has no particular symmetry properties in X and Y , hence the

last two terms cannot be simplified any further (in general, they are a mixture of
the two other Cartan types). An exceptional situation occurs if M is nearly Kähler
((∇g

XJ)X = 0), for then (∇g
XJ)Y = −(∇g

Y J)X and the last two terms cancel each
other. Furthermore, this antisymmetry property implies that the difference tensor is
totally skew-symmetric, hence we can conclude:

Lemma 2.2. On a nearly Kähler manifold (M2n, g, J), the formula

∇XY := ∇g
XY +

1

2
(∇g

XJ)JY = ∇g
XY +

1

2
[N(X, Y ) + dΩ(JX, JY, J−)]

defines a Hermitian connection with totally skew-symmetric torsion.

This connection was first defined and studied by Alfred Gray (see [Gra70, p. 304]
and [Gra76, p. 237]). It is a non-trivial result of Kirichenko that it has ∇-parallel
torsion ([Kir77], see also [AFS05] for a modern index-free proof). Furthermore, it is

3By definition, a connection ∇ is called Hermitian if it is metric and has ∇-parallel almost complex
structure J .

4For a proof, see [KN69, Prop. 4.2.]. Be aware of the different conventions in this book: Ω is
defined with J in the second argument, the Nijenhuis tensor is twice our N and derivatives of k-forms
differ by a multiple of 1/k, see [KN63, Prop. 3.11.].
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shown in [Gra76] that any 6-dimensional nearly Kähler manifold is Einstein and of
constant type, i.e. it satisfies

∥∥(∇g
XJ)(Y )

∥∥2
=

scalg

30

[
‖X‖2 · ‖Y ‖2 − g(X, Y )2 − g(X, JY )2

]
.

Together with Lemma 2.2, this identity yields by a direct calculation that any 6-

dimensional nearly Kähler manifold is also ∇-Einstein with Ric∇ = 2(scalg/15) g (see
Theorem A.1 for the relation between Ricci tensors).

Now let us look for a Hermitian connection with totally skew-symmetric torsion on
a larger class of Hermitian manifolds generalizing nearly Kähler manifolds.

Lemma 2.3. Let (M2n, g, J) be an almost Hermitian manifold with skew-symmetric
Nijenhuis tensor N(X, Y, Z) := g(N(X, Y ), Z). Then the formula

g(∇XY, Z) := g(∇g
XY, Z) +

1

2
[N(X, Y, Z) + dΩ(JX, JY, JZ)]

defines a Hermitian connection with skew-symmetric torsion.

Proof. Obviously, only ∇J = 0 requires a calculation. By (4) and the definition of
∇, we have

2∇XJ(Y ) = 2g
(
∇X(JY ) − J(∇XY ), Z

)
= 2g

(
∇X(JY ), Z

)
+ 2g

(
∇XY, JZ

)

= 2∇g
XJ(Y ) +N(X, JY, Z) − dΩ(JX, Y, JZ) +N(X, Y, JZ)

− dΩ(JX, JY, Z) .

But from the symmetry properties of the Nijenhuis tensor and the metric, one sees

N(X, Y, JZ) = g
(
N(X, Y ), JZ

)
= −g

(
JN(X, Y ), Z

)

= g
(
N(JX, Y ), Z

)
= N(JX, Y, Z)

and repeated application of the identity (6) for dΩ yields

3N(JX, Y, Z) = dΩ(X, JY, JZ) − dΩ(X, Y, Z) + dΩ(JX, JY, Z) + dΩ(JX, Y, JZ) .

Together, these two equations show that the previous expression for 2∇XJ(Y ) vanishes
by equation (5). �

Besides nearly Kähler manifolds, Hermitian manifolds (N = 0) trivially fulfill the
condition of the preceding lemma and ∇ coincides then with the Bismut connection;
however, in the non-Hermitian situation, ∇ is not in the standard family of canonical
Hermitian connections that is usually considered (see [Gau97, 2.5.4]). Proposition 2 in
this same reference gives the decomposition of the torsion of any Hermitian connection
in its (p, q)-components and gives another justification for this precise form for the
torsion. Later, we shall see that ∇ is the only possible Hermitian connection with
skew-symmetric torsion and that the class of almost Hermitian manifolds with skew-
symmetric Nijenhuis tensor is the largest possible where it is defined.

We will put major emphasis on almost Hermitian manifolds of dimension 6, although
one will find some general results formulated independently of the dimension. Two
reasons for this choice are that nearly Kähler manifolds are of interest only in dimension
6, and that 6 is also the relevant dimension in superstring theory.
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2.4. Hyper-Kähler manifolds with torsion (HKT-manifolds). We recall that
a manifold M is called hypercomplex if it is endowed with three (integrable) complex
structures I, J,K satisfying the quaternionic identities IJ = −JI = K. A metric g
compatible with these three complex structures (a so-called hyper-Hermitian metric)
is said to be hyper-Kähler with torsion or just a HKT-metric if the Kähler forms satisfy
the identity

(7) I dΩI = J dΩJ = K dΩK .

Despite the misleading name, these manifolds are not Kähler (and hence even less
hyper-Kähler). HKT-metrics were introduced by Howe and Papadopoulos as target
spaces of some two-dimensional sigma models with (4, 0) supersymmetry with Wess-
Zumino term [HP96]. Their mathematical description was given by Grantcharov and
Poon in [GP00] and further investigated by several authors since then (see for example
[Ve02], [DF02], [PS03], [FG03], [FPS04], [IM04]). From the previous example, we can
conclude immediately that

g(∇XY, Z) := g(∇g
XY, Z) +

1

2
dΩI(IX, IY, IZ)

defines a metric connection with skew-symmetric torsion such that ∇I = ∇J = ∇K =
0; one easily checks that ∇ is again the only connection fulfilling these conditions.
Equation (7) implies that we could equally well have chosen J or K in the last term.
In general, a hyper-Hermitian manifold will not carry an HKT-structure, except in
dimension 4 where this is proved in [GT98]. Examples of homogeneous HKT-metrics
can be constructed using a family of homogeneous hypercomplex structures associated
with compact semisimple Lie groups constructed by Joyce [Joy92]. Inhomogeneous
HKT-structures exist for example on S1 × S4n−3 [GP00]. The question of existence of
suitable potential functions for HKT-manifolds was first raised and discussed in the
context of super-conformal quantum mechanics by the physicists Michelson and Stro-
minger [MS00] (a maximum principle argument shows that compact HKT-manifolds do
not admit global potentials); Poon and Swann discussed potentials for some symmet-
ric HKT-manifolds [PS01], while Banos and Swann were able to show local existence
[BS04].

2.5. Almost contact metric structures. An odd-dimensional manifold M2n+1 is
said to carry an almost contact structure if it admits a (1, 1)-tensor field ϕ and a vector
field ξ (sometimes called the characteristic or Reeb vector field) with dual 1-form η
(η(ξ) = 1) such that ϕ2 = −Id + η ⊗ ξ. Geometrically, this means that M has
a preferred direction (defined by ξ) on which ϕ2 vanishes, while ϕ behaves like an
almost complex structure on any linear complement of ξ. An easy argument shows
that ϕ(ξ) = 0 [Bla02, Thm 4.1]. If there exists in addition a ϕ-compatible Riemannian
metric g on M2n+1, i.e. satisfying

g(ϕX,ϕY ) = g(X, Y ) − η(X)η(Y ) ,

then we say that (M2n+1, g, ξ, η, ϕ) carries an almost contact metric structure or that it
is an almost contact metric manifold. The condition says that ξ is a vector field of unit
length with respect to g and that g is ϕ-compatible in the sense of Hermitian geometry
on the orthogonal complement ξ⊥. Unfortunately, this relatively intuitive structural
concept splits into a myriad of subtypes and leads to complicated equations in the
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defining data (ξ, η, ϕ), making the investigation of almost contact metric structures
look rather unattractive at first sight (see [AG86], [ChG90], [ChM92], and [Fin95]
for a classification). Yet, they constitute a rich and particularly interesting class of
non-integrable geometries, as they have no integrable analogue on Berger’s list. An
excellent general source on contact manifolds with extensive references are the books
by David Blair, [Bla76] and [Bla02] (however, the classification is not treated in these).

Example 2.5. For every almost Hermitian manifold (M2n, g, J), there exists an almost
metric contact structure (g̃, ξ, η, ϕ) on the cone M2n ×R with the product metric. For
any function f ∈ C∞(M2n × R) and vector field X ∈ X(M2n), it is defined by

ϕ (X, f∂t) = (JX, 0) , ξ = (0, ∂t) , η (X, f∂t) = f .

Conversely, an almost metric contact structure (g, ξ, η, ϕ) on M2n+1 induces an almost
Hermitian structure (g̃, J) on its cone M2n+1 × R with product metric by setting for
f ∈ C∞(M2n+1 × R) and X ∈ X(M2n+1)

J(X, f∂t) = (ϕX − fξ, η(X)∂t) .

In fact, one shows that every smooth orientable hypersurface M2n−1 in an almost
Hermitian manifold (M2n, g, J) carries a canonical almost contact metric structure
[Bla02, 4.5.2]. In this way, one easily constructs almost contact metric structures on
compact manifolds, for example on all odd dimensional spheres.

The fundamental form F of an almost contact metric structure is defined by F (X, Y )
= g

(
X,ϕ(Y )

)
, its Nijenhuis tensor is given by a similar, but slightly more complicated

formula as in the almost Hermitian case and can also be written in terms of covariant
derivatives of ϕ,

N(X, Y ) := [ϕ(X), ϕ(Y )] − ϕ[X,ϕ(Y )] − ϕ[ϕ(X), Y ] + ϕ2[X, Y ] + dη(X, Y )ξ

= (∇g
Xϕ)ϕ(Y ) − (∇g

Yϕ)ϕ(X) + (∇g
ϕ(X)ϕ)Y − (∇g

ϕ(Y )ϕ)X

+ η(X)∇g
Y ξ − η(Y )∇g

Xξ .

Let us emphasize some particularly interesting cases. A manifold with an almost
contact metric structure (M2n+1, g, ξ, η, ϕ) is called

(1) a normal almost contact metric manifold if N = 0,
(2) a contact metric manifold if 2F = dη.

Furthermore, a contact metric structure is said to be a K-contact metric structure
if ξ is in addition a Killing vector field, and a Sasaki structure if it is normal (it is
then automatically K-contact, see [Bla02, Cor. 6.3.]). Einstein-Sasaki manifolds are
just Sasaki manifolds whose ϕ-compatible Riemannian metric g is Einstein. Without
doubt, the forthcoming monograph by Ch. Boyer and Kr. Galicki on Sasakian geometry
[BG07] is set to become the standard reference for this area of contact geometry in the
future; in the meantime, the reader will have to be contented with the shorter reviews
[BG99] and [BG01].

Much less is known about metric connections on almost contact metric manifolds
than on almost Hermitian manifolds. In fact, only the so-called generalized Tanaka
connection (introduced by S. Tanno) has been investigated. It is a metric connection
defined on the class of contact metric manifolds by the formula

∇∗
XY := ∇g

XY + η(X)ϕ(Y ) − η(Y )∇g
Xξ + (∇Xη)(Y )ξ
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satisfying the additional conditions ∇∗η = 0 (which is of course equivalent to ∇∗ξ =
0), see [Ta89] and [Bla02, 10.4.]. One easily checks that its torsion is not skew-
symmetric, not even in the Sasaki case. In fact, from the point of view of non-
integrable structures, it seems appropriate to require in addition ∇∗ϕ = 0 (compare
with the almost Hermitian situation).

Following a similar but more complicated line of arguments as in the almost Her-
mitian case, Th. Friedrich and S. Ivanov showed:

Theorem 2.2 ([FI02, Thm 8.2.]). Let (M2n+1, g, ξ, η, ϕ) be an almost contact metric
manifold. It admits a metric connection ∇ with totally skew-symmetric torsion T and
∇η = ∇ϕ = 0 if and only if the Nijenhuis tensor N is skew-symmetric and if ξ is
a Killing vector field. Furthermore, ∇ = ∇g + (1/2)T is uniquely determined by

T = η ∧ dη + dϕF +N − η ∧ (ξ N) ,

where dϕF stands for the ϕ-twisted derivative,

dϕF (X, Y, Z) := −dF
(
ϕ(X), ϕ(Y ), ϕ(Z)

)
.

For a Sasaki structure, N = 0 and 2F = dη implies dϕF = 0, hence T is given
by the much simpler formula T = η ∧ dη. This connection had been noticed before,
for example in [KW87]. In fact, one sees that ∇T = 0 holds, hence Sasaki manifolds
endowed with this connection are examples of non-integrable geometries with parallel
torsion. A. Fino studied naturally reductive almost contact metric structures such
that ϕ is parallel with respect to the canonical connection in [Fin94]. In general,
potentials are hardly studied in contact geometry (compare with the situation for
HKT-manifolds), but a suitable analogue of the Kähler potential was constructed on
Sasaki manifolds by M. Godlinski, W. Kopczynski and P. Nurowski [GKN00].

2.6. 3-Sasaki manifolds. Similarly to HKT-manifolds and quaternionic-Kähler man-
ifolds, it makes sense to investigate configurations with three ‘compatible’ almost met-
ric contact structures (ϕi, ξi, ηi), i = 1, 2, 3 on (M2n+1, g) for some fixed metric g. The
compatibility condition may be formulated as

ϕk = ϕiϕj − ηj ⊗ ξi = −ϕjϕi + ηi ⊗ ηj , ξk = ϕiξj = −ϕjξi

for any even permutation (i, j, k) of (1, 2, 3), and such a structure is called an almost
contact metric 3-structure. By defining on the cone M2n+1 × R three almost complex
structures J1, J2, J3 as outlined in Example 2.5, one sees that the cone carries an
almost quaternionic structure and hence has dimension divisible by 4. Consequently,
almost contact metric 3-structures exist only in dimensions 4n + 3, n ∈ N, and it is
no surprise that the structure group of its tangent bundle turns out to be contained
in Sp(n) × {1}. What is surprising is the recent result by T. Kashiwada that if all
three structures (ϕi, ξi, ηi) are contact metric structures, they automatically have to
be Sasakian [Ka01]. A manifold with such a structure will be called a 3-Sasaki(an)
manifold. An earlier result by T. Kashiwada claims that any 3-Sasaki manifold is
Einstein [Ka71]. The canonical example of a 3-Sasaki manifold is the sphere S4n+3

realized as a hypersurface in Hn+1: each of the three almost complex structures forming
the quaternionic structure of H

n+1 applied to the exterior normal vector field of the
sphere yields a vector field ξi (i = 1, 2, 3) on S4n+3, leading thus to three orthonormal
vector fields on S4n+3. Th. Friedrich and I. Kath showed that every compact simply
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connected 7-dimensional spin manifold with regular 3-Sasaki structure is isometric to
S7 or the Aloff-Wallach space N(1, 1) = SU(3)/S1 (see [FK90] or [BFGK91]). By now,
it is possible to list all homogeneous 3-Sasaki manifolds:

Theorem 2.3 ([BGM94]). A homogeneous 3-Sasaki manifold is isometric to one of
the following:

(1) Four families: Sp(n+1)
Sp(n)

∼= S4n+3, S4n+3/Z2
∼= RP4n+3, SU(m)

S
(
U(m−2)×U(1)

) for m ≥ 3,

SO(k)
SO(k−4)×Sp(1)

for k ≥ 7.

(2) Five exceptional spaces: G2/Sp(1), F4/Sp(3), E6/SU(10), E7/Spin(12), E8/E7.

All these spaces fibre over a quaternionic Kähler manifold; the fibre is Sp(1) for S4n+3

and SO(3) in all other cases.

Many non-homogeneous examples have also been constructed. The analogy between
3-Sasaki manifolds and HKT-manifolds breaks down when one starts looking at con-
nections, however. For an arbitrary 3-Sasaki structure with 1-forms ηi (i = 1, 2, 3),
each of the three underlying Sasaki structures yields one possible choice of a metric
connection ∇i with ∇iηi = 0 and torsion T i = ηi ∧ dηi as detailed in Theorem 2.2.
However, these three connections do not coincide; hence, the 3-Sasaki structure itself
is not preserved by any metric connection with skew-symmetric torsion. A detailed
discussion of these three connections and their spinorial properties in dimension 7 can
be found in [AF04a]. Nevertheless, 3-Sasaki manifolds have recently appeared and
been investigated in the context of the AdS/CFT-correspondence by Martelli, Sparks
and Yau [MSY06].

2.7. Metric connections on surfaces. Classical topics of surface theory like the
Mercator projection can be understood in a different light with the help of metric
connections with torsion.

In [Car23, § 67, p. 408–409], Cartan describes the two-dimensional sphere with its flat
metric connection, and observes (without proof) that “on this manifold, the straight
lines are the loxodromes, which intersect the meridians at a constant angle. The only
straight lines realizing shortest paths are those normal to the torsion at every point:
these are the meridians5”.

This suggests that there exists a class of metric connections on surfaces of revolution
whose geodesics admit a generalization of Clairaut’s theorem, yielding loxodromes in
the case of the flat connection. Furthermore, it is well known that the Mercator
projection maps loxodromes to straight lines in the plane (i. e., Levi-Civita geodesics
of the Euclidian metric), and that this mapping is conformal. Theorem 2.4 provides
the right setting to understand both effects:

Theorem 2.4 ([AT04]). Let σ be a function on the Riemannian manifold (M, g), ∇
the metric connection with vectorial torsion defined by V = −grad(σ), and consider
the conformally equivalent metric g̃ = e2σg. Then:

5
≪Sur cette variété, les lignes droites sont les loxodromies, qui font un angle constant avec les

méridiennes. Les seules lignes droites qui réalisent les plus courts chemins sont celles qui sont normales
en chaque point à la torsion : ce sont les méridiennes.≫
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Figure 1. Surface of revolution generated by a curve α.

Figure 2. Loxodromes on the sphere.

(1) Any ∇-geodesic γ(t) is, up to a reparametrization τ , a ∇g̃-geodesic, and the
function τ is the unique solution of the differential equation τ̈ + τ̇ σ̇ = 0, where
we set σ(t) := σ ◦ γ ◦ τ(t);

(2) If X is a Killing field for the metric g̃, the function eσg(γ̇, X) is a constant of
motion for the ∇-geodesic γ(t).

(3) The connection forms of ∇ and ∇g̃ coincide; in particular, they have the same
curvature.

We discuss Cartan’s example in the light of Theorem 2.4. Let α =
(
r(s), h(s)

)

be a curve parametrized by arclength, and M(s, ϕ) =
(
r(s) cosϕ, r(s) sinϕ, h(s)

)
the

surface of revolution generated by it. The first fundamental form is g = diag
(
1, r2(s)

)
,

so we can choose the orthonormal frame e1 = ∂s, e2 = (1/r)∂ϕ with dual 1-forms
σ1 = ds, σ2 = r dϕ. We define a connection ∇ by calling two tangential vectors v1 and
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v2 parallel if the angles ν1 and ν2 with the meridian through their foot point coincide
(see Figure 1). Hence ∇e1 = ∇e2 = 0, and the connection ∇ is flat. But for a flat
connection, the torsion T is can be derived from dσi(ej , ek) = σi

(
T (ej, ek)

)
. Since

dσ1 = 0 and dσ2 = (r′/r)σ1 ∧ σ2, one obtains

T (e1, e2) =
r′(s)

r(s)
e2 and V =

r′(s)

r(s)
e1 = −grad

(
− ln r(s)

)
.

Thus, the metric connection ∇ with vectorial torsion T is determined by the gradient
of the function σ := − ln r(s). By Theorem 2.4, we conclude that its geodesics are the
Levi-Civita geodesics of the conformally equivalent metric g̃ = e2σg = diag(1/r2, 1).
This coincides with the standard Euclidian metric by changing variables x = ϕ, y =∫
ds/r(s). For example, the sphere is obtained for r(s) = sin s, h(s) = cos s, hence

y =
∫
ds/ sin s = ln tan(s/2) (|s| < π/2), and this is precisely the coordinate change

of the Mercator projection. Furthermore, X = ∂ϕ is a Killing vector field for g̃, hence
the second part of Theorem 2.4 yields for a ∇-geodesic γ the invariant of motion

const = eσg(γ̇, X) =
1

r(s)
g(γ̇, ∂ϕ) = g(γ̇, e2) ,

i.e. the cosine of the angle between γ and a parallel circle. This shows that γ is a
loxodrome on M , as claimed (see Figure 2 for loxodromes on the sphere). In the same
way, one obtains a “generalized Clairaut theorem” for any gradient vector field on
a surface of revolution. For the pseudosphere, one chooses

r(s) = e−s , h(s) = arctanh
√

1 − e−2s −
√

1 − e−2s ,

hence V = −e1 and ∇V = 0, in accordance with the results by [TV83] cited before.
Notice that X is also a Killing vector field for the metric g and does commute with V ;
nevertheless, g(γ̇, X) is not an invariant of motion.

The catenoid is another interesting example: since it is a minimal surface, the Gauss
map to the sphere is conformal, hence it maps loxodromes to loxodromes. Thus,
Beltrami’s theorem (“If a portion of a surface S can be mapped LC-geodesically onto
a portion of a surface S∗ of constant Gaussian curvature, the Gaussian curvature of
S must also be constant”, see for example [Kre91, §95]) does not hold for metric
connections with vectorial torsion — the sphere is a surface of constant Gaussian
curvature, but the catenoid is not.

Remark 2.1. The unique flat metric connection ∇ does not have to be of vectorial
type. For example, on the compact Lie group SO(3) the torsion is a 3-form: Fix
an orthonormal basis e1, e2, e3 with commutator relations [e1, e2] = e3, [e2, e3] = e1
and [e1, e3] = −e2. Cartan’s structural equations then read dσ1 = σ2 ∧ σ3, dσ2 =
−σ1 ∧ σ3, dσ3 = σ1 ∧ σ2, from which we deduce T = 2A = σ1 ∧ σ2 ∧ σ3. In particular,
∇ has the same geodesics as ∇g.

2.8. Holonomy theory. Let (Mn, g) be a (connected) Riemannian manifold equipped
with any connection ∇. For a curve γ(s) from p to q, parallel transport along γ is the
linear mapping Pγ : TpM → TqM such that the vector field V defined by

V(q) := PγV(p) along γ
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Figure 3. Schematic concept of holonomy.

is parallel along γ, ∇V(s)/ds = ∇γ̇V = 0. Pγ is always an invertible endomorphism,
hence, for a closed loop γ through p ∈M , it can be viewed as an element of GL(n,R)
(after choice of some basis). Consider the loop space C(p) of all closed, piecewise
smooth curves through p, and therein the subset C0(p) of curves that are homotopic
to the identity. The set of parallel translations along loops in C(p) or C0(p) forms
a group acting on Rn ∼= TpM , called the holonomy group Hol(p;∇) of ∇ or the
restricted holonomy group Hol0(p;∇) of ∇ at the point p. Let us now change the
point of view from p to q, γ a path joining them; then Hol(q;∇) = PγHol(p;∇)P−1

γ and
similarly for Hol0(p;∇). Hence, all holonomy groups are isomorphic, so we drop the
base point from now on. Customary notation for them is Hol(M ;∇) and Hol0(M ;∇).
Their action on Rn ∼= TpM shall be called the (restricted) holonomy representation.

In general, it is only known that ([KN63, Thm IV.4.2])

(1) Hol(M ;∇) is a Lie subgroup of GL(n,R),
(2) Hol0(p) is the connected component of the identity of Hol(M ;∇).

If one assumes in addition — as we will do through this text — that ∇ be metric,
parallel transport becomes an isometry: for any two parallel vector fields V(s) and
W(s), being metric implies

d

ds
g
(
V(s),W(s)

)
= g

(∇V(s)

ds
,W(s)

)
+

(
V(s),

∇W(s)

ds

)
= 0 .

Hence, Hol(M ;∇) ⊂ O(n) and Hol0(M ;∇) ⊂ SO(n). For convenience, we shall
henceforth speak of the Riemannian (restricted) holonomy group if ∇ is the Levi-
Civita connection, to distinguish it from holonomy groups in our more general setting.

Example 2.6. This is a good moment to discuss Cartan’s first example of a space
with torsion (see [Car22, p. 595]). Consider R3 with its usual Euclidean metric and
the connection

∇XY = ∇g
XY −X × Y ,

corresponding, of course, to the choice T = −2 · e1 ∧e2 ∧e3. Cartan observed correctly
that this connection has same geodesics than ∇g, but induces a different parallel
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transport6. Indeed, consider the z-axis γ(t) = (0, 0, t), a geodesic, and the vector field
V which, in every point γ(t), consists of the vector (cos t, sin t, 0). Then one checks
immediately that ∇g

γ̇V = γ̇×V , that is, the vector V is parallel transported according
to a helicoidal movement. If we now transport the vector along the edges of a closed
triangle, it will be rotated around three linearly independent axes, hence the holonomy
algebra is hol(∇) = so(3).

Example 2.7 (Holonomy of naturally reductive spaces). Consider a naturally reduc-
tive space Mn = G/H as in Example 2.2 with its canonical connection ∇1, whose
torsion is T 1(X, Y ) := −[X, Y ]m. Recall that ad : h → so(m) denotes its isotropy
representation. The holonomy algebra hol(∇1) is the Lie subalgebra of ad(h) ⊂ so(m)
generated by the images under ad of all projections of commutators [X, Y ]h on h for
X, Y ∈ m,

hol(∇1) = Lie
(
ad([X, Y ]h)

)
⊂ ad(h) ⊂ so(m) .

For all other connections ∇t in this family, the general expression for the holonomy is
considerably more complicated [KN69, Thm. X.4.1].

Remark 2.2 (Holonomy & contact properties). As we observed earlier, all contact
structures are non-integrable and therefore not covered by Berger’s holonomy theo-
rem. Via the cone construction, it is nevertheless possible to characterize them by
a Riemannian holonomy property (see [BGM94], [BG99]). Consider a Riemannian
manifold (Mn, g) and its cone over the positive real numbers N := R+ ×Mn with the
warped product metric gN := dr2 + r2g. Then, (Mn, g) is

(1) Sasakian if and only if Hol(N ;∇g) ⊂ U(n+1
2

), that is, its positive cone is Kähler,

(2) Einstein-Sasakian if and only if Hol(N ;∇g) ⊂ SU(n+1
2

), that is, its positive
cone is a (non-compact) Calabi-Yau manifold,

(3) 3-Sasakian if and only if Hol(N ;∇g) ⊂ Sp(n+1
4

), that is, its positive cone is
hyper-Kähler.

A holonomy group can be determined by computing curvature.

Theorem 2.5 (Ambrose-Singer, 1953 [AS53]). For any connection ∇ on the tangent
bundle of a Riemannian manifold (M, g), the Lie algebra hol(p) of Hol(p) in p ∈M is
exactly the subalgebra of so(TpM) generated by the elements

P−1
γ ◦ R(PγV, PγW ) ◦ Pγ

where V,W ∈ TpM and γ runs through all piecewise smooth curves starting from p.

Yet, the practical use of this result is severely restricted by the fact that the prop-
erties of the curvature transformation of a metric connection with torsion are more
complicated than the Riemannian ones. For example, R(U, V ) is still skew-adjoint
with respect to the metric g,

g
(
R(U, V )W1,W2

)
= −g

(
R(U, V )W2,W1

)
,

6“Deux trièdres [. . . ] de E seront parallèles lorsque les trièdres correspondants de E [l’espace
euclidien classique] pourront se déduire l’un de l’autre par un déplacement hélicöıdal de pas donné,
de sens donné[. . . ]. L’espace E ainsi défini admet un groupe de transformations à 6 paramètres : ce
serait notre espace ordinaire vu par des observateurs dont toutes les perceptions seraient tordues.”
loc.cit.
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but there is in general no relation between g
(
R(U1, U2)W1,W2

)
and g

(
R(W1,W2)U1, U2

)

(but see Remark 2.3 below); in consequence, the Bianchi identities are less tractable,
the Ricci tensor is not necessarily symmetric etc. As an example of these complica-
tions, we cite (see [IP01] for the case of skew-symmetric torsion):

Theorem 2.6 (First Bianchi identity).
(1) A metric connection ∇ with vectorial torsion V ∈ TMn satisfies

X,Y,Z

S R(X, Y )Z =
X,Y,Z

S dV (X, Y )Z .

(2) A metric connection ∇ with skew-symmetric torsion T ∈ Λ3(Mn) satisfies

X,Y,Z

S R(X, Y, Z, V ) = dT (X, Y, Z, V ) − σT (X, Y, Z, V ) + (∇V T )(X, Y, Z) ,

where σT is a 4-form that is quadratic in T defined by 2 σT =
n∑

i=1

(ei T )∧(ei T )

for any orthonormal frame e1, . . . , en.

Remark 2.3. Consequently, if the torsion T ∈ Λ3(Mn) of a metric connection with

skew-symmetric torsion happens to be ∇-parallel,
X,Y,Z

S R(X, Y, Z, V ) is a 4-form and
thus antisymmetric. Since the cyclic sum over all four arguments of any 4-form van-
ishes, we obtain

X,Y,Z,V

S
[ X,Y,Z

S R(X, Y, Z, V )
]

= 2R(Z,X, Y, V ) − 2R(Y, V, Z,X) = 0 ,

as for the Levi-Civita connection. Thus the ∇-curvature tensor is invariant under
swaps of the first and second pairs of arguments.

Extra care has to be taken when asking which properties of the Riemannian holo-
nomy group are preserved:

Remark 2.4 (The holonomy representation may not be irreducible). In fact, there
are many instances of irreducible manifolds with metric connections whose holonomy
representation is not irreducible — for example, the 7-dimensional Aloff-Wallach space
N(1, 1) = SU(3)/S1 or the 5-dimensional Stiefel manifolds V4,2 = SO(4)/SO(2) (see
[BFGK91], [Agr03] and [AF04a]). This sheds some light on why parallel objects are —
sometimes — easier to find for such connections. This also implies that no analogue
of de Rham’s splitting theorem can hold (“A complete simply connected Riemannian
manifold with reducible holonomy representation is a Riemannian product”).

Remark 2.5 (The holonomy group may not be closed). For the Riemannian re-
stricted holonomy group, the argument goes as follows: By de Rham’s Theorem, one
can assume that the holonomy group acts irreducibly on each tangent space; but any
connected subgroup G of O(n) with this property has to be closed and hence compact.
A counter-example for a torsion-free non-metric connection due to Ozeki can be found
in [KN63, p. 290]; similar (quite pathological) examples can be given for metric con-
nections with torsion, although they seem to be not too interesting. It suffices to say
that there is no theoretical argument ensuring the closure of the restricted holonomy
group of a metric connection with torsion.
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We are particularly interested in the vector bundle of (r, s)-tensors T r,sM over Mn,
that of differential k-forms ΛkM and its spinor bundle ΣM (assuming that M is spin,
of course). At some point p ∈ M , the fibers are just (TpM)r ⊗ (T ∗

pM)s, ΛkT ∗
pM or ∆n,

the n-dimensional spin representation (which has dimension 2[n/2]); an element of the
fibre at some point will be called an algebraic tensor, form, spinor or just algebraic
vector for short. Then, on any of these bundles,

(1) the holonomy representation induces a representation of Hol(M ;∇) on each
fibre (the “lifted holonomy representation”);

(2) the metric connection ∇ induces a connection (again denoted by ∇) on these
vector bundles (the “lifted connection”) compatible with the induced metric
(for tensors) or the induced Hermitian scalar product (for spinors), it is thus
again metric;

(3) in particular, there is a notion of “lifted parallel transport” consisting of isome-
tries, and its abstract holonomy representation on the fibres coincides with the
lifted holonomy representation.

We now formulate the general principle underlying our study.

Theorem 2.7 (General Holonomy Principle). Let M be a differentiable manifold and
E a (real or complex) vector bundle over M endowed with (any!) connection ∇. The
following three properties are equivalent:

(1) E has a global section α invariant under parallel transport, i.e. α(q) = Pγ

(
α(p)

)

for any path γ from p to q;
(2) E has a parallel global section α, i.e. ∇α = 0;
(3) at some point p ∈M , there exists an algebraic vector α0 ∈ Ep which is invariant

under the holonomy representation on the fibre.

Proof. The proof is almost philosophical. To begin, the first and last conditions are
equivalent: if α is a section invariant under parallel transport Pγ : Ep → Eq, then,
for a closed curve γ through p, α(p) = Pγ

(
α(p)

)
and hence α is invariant under all

holonomy transformations in p.
Conversely, let α0 ∈ Ep be a holonomy invariant algebraic vector. We then define

α(q) := Pγ(α0) for q ∈ M and any path γ from p to q. This definition is in fact path
independent because, for any other path γ′ from q to p, their concatenation is a closed
loop, and α0 is, by assumption, invariant under parallel transport along closed curves.

Finally, let X be a vector field, γ one of its integral curves going from p to q. Then
obviously ∇γ̇α = 0 is equivalent to α(q) = Pγ

(
α(p)

)
, showing the equivalence of (1)

and (2). �

The following two consequences are immediate, but of the utmost importance.

Corollary 2.2.
(1) The number of parallel global sections of E coincides with the number of trivial

representations occuring in the holonomy representation on the fibres.
(2) The holonomy group Hol(∇) is a subgroup of the isotropy group Gα := {g ∈

O(n) : g∗α = α} of any parallel global section α of E.

This is a powerful tool for (dis-)proving existence of parallel objects. For example,
the following is a well-known result from linear algebra:
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Figure 4. An orthonormal frame that is parallel transported along the
drawn curve reverses its orientation.

Lemma 2.4. The determinant is an SO(n)-invariant element in Λn(Rn) which is not
O(n)-invariant.

Corollary 2.3. A Riemannian manifold (Mn, g) is orientable if and only if the holo-
nomy Hol(M ;∇) of any metric connection ∇ is a subgroup of SO(n), and the volume
form is then ∇-parallel.

Proof. One knows that (Mn, g) is orientable if and only if it admits a nowhere van-
ishing differential form dMn of degree n. Then pick an orthonormal frame e1, . . . , en

in p with dual 1-forms σ1, . . . , σn. Set dMn
p := σ1 ∧ . . . ∧ σn and extend it to Mn by

parallel transport. Now everything follows from the General Holonomy Principle. �

Remark 2.6. The property ∇dMn = 0 for dMn = σ1 ∧ . . . ∧ σn can also be seen
directly from the formula

∇X(dMn)(e1, . . . , en) = X(1) −
n∑

i=1

dMn(e1, . . . ,∇Xei, . . . , en) ,

since a metric connection satisfies g(∇ei, ej) + g(ei,∇ej) = 0, so in particular ∇ei has
no ei-component and all summands on the right hand side vanish.

Remark 2.7. In fact, an arbitrary connection ∇ admits a ∇-parallel n-form (possibly
with zeroes) if and only if

n∑

i=1

g(R(U, V )ei, ei) = 0

for any orthonormal frame e1, . . . , en. This property is weaker than the skew-adjointness
of R(U, V ) that holds for all metric connections; the holonomy is a subgroup of
SL(n,R). In 1924, J. A. Schouten called such connections “inhaltstreue Übertragun-
gen” (volume-preserving connections), see [Sch24, p. 89]. This terminology seems not
to have been used anymore afterwards7.

7A D’Atri space is a Riemannian manifold whose local geodesic symmetries are volume-preserving.
Although every naturally reductive space is a D’Atri space [Atr75], the two notions are only loosely
related.
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The existence of parallel objects imposes restrictions on the curvature of the con-
nection. For example, if a connection ∇ admits a parallel spinor ψ, we obtain by
contracting the identity

0 = ∇∇ψ =
n∑

i,j=1

R∇(ei, ej)ei · ej · ψ

the following integrability condition (the Riemannian case has first been proved by
Bonan in [Bon66]):

Proposition 2.2. Let (Mn, g) be a Riemannian spin manifold, ∇ a metric connection
with torsion T ∈ Λ3(Mn). A ∇-parallel spinor ψ satisfies

[1

2
X dT + ∇XT

]
· ψ = Ric∇(X) · ψ

In particular, the existence of a ∇g-parallel spinor (T = 0) implies Ricci-flatness.

Before considering general metric connections with torsion on manifolds, it is worth-
wile to investigate the flat case Rn endowed with its standard Euclidean metric and
metric connections with constant torsion, for it exhibits already some characteristic
features of the more general situation. Unless otherwise stated, these results can be
found in [AF04a].

The exterior algebra Λ(Rn) and the Clifford algebra Cl(Rn) are — as vector spaces
— equivalent SO(n)-representations, and they both act on the complex vector space
∆n of n-dimensional spinors. The Clifford algebra is an associative algebra with an
underlying Lie algebra structure,

[α, β] = α · β − β · α , α, β ∈ Cl(Rn) .

We denote the corresponding Lie algebra by cl(Rn). The Lie algebra so(n) of the
special orthogonal group is a subalgebra of cl(Rn),

so(n) = Lin
{
X · Y : X , Y ∈ R

n and 〈X, Y 〉 = 0
}
⊂ cl(Rn) .

Consider an algebraic k-form T ∈ Λk(Rn) and denote by GT the group of all orthogonal
transformations of Rn preserving the form T , by gT its Lie algebra. As described in
Example 2.3, we consider the spin connection acting on spinor fields ψ : Rn → ∆n by
the formula

∇Xψ := ∇g
Xψ +

1

2
(X T) · ψ .

For a 3-form T ∈ Λ3(Rn), the spinorial covariant derivative ∇ is induced by the linear
metric connection with torsion tensor T . For a general exterior form T , we introduce
a new Lie algebra g∗

T that is a subalgebra of cl(Rn).

Definition 2.3. Let T be an exterior form on Rn. The Lie algebra g∗
T is the subalgebra

of cl(Rn) generated by all elements X T , where X ∈ Rn is a vector.

The Lie algebra g∗
T is invariant under the action of the isotropy group GT . The derived

algebra
[
g∗

T , g
∗
T

]
is the Lie algebra generated by all curvature transformations of the

spinorial connection ∇. It is the Lie algebra of the infinitesimal holonomy group of
the spinorial covariant derivative ∇T (see [KN63, Ch. II.10]):
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Definition 2.4. Let T be an exterior form on R
n. The Lie algebra h∗

T :=
[
g∗

T , g
∗
T

]
⊂

cl(Rn) is called the infinitesimal holonomy algebra of the exterior form T . It is invariant
under the action of the isotropy group GT .

For a 3-form T , the Lie algebras g∗
T , h

∗
T ⊂ so(n) are subalgebras of the orthogonal

Lie algebra, reflecting the fact that the corresponding spinor derivative is induced
by a linear metric connection. In fact, this result still holds for k-forms satisfying
k +

(
k−1
2

)
≡ 0 mod 2. Furthermore, the General Holonomy Principle (Theorem 2.7)

implies:

Proposition 2.3. There exists a non-trivial ∇-parallel spinor field ψ : Rn → ∆n if
and only if there exists a constant spinor ψ0 ∈ ∆n such that h∗

T ·ψ0 = 0. In particular,
any ∇-parallel spinor field is constant for a perfect Lie algebra g∗

T (g∗
T = h∗

T ).

Example 2.8. Any 2-form T ∈ Λ2(Rn) of rank 2k is equivalent to A1 · e12 + · · ·+Ak ·
e2k−1,2k. The Lie algebra g∗

T is generated by the elements e1, e2, · · · , e2k−1, e2k. It is
isomorphic to the Lie algebra spin(2k + 1). In particular, if n = 8 then ∆8 = R16 is
a real, 16-dimensional and the spinorial holonomy algebra of a generic 2-form in eight
variables is the unique 16-dimensional irreducible representation of spin(9).

Example 2.9. Consider the 4-forms T1 := e1234 ∈ Λ4(Rn) for n ≥ 4 and T2 =
e1234 + e3456 ∈ Λ4(Rm) for m ≥ 6. A straightforward computation yields that g∗

T1

and g∗
T2

are isomorphic to the pseudo-orthogonal Lie algebra so(4, 1) embedded in
a non-standard way and the Euclidean Lie algebra e(6), respectively.

Example 2.10. Consider the volume form T = e123456 in Rn for n ≥ 6. The subalgebra
g∗

T of Cl(Rn) is isomorphic to the compact Lie algebra spin(7).

If T is a 3-form, more can be said. For example, g∗
T is always semisimple and the

following proposition shows that it cannot be contained in the unitary Lie algebra
u(k) ⊂ so(2k). This latter result is in sharp contrast to the situation on arbitrary
manifolds, where such 3-forms occur for almost Hermitian structures.

Proposition 2.4. Let T be a 3-form in R2k and suppose that there exists a 2-form Ω
such that Ωk 6= 0 and [g∗

T ,Ω] = 0. Then T is zero, T = 0.

Moreover, only constant spinors are parallel:

Theorem 2.8. Let T ∈ Λ3(Rn) be a 3-form. If there exists a non trivial spinor ψ ∈ ∆n

such that g∗
T ·ψ = 0, then T = 0. In particular, ∇-parallel spinor fields are ∇g-parallel

and thus constant.

Proof. The proof is remarkable in as much as it is of purely algebraic nature. Indeed,
it is a consequence of the following formulas concerning the action of exterior forms
of different degrees on spinors (see Appendix A for the first, the other two are simple
calculations in the Clifford algebra):

2σT = −T 2 + ‖T‖2 , 2σT ·ψ =

n∑

k=1

(ek T ) · (ek T ) + 3‖T‖2 , 3T =

n∑

k=1

ei · (ei T ) .

For they imply that a spinor ψ with (ei T ) ·ψ = 0 for all ei has to satisfy ‖T‖2ψ = 0,
so T must vanish. �
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This result also applies to flat tori Rn/Zn, as the torsion form T is assumed to be
constant. Later, we shall prove a suitable generalization on compact spin manifolds
with scalg ≤ 0, see Theorem 5.4.

3. Geometric stabilizers

By the General Holonomy Principle, geometric representations with invariant ob-
jects are a natural source for parallel objects. This leads to the systematic investigation
of geometric stabilizers, which we shall now discuss.

3.1. U(n) and SU(n) in dimension 2n. A Hermitian metric h(V,W ) = g(V,W ) −
ig(JV,W ) is invariant under A ∈ End(R2n) if and only if A preserves the Riemannian
metric g and the Kähler form Ω(V,W ) := g(JV,W ). Thus U(n) is embedded in
SO(2n) as

U(n) = {A ∈ SO(2n) | A∗Ω = Ω} .
To fix ideas, choose a skew-symmetric endomorphism J of R2n with square −1 in the
normal form

J = diag
(
j, j, j, . . .

)
with j =

[
0 −1
1 0

]
.

Then a complex (n×n)-matrix A = (aij) ∈ U(n) is realized as a real (2n×2n)-matrix

with (2 × 2)-blocks

[
Re aij −Im aij

Im aij Re aij

]
. An adapted orthonormal frame is one such

that J has the given normal form; U(n) consists then exactly of those endomorphisms
transforming adapted orthonormal frames into adapted orthonormal frames. Allowing
now complex coefficients, one obtains an (n, 0)-form Ψ by declaring

Ψ := (e1 + ie2) ∧ . . . ∧ (en−1 + ie2n) =: Ψ+ + iΨ−

in the adapted frame above. An element A ∈ U(n) acts on Ψ by multiplication with
detA.

Lemma 3.1. Under the restricted action of U(n), Λ2k(R2n) contains the trivial rep-
resentation once; it is generated by Ω,Ω2, . . . ,Ωn.

The action of U(n) ⊂ O(2n) cannot be lifted to an action of U(n) inside Spin(2n)
— reflecting the fact that not every Kähler manifold is spin. For the following argu-
ments though, it is enough to consider u(n) inside spin(2n). It then appears that u(n)
has no invariant spinors, basically because u(n) has a one-dimensional center, gener-
ated precisely by Ω after identifying Λ2(R2n) ∼= so(2n). Hence one-dimensional u(n)-
representations are usually not trivial. More precisely, the complex 2n-dimensional
spin representation ∆2n splits into two irreducible components ∆±

2n described in terms
of eigenspaces of Ω ∈ u(n). Set (see [Fri00] and [Kir86] for details on this decomposi-
tion of spinors)

Sr = {ψ ∈ ∆2n : Ωψ = i(n− 2r)ψ} , dimSr =

(
n

r

)
, 0 ≤ r ≤ n .

Sr is isomorphic to the space of (0, r)-forms with values in S0 (which explains the
dimension),

Sr
∼= Λ0,r ⊗ S0 .
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Since the spin representations decompose as

∆+
2n

∣∣
u(n)

∼= Sn ⊕ Sn−2 ⊕ . . . , ∆−
2n

∣∣
u(n)

∼= Sn−1 ⊕ Sn−3 ⊕ . . .

we conclude immediately that they cannot contain a trivial u(n)-representation for n
odd. For n = 2k even, Ω has eigenvalue zero on Sk, but this space is an irreducible
representation of dimension

(
2k
k

)
6= 1, hence not trivial either. The representations S0

and Sn are one-dimensional, but again not trivial under u(n). If one restricts further
to su(n), they are indeed:

Lemma 3.2. The spin representations ∆±
2n contain no u(n)-invariant spinor. If one

restricts further to su(n), there are exactly two invariant spinors (both in ∆+
2n for n

even, one in each ∆±
2n for n odd).

All other spinors in ∆±
2n have geometric stabilizer groups that do not act irreducibly

on the tangent representation R2n. They can be described explicitly in a similar way;
By de Rham’s splitting theorem, they do not appear in the Riemannian setting.

To finish, we observe that the almost complex structure J (and hence Ω) can be
recovered from the invariant spinor ψ+ ∈ ∆+

2n by J(X)ψ+ := iX · ψ+ (X ∈ TM), a
formula well known from the investigation of Killing spinors on 6-dimensional nearly
Kähler manifolds (see [Gru90] and [BFGK91, Section 5.2]).

Remark 3.1. The discussion of geometric stabilizers would not be complete without
the explicit realization of these subalgebras inside so(n) or spin(n). We illustrate this
by describing u(n) inside so(2n). Writing elements ω ∈ so(2n) as 2-forms with respect
to some orthonormal and J-adapted basis, ω =

∑
ωijei ∧ ej for 1 ≤ i < j ≤ 2n, the

defining equations for u(n) inside so(2n) translate into the conditions

ω2i−1,2j−1 = ω2i,2j and ω2i−1,2j = −ω2i,2j−1 for 1 ≤ i < j ≤ n .

The additional equation picking out su(n) ⊂ u(n) is

ω12 + ω34 + . . .+ ω2n−1,2n = 0 .

Of course, the equations get more involved for complicated embeddings of higher
codimension (see for example [AF04a] for the 36-dimensional spin(9) inside the 120-
dimensional so(16)), but they can easily be mastered with the help of standard linear
algebra computer packages.

Remark 3.2. The group Sp(n) ⊂ SO(4n) can be deduced from the previous discus-
sion: Sp(n) with quaternionic entries a+bj is embedded into SU(2n) by (2×2)-blocks[
a b
−b̄ ā

]
, and SU(2n) sits in SO(4n) as before. We shall not treat Sp(n)- and quater-

nionic geometries in this expository article (but see [Sw89], [Sw91], [AMP98], [GP00],
[Ale03], [PS03], [AC05], [MCS04] for a first acquaintance).

3.2. U(n) and SU(n) in dimension 2n + 1. These G-structures arise from con-
tact structures and are remarkable inasmuch they manifest a genuinely non-integrable
behaviour—they do not occur in Berger’s list because the action of U(n) on R2n+1

is not irreducible, hence any manifold with this action as Riemannian holonomy rep-
resentation splits by de Rham’s theorem. Given an almost contact metric manifold
(M2n+1, g, ξ, η, ϕ), we may construct an adapted local orthonormal frame by choosing



THE SRNÍ LECTURES ON NON-INTEGRABLE GEOMETRIES WITH TORSION 33

any e1 ∈ ξ⊥ and setting e2 = ϕ(e1) (as well as fixing e2n+1 = ξ once and for all); now
choose any e3 perpendicular to e1, e2, e2n+1 and set again e4 = ϕ(e3) etc. With respect
to such a basis, ϕ is given by

ϕ = diag(j, j, . . . , j, 0) with j =

[
0 −1
1 0

]

and we conclude that the structural group of M2n+1 is reducible to U(n) × {1}. If we
denote the fundamental form by F (see Example 2.5), then

U(n) × {1} = {A ∈ SO(2n+ 1) | A∗F = F} .
The U(n) × {1}-action on R2n+1 inherits invariants from the U(n)-action on R2n in a
canonical way; one then just needs to check that no new one appears. Hence, we can
conclude:

Lemma 3.3. Under the action of U(n), Λ2k(R2n+1) contains the trivial representation
once; it is generated by F, F 2, . . . , F n.

The action of U(n) ⊂ O(2n + 1) cannot, in general, be lifted to an action of U(n)
inside Spin(2n+ 1). As in the almost Hermitian case, let’s thus study the u(n) action
on ∆2n+1. The irreducible Spin(2n+ 1)-module ∆2n+1 splits into ∆+

2n ⊕∆−
2n under the

restricted action of Spin(2n), and it decomposes accordingly into

∆2n+1 = S0 ⊕ . . . Sn , Sr = {ψ ∈ ∆2n+1 : Fψ = i(n− 2r)ψ} ,

dimSr =

(
n

r

)
, 0 ≤ r ≤ n .

Hence, ∆2n+1 can be identified with ∆+
2n ⊕ ∆−

2n, yielding finally the following result:

Lemma 3.4. The spin representation ∆2n+1 contains no u(n)-invariant spinor. If one
restricts further to su(n), there are precisely two invariant spinors.

3.3. G2 in dimension 7. While invariant 2-forms exist in all even dimensions and
lead to the rich variety of almost Hermitian structures, the geometry of 3-forms played
a rather exotic role in classical Riemannian geometry until the nineties, as it occurs
only in apparently random dimensions, most notably dimension seven. That G2 is
the relevant simple Lie group is a classical, although unfortunately not so well-known
result from invariant theory. A mere dimension count shows already this effect (see
Table 3): the stabilizer of a generic 3-form ω3

Gn
ω3 := {A ∈ GL(n,R) | ω3 = A∗ω3}

cannot be contained in the orthogonal group for n ≤ 6, it must lie in some group
between SO(n) and SL(n,R) (for n = 3, we even have G3

ω3 = SL(3,R)). The case
n = 7 is the first dimension where Gn

ω3 can sit in SO(n). That this is indeed the
case was shown as early as 1907 in the doctoral dissertation of Walter Reichel in
Greifswald, supervised by F. Engel ([Reich07]). More precisely, he computed a system
of invariants for a 3-form in seven variables and showed that there are exactly two
open GL(7,R)-orbits of 3-forms. The stabilizers of any representatives ω3 and ω̃3 of
these orbits are 14-dimensional simple Lie groups of rank two, one compact and the
other non-compact:

G7
ω3

∼= G2 ⊂ SO(7), G7
ω̃3

∼= G∗
2 ⊂ SO(3, 4) .
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n dim GL(n,R) − dim Λ3Rn dim SO(n)

3 9 − 1 = 8 3

4 16 − 4 = 12 6

5 25 − 10 = 15 10

6 36 − 20 = 16 15

7 49 − 35 = 14 21

8 64 − 56 = 8 28

Table 3. Dimension count for possible geometries defined by 3-forms.

Reichel also showed the corresponding embeddings of Lie algebras by explicitly writing
down seven equations for the coefficients of so(7) resp. so(3, 4) (see Remark 3.4). As
in the case of almost Hermitian geometry, every author has his or her favourite normal
3-form with isotropy group G2, for example,

ω3 := e127 + e347 − e567 + e135 − e245 + e146 + e236 .

An element of the second orbit with stabilizer the split form G∗
2 of G2 may be obtained

by reversing any of the signs in ω3.

Lemma 3.5. Under G2, one has the decomposition Λ3(R7) ∼= R⊕R7 ⊕S0(R7), where
R

7 denotes the 7-dimensional standard representation given by the embedding G2 ⊂
SO(7) and S0(R

7) denotes the traceless symmetric endomorphisms of R7 (of dimension
27).

Now let’s consider the spinorial picture, as G2 can indeed be lifted to a subgroup
of Spin(7). From a purely representation theoretic point of view, this case is trivial:
dim ∆7 = 8 and the only irreducible representations of G2 of dimension ≤ 8 are the
trivial and the 7-dimensional representations. Hence 8 = 1 + 7 yields:

Lemma 3.6. Under the restricted action of G2, the 7-dimensional spin representation
∆7 decomposes as ∆7

∼= R ⊕ R
7.

This Lemma has an important consequence: the ‘spinorial’ characterization of G2-
manifolds.

Corollary 3.1. Let (M7, g) be a Riemannian manifold, ∇ a metric connection on its
spin bundle. Then there exists a ∇-parallel spinor if and only if Hol(∇) ⊂ G2.

One direction follows from the fact that G2 is the stabilizer of an algebraic spinor,
the converse from Lemma 3.6.

In fact, the invariant 3-form and the invariant algebraic spinor ψ are equivalent
data. They are related (modulo an irrelevant constant) by

(8) ω3(X, Y, Z) = 〈X · Y · Z · ψ, ψ〉 .
We now want to ask which subgroups G ⊂ G2 admit other invariant algebraic spinors.
Such a subgroup has to appear on Berger’s list and its induced action on R7 (viewed
as a subspace of ∆7) has to contain one or more copies of the trivial representation.



THE SRNÍ LECTURES ON NON-INTEGRABLE GEOMETRIES WITH TORSION 35

Thus, the only possibilities are SU(3) with R7 ∼= R ⊕ C3 (standard SU(3)-action on
C3) and SU(2) with R7 ∼= 3 · R ⊕ C2 (standard SU(2)-action on C2). Both indeed
occur, with a total of 2 resp. 4 invariant spinors.

Remark 3.3. A modern account of Reichel’s results can be found in the article [We81]
by R. Westwick; it is interesting (although it seems not to have had any further in-
fluence) that J. A. Schouten also rediscovered these results in 1931 [Sch31]. A clas-
sification of 3-forms is still possible in dimensions 8 ([Gu35], [Gu35], [Djo83]) and
9 ([VE88]), although the latter one is already of inexorable complexity. Based on
these results, J. Bureš and J. Vanžura started recently the investigation of so-called
multisymplectic structures ([Van01], [BV03], [Bu04]).

Remark 3.4. g2 inside spin(7) is a good example for illustrating how to obtain the
defining equations of stabilizer subalgebras with the aid of the computer (see Remark
3.1); one has just to be aware that they depend not only on the orthonormal basis
but also on a choice of spin representation. To this aim, fix a realization of the spin
representation ∆n and a representative ψ of the orbit of spinors whose stabilizer is
the group G we are interested in. As usual, identify the Lie algebra spin(n) with the
elements of the form ω =

∑
i<j ωijei ·ej inside the Clifford algebra Cl(n). Replacing ei,

ej by the chosen representative matrices, ω · ψ = 0 is equivalent to a set of equations
for the coefficients ωij; see for example [FKMS97, p. 261] for an explicit realization of
g2 ⊂ spin(7).

3.4. Spin(7) in dimension 8. As we just learned from G2 geometry, Spin(7) has an
irreducible 8-dimensional representation isomorphic to ∆7, hence it can be viewed as
a subgroup of SO(8), and it does lift to Spin(8). By restricting to SO(7), Spin(7)
certainly also has a 7-dimensional representation. What is so special in this dimension
is that Spin(7) has two conjugacy classes in SO(8) that are interchanged by means of
the triality automorphism; hence the decomposition of the spin representation depends
on the (arbitrary) choice of one of these classes.

Lemma 3.7. Under the restricted action of Spin(7), the 8-dimensional spin rep-
resentations decompose as ∆+

8
∼= R8 ∼= ∆7 and ∆−

8
∼= R ⊕ R7 for one choice of

Spin(7) ⊂ SO(8); the other choice swaps ∆+
8 and ∆−

8 .

In particular, there is exactly one invariant spinor in ∆+
8 . Again, it corresponds

one-to-one to an invariant form, of degree 4 in this case:

β4(X, Y, Z, V ) = 〈X · Y · Z · V · ψ, ψ〉 .
Yet, Spin(7)-geometry in dimension eight is not just an enhanced version of G2-
geometry in dimension seven. Because dim GL(8,R) = 64 < 70 = dim Λ4(R8), there
are no dense open orbits under the action of GL(8,R). Thus, there is no result in
invariant theory similar to that of Reichel for G2 in the background.

Let’s fix the first choice for embedding Spin(7) in SO(8) made in Lemma 3.7. A sec-
ond invariant spinor can either be in ∆+

8 or in ∆−
8 . If it is in ∆+

8 , we are asking for a
subgroup G ⊂ Spin(7) whose action on R7 contains the trivial representation once —
obviously, G2 is such a group. Under G2, ∆+

8 and ∆−
8 are isomorphic,

∆+
8

∣∣
G2

∼= ∆−
8

∣∣
G2

∼= R ⊕ R
7 .
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group inv. spinors in ∆+
8 inv. spinors in ∆−

8

Spin(7) 0 1

SU(4) ∼= Spin(6) 0 2

Sp(2) ∼= Spin(5) 0 3

SU(2) × SU(2) ∼= Spin(4) 0 4

G2 1 1

SU(3) 2 2

SU(2) 4 4

{e} 8 8

Table 4. Possible stabilizers of invariant spinors in dimension 8.

Thus, SU(3) ⊂ G2 ⊂ Spin(7) and SU(2) ⊂ G2 ⊂ Spin(7) are two further admissible
groups with 2 + 2 and 4 + 4 invariant spinors. On the other hand, if we impose
a second invariant spinor to live in ∆−

8 , we need a subgroup G ⊂ Spin(7) that has
partially trivial action on R7, but not on ∆+

8
∼= R8. A straightforward candidate is

G = Spin(6) with its standard embedding and R7 = R6⊕R; the classical isomorphism
Spin(6) = SU(4) shows that G acts irreducibly on ∆+

8
∼= C4. The group SU(4) in turn

has subgroups Sp(2) = Spin(5) and SU(2)× SU(2) = Spin(4) that still act irreducibly
on ∆+

8 , and act on ∆−
8 by

∆−
8

∣∣
Sp(2)

∼= 3 · R ⊕ R
5 , ∆−

8

∣∣
SU(2)×SU(2)

∼= 4 · R ⊕ R
4 .

The results are summarized in Table 4. The resemblance between Tables 4 and 2 in
Section 1.4 is no coincidence. A convenient way to describe Spin(9, 1) is to start with
Spin(10) generated by elements e1, . . . , e10 and acting irreducibly on ∆+

10. The vector
spaces ∆+

10 and ∆+
9,1 can be identified, and Spin(9, 1) can be generated by e∗i := ei for

i = 1, . . . , 9 and e∗10 := i e10. Elements ω ∈ spin(9, 1) can thus be written

ω =
∑

1≤i<j≤10

ωij ωije
∗
i ∧ e∗j =

∑

i<j≤9

ωij ei ∧ ej + i
∑

k≤9

ωk,10 ek ∧ e10

and we conclude that spin(9, 1) can be identified with spin(9) ⋉R9. A spinor ψ ∈ ∆+
9,1

is stabilized by an element ω ∈ spin(9, 1) if and only if

0 =
∑

1≤i<j≤10

ωij e
∗
i · e∗j · ψ =

∑

i<j≤9

ωij ei · ej · ψ + i
∑

k≤9

ωk,10 ek · e10 · ψ .

In this last expression, both real and imaginary part have to vanish simultaneously,
leading to 16 equations. A careful look reveals that they define spin(7) ⋉ R8, and the
statements from Table 4 imply those from Table 2 since ∆+

9,1
∼= ∆+

8 ⊕ ∆−
8 .

Remark 3.5 (Weak PSU(3)-structures). Recently, Hitchin observed that 3-forms can
be of interest in 8-dimensional geometry as well ([Hit01]). The canonical 3-form on the
Lie algebra su(3) spans an open orbit under GL(8,R), and the corresponding 3-form on
SU(3) is parallel with respect to the Levi-Civita connection of the biinvariant metric.
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The Riemannian holonomy reduces to SU(3)/Z2 =: PSU(3). More generally, manifolds
modelled on this group lead to the investigation of closed and coclosed 3-forms that
are not parallel, see also [Wi06].

Sorting out the technicalities that we purposely avoided, one obtains Wang’s clas-
sification of Riemannian parallel spinors. By de Rham’s theorem, only irreducible
holonomy representations occur for the Levi-Civita connection. From Proposition 2.2,
we already know that these manifolds are Ricci-flat.

Theorem 3.1 (Wang’s Theorem, [McKW89]). Let (Mn, g) be a complete, simply con-
nected, irreducible Riemannian manifold of dimension n. Let N denote the dimension
of the space of parallel spinors with respect to the Levi-Civita connection. If (Mn, g)
is non-flat and N > 0, then one of the following holds:

(1) n = 2m (m ≥ 2), the holonomy representation is the vector representation of
SU(m) on Cm, and N = 2 (“Calabi-Yau case”).

(2) n = 4m (m ≥ 2), the holonomy representation is the vector representation of
Sp(m) on C2m, and N = m + 1 (“hyper-Kähler case”).

(3) n = 7, the holonomy representation is the unique 7-dimensional representation
of G2, and N = 1 (“parallel G2- or Joyce case”).

(4) n = 8, the holonomy representation is the spin representation of Spin(7), and
N = 1 (“parallel Spin(7)- or Joyce case”).

4. A unified approach to non-integrable geometries

4.1. Motivation. For G-structures defined by some tensor T , it has been for a long
time customary to classify the possible types of structures by the isotypic decom-
position under G of the covariant derivative ∇gT . The integrable case is described
by ∇gT = 0, all other classes of non-integrable G-structures correspond to combina-
tions of non-vanishing contributions in the isotypic decomposition and are described
by some differential equation in T . This was carried out in detail for example for
almost Hermitian manifolds (Gray/Hervella [GH80]), for G2-structures in dimension
7 (Fernández/Gray [FG82]), for Spin(7)-structures in dimension 8 (Fernández [Fer86])
and for almost contact metric structures (Chinea/Gonzales [ChG90]).

In this section, we shall present a simpler and unified approach to non-integrable
geometries. The theory of principal fibre bundles suggests that the difference Γ between
the Levi-Civita connection and the canonical G-connection induced on the G-structure
is a good measure for how much the given G-structure fails to be integrable. By now,
Γ is widely known as the intrinsic torsion of the G-structure (see Section 1.5 for
references). Although this is a “folklore” approach, it is still not as popular as it
could be. Our presentation will follow the main lines of [Fri03b]. We will see that it
easily reproduces the classical results cited above with much less computational work
whilst having the advantage of being applicable to geometries not defined by tensors.
Furthermore, it allows a uniform and clean description of those classes of geometries
admitting G-connections with totally skew-symmetric torsion, and led to the discovery
of new interesting geometries.

4.2. G-structures on Riemannian manifolds. Let G ⊂ SO(n) be a closed sub-
group of the orthogonal group and decompose the Lie algebra so(n) into the Lie
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algebra g of G and its orthogonal complement m, i. e. so(n) = g ⊕ m. Denote by prg

and prm the projections onto g and m, respectively. Consider an oriented Riemannian
manifold (Mn, g) and denote its frame bundle by F(Mn); it is a principal SO(n)-
bundle over Mn. By definition, a G-structure on Mn is a reduction R ⊂ F(Mn) of
the frame bundle to the subgroup G. The Levi-Civita connection is a 1-form Z on
F(Mn) with values in the Lie algebra so(n). We restrict the Levi-Civita connection
to R and decompose it with respect to the splitting g ⊕ m:

Z
∣∣
T (R)

:= Z∗ ⊕ Γ .

Then, Z∗ is a connection in the principal G-bundle R and Γ is a tensorial 1-form of
type Ad, i.e. a 1-form on Mn with values in the associated bundle R×G m. By now,
it has become standard to call Γ the intrinsic torsion of the G-structure (see Section
1.5 for references). The G-structure R on (Mn, g) is called integrable if Γ vanishes,
for this means that it is preserved by the Levi-Civita connection and that Hol(∇g)
is a subgroup of G. All G-structures with Γ 6= 0 are called non-integrable; the basic
classes of non-integrable G-structures are defined — via the decomposition of Γ — as
the irreducible G-components of the representation Rn⊗m. For an orthonormal frame
e1, . . . , en adapted to the reduction R, the connection forms ωij := g(∇gei, ej) of the
Levi-Civita connection define a 1-form Ω := (ωij) with values in the Lie algebra so(n)
of all skew-symmetric matrices. The form Γ can then be computed as the m-projection
of Ω,

Γ = prm(Ω) = prm(ωij) .

Interesting is the case in which G happens to be the isotropy group of some tensor
T . Suppose that there is a faithful representation ̺ : SO(n) → SO(V ) and a tensor
T ∈ V such that

G =
{
g ∈ SO(n) : ̺(g)T = T

}
.

The Riemannian covariant derivative of T is then given by the formula

∇gT = ̺∗(Γ)(T ) ,

where ̺∗ : so(n) → so(V ) is the differential of the representation. As a tensor, ∇gT
is an element of R

n ⊗ V . The algebraic G-types of ∇gT define the algebraic G-types
of Γ and vice versa. Indeed, we have

Proposition 4.1 ([Fri03b, Prop. 2.1.]). The G-map

R
n ⊗ m −→ R

n ⊗ End(V ) −→ R
n ⊗ V

given by Γ → ρ∗(Γ)(T ) is injective.

An easy argument in representation theory shows that for G 6= SO(n), the G-
representation Rn does always appear as summand in the G-decomposition of Rn ⊗m.
Geometrically, this module accounts precisely for conformal transformations of G-
structures. Let (Mn, g,R) be a Riemannian manifold with a fixed geometric structure
and denote by ĝ := e2f ·g a conformal transformation of the metric. There is a natural
identification of the frame bundles

F(Mn, g) ∼= F(M̂n, ĝ)

and a corresponding G-structure R̂. At the infinitesimal level, the conformal change
is defined by the 1-form df , corresponding to an Rn-part in Γ.
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We shall now answer the question under which conditions a given G-structure admits
a metric connection ∇ with skew-symmetric torsion preserving the structure. For this,
consider for any orthonormal basis ei of m the G-equivariant map

Θ : Λ3(Rn) −→ R
n ⊗ m , Θ(T ) :=

∑

i

(ei T ) ⊗ ei .

Theorem 4.1 ([FI02, Prop. 4.1]). A G-structure R ⊂ F(Mn) of a Riemannian
manifold admits a connection ∇ with skew-symmetric torsion if and only if the 1-form
Γ belongs to the image of Θ,

2 Γ = −Θ(T ) for some T ∈ Λ3(Rn) .

In this case the 3-form T is the torsion form of the connection.

Definition 4.1. A metric G-connection ∇ with torsion T as in Theorem 4.1 will be
called a characteristic connection and denoted by ∇c, T =: T c is called the character-
istic torsion. By construction, the holonomy Hol(∇c) is a subgroup of G.

Thus, not every G-structure admits a characteristic connection. If that is the case,
T c is unique for all geometries we have investigated so far, and it can easily be expressed
in terms of the geometric data (almost complex structure etc.). Henceforth, we shall
just speak of the characteristic connection. Due to its properties, it is an excellent
substitute for the Levi-Civita connection, which in these situations is not adapted to
the underlying geometric structure.

Remark 4.1. The canonical connection ∇c of a naturally reductive homogeneous
space is an example of a characteristic connection that satisfies in addition ∇cT c =
∇cRc = 0; in this sense, geometric structures admitting a characteristic connection
such that ∇cT c = 0 constitute a natural generalization of naturally reductive homo-
geneous spaces. As a consequence of the General Holonomy Principle (Corollary 2.2),
∇cT c = 0 implies that the holonomy group Hol(∇c) lies in the stabilizer GT c of T c.

With this technique, we shall now describe special classes of non-integrable geome-
tries, some new and others previously encountered. We order them by increasing
dimension.

4.3. Almost contact metric structures. At this stage, almost contact metric struc-
tures challenge any expository paper because of the large number of classes. Quali-
tatively, the situation is as follows. The first classifications of these structures pro-
ceeded in analogy to the Gray-Hervella set-up for almost Hermitian manifolds (see
Section 4.5) by examining the space of tensors with the same symmetry properties
as the covariant derivative of the fundamental form F (see Section 2.5) and decom-
posing it under the action of the structure group G = U(n) × {1} using invariant
theory. Because the G-action on R2n+1 is already not irreducible, this space decom-
poses into four G-irreducibles for n = 1, into 10 summands for n = 2 and into 12 for
n ≥ 3, leading eventually to 24, 210 and 212 possible classes of almost contact metric
structures ([AG86], [ChG90], [ChM92]). Obviously, most of these classes do not carry
names and are not studied, and the result being what it is, the investigation of such
structures is burdened by technical details and assumptions. From the inner logic of
non-integrable geometries, it makes not so much sense to base their investigation on
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the covariant derivative ∇gF of F or some other fundamental tensor, as the Levi-
Civita connection does not preserve the geometric structure. This accounts for the
technical complications that one faces when following this approach.

For this section, we decided to restrict our attention to dimension five, this being the
most relevant for the investigation of non-integrable geometries (in dimension seven, it
is reasonable to study contact structures simultaneously with G2-structures). Besides,
this case will illustrate the power of the intrinsic torsion concept outlined above. We
shall use throughout that R

5 = R
4⊕R with standard U(2)-action on the first term and

trivial action on the second term. Let us look at the decompositions of the orthogonal
Lie algebras in dimension 4 and 5. First, we have

so(4) = Λ2(R4) = u(2) ⊕ n2 .

Here, n2 is U(2)-irreducible, while u(2) splits further into su(2) and the span of Ω.
Combining this remark with the characterization of these subspaces via the complex
structure J defining u(2), we obtain

u(2) = {ω ∈ Λ2(R4) : Jω = ω} = su(2) ⊕ R · Ω , n2 = {ω ∈ Λ2(R4) : Jω = −ω} .
In particular, Λ2(R4) is the sum of three U(2)-representations of dimensions 1, 2 and
3. For so(5), we deduce immediatly

so(5) = Λ2(R4 ⊕ R) = Λ2(R4) ⊕ R
4 = u(2) ⊕ (R4 ⊕ n2) =: u(2) ⊕ m6 .

Thus, the intrinsic torsion Γ of a 5-dimensional almost metric contact structure is an
element of the representation space

R
5 ⊗ m6 = (R4 ⊕ R) ⊗ (R4 ⊕ n2) = n2 ⊕ R

4 ⊕ (R4 ⊗ n2) ⊕ (R4 ⊗ R
4) .

The last term splits further into trace-free symmetric, trace and antisymmetric part,
written for short as

R
4 ⊗ R

4 = S2
0(R4) ⊕ R ⊕ Λ2(R4) .

The 9-dimensional representation S2
0(R4) is again a sum of two irreducible ones of

dimensions 3 and 6, but we do not need this here. To decompose the representation
R

4 ⊗ n2, we observe that the U(2)-equivariant map Θ : Λ3(R4) → R
4 ⊗ n2 (see Section

4.2) has 4-dimensional irreducible image isomorphic to Λ3R4 (which is again of dimen-
sion 4); its complement is an inequivalent irreducible U(2)-representation of dimension
4 which we call V4. Consequently,

R
5 ⊗ m6 = R ⊕ n2 ⊕ R

4 ⊕ S2
0(R4) ⊕ Λ2(R4) ⊕ Λ3(R4) ⊕ V4 .

Taking into account the further splitting of S2
0(R4) ⊕ Λ2(R4), this is the sum of 10

irreducible U(2)-representations as claimed. On the other side,

Λ3(R5) = Λ3(R4 ⊕ R) = Λ2(R4) ⊕ Λ3(R4) .

We found a unique copy of this 10-dimensional space in the 30-dimensional space
R5 ⊗ m6. Thus, we conclude from Theorem 4.1:

Proposition 4.2. A 5-dimensional almost metric contact structure (M5, gξ, η, ϕ) ad-
mits a unique characteristic connection if and only if its intrinsic torsion is of class
Λ2(R4) ⊕ Λ3(R4).
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In dimension 5, skew-symmetry of the Nijenhuis tensor N implies that it has to be
zero, hence in the light of the more general Theorem 2.5, the almost metric contact
manifolds of class Λ2(R4) ⊕ Λ3(R4) should coincide with the almost metric contact
structures with N = 0 and ξ a Killing vector field. That this is indeed the case follows
from the classifications cited above. This class includes for example all quasi-Sasakian
manifolds (N = 0 and dF = 0), see [KR02].

Example 4.1. Consider R5 with 1-forms

2e1 = dx1 , 2e2 = dy1 , 2e3 = dx2 , 2e4 = dy2 , 4e5 = 4η = dz − y1dx1 − y2dx2 ,

metric g =
∑

i ei ⊗ ei, and almost complex structure ϕ defined in 〈ξ〉⊥ by

ϕ(e1) = e2 , ϕ(e2) = −e1 , ϕ(e3) = e4 , ϕ(e4) = −e3 , ϕ(e5) = 0 .

Then (R5, g, η, ϕ) is a Sasakian manifold, and the torsion of its characteristic connec-
tion is of type Λ2(R4) ([Fin94, Example 3.D]) and explicitly given by

T c = η ∧ dη = 2(e1 ∧ e2 + e3 ∧ e4) ∧ e5 .
This example is in fact a left-invariant metric on a 5-dimensional Heisenberg group with
scalg = −4 and scal∇

c

= scalg −3‖T‖2/2 = −16 (see Theorem A.1). In a left-invariant
frame, spinors are simply functions ψ : R5 → ∆5 with values in the 5-dimensional spin
representation. In [FI03a], it is shown that there exist two ∇c-parallel spinors ψi with
the additional property F · ψi = 0 (i = 1, 2). This implies T · ψi = 0, an equation
of interest in superstring theory (see Section 5.5). It turns out that these spinors are
constant, hence the same result holds for all compact quotients R5/Γ (Γ a discrete
subgroup).

We recommend the articles [Fin94] and [Fin95] for a detailed investigation of the
representation theory of almost metric contact structures (very much in the style of
the book [Sal01]) — in particular, the decomposition of the space of possible torsion
tensors T of metric connections (see Proposition 2.1) under U(n) is being related to
the possible classes for the intrinsic torsion.

4.4. SO(3)-structures in dimension 5. These structures were discovered by Th.
Friedrich in a systematic investigation of possible G-structures for interesting non-
integrable geometries (see [Fri03b]); until that moment, it was generally believed that
contact structures were the only remarkable G-structures in dimension 5.

The group SO(3) has a unique, real, irreducible representation in dimension 5. We
consider the corresponding non-standard embedding SO(3) ⊂ SO(5) as well as the
decomposition

so(5) = so(3) ⊕ m7 .

It is well known that the SO(3)-representation m7 is the unique, real, irreducible repre-
sentation of SO(3) in dimension 7. We decompose the tensor product into irreducible
components

R
5 ⊗ m7 = R

3 ⊕ R
5 ⊕ m7 ⊕ E9 ⊕ E11 .

There are five basic types of SO(3)-structures on 5-dimensional Riemannian manifolds.
The symmetric spaces SU(3)/SO(3) and SL(3,R)/SO(3) are examples of 5-dimensional
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Riemannian manifolds with an integrable SO(3)-structure (Γ = 0). On the other hand,
3-forms on R5 decompose into

Λ3(R5) = R
3 ⊕ m7 .

In particular, a conformal change of an SO(3)-structure does not preserve the property
that the structure admits a connection with totally skew-symmetric torsion.

M. Bobienski and P. Nurowski investigated SO(3)-structures in their articles [BN05]
and [Bob06]. In particular, they found a ternary symmetric form describing the re-
duction to SO(3) and constructed many examples of non-integrable SO(3)-structures
with non-vanishing intrinsic torsion. Recently, P. Nurowski suggested a link to Car-
tan’s work on isoparametric surfaces in spheres, and predicted the existence of similar
geometries in dimensions 8, 14 and 26; we refer the reader to [Nu06] for details. The
case of SO(3)-structures illustrates that new classes of non-integrable geometries are
still to be discovered beyond the well-established ones, and that their study reveals
deeper connections between areas which used to be far from each other.

4.5. Almost Hermitian manifolds in dimension 6. We begin with the Gray-
Hervella classification of almost Hermitian manifolds and the consequences for the
characteristic connection. Although most of these results hold in all even dimensions,
we shall henceforth restrict our attention to the most interesting case, namely dimen-
sion 6.

Let us consider a 6-dimensional almost Hermitian manifold (M6, g, J), correspond-
ing to a U(3)-structure inside SO(6). We decompose the Lie algebra into so(6) =
u(3)⊕m and remark that the U(3)-representation in R6 is the real representation un-
derlying Λ1,0. Similarly, m is the real representation underlying Λ2,0. We decompose
the complexification under the action of U(3):

(
R

6 ⊗ m
)C

=
(

Λ1,0 ⊗ Λ2,0 ⊕ Λ1,0 ⊗ Λ0,2
)C

R

.

The symbol (. . .)C

R
means that we understand the complex representation as a real

representation and complexify it. Next we split the complex U(3)-representations

Λ1,0 ⊗ Λ2,0 = C
3 ⊗ Λ2(C3) = Λ3,0 ⊕ E8 ,

Λ1,0 ⊗ Λ0,2 = C
3 ⊗ Λ2(C

3
) = C

3 ⊗ Λ2(C3)∗ = (C3)∗ ⊕ E6 .

E6 and E8 are irreducible U(3)-representations of complex dimensions 6 and 8, respec-
tively. Finally we obtain

R
6 ⊗ m = Λ3,0 ⊕ E8 ⊕ E6 ⊕ (C3)∗ =: W(2)

1 ⊕W(16)
2 ⊕W(12)

3 ⊕W(6)
4 .

Consequently, R6 ⊗ m splits into four irreducible representations of real dimensions
2, 16, 12 and 6, that is, there are four basic classes and a total of 16 classes of U(3)-
structures on 6-dimensional Riemannian manifolds, a result known as Gray/Hervella-
classification ([GH80]). Recently, F. Mart́ın Cabrera established the defining differ-
ential equations for these classes solely in terms of the intrinsic torsion (see [MC05]),
as we shall state them for G2-manifolds in the next section. In case we restrict the
structure group to SU(3), the orthogonal complement su(3)⊥ is now 7- instead of
6-dimensional, and we obtain

R
6 ⊗ su(3)⊥ = W1 ⊕W2 ⊕W3 ⊕W4 ⊕W5 ,
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name class characterization

nearly Kähler manifold W1

a) (∇g
XJ)(X) = 0

b) N skew-sym. and τ2(dΩ) = −9dΩ

c) ∃ real Killing spinor

almost Kähler manifold W2 dΩ = 0

balanced (almost Hermitian) or

(Hermitian) semi-Kähler m.
W3 N = 0 and δΩ = 0

locally conformally Kähler m. W4 N = 0 and dΩ = Ω ∧ θ (θ: Lee form)

quasi-Kähler manifold W1 ⊕W2 ∇g
XΩ(Y, Z) + ∇g

JXΩ(JY, Z) = 0

Hermitian manifold W3 ⊕W4 a) N = 0, b) τ2(dΩ) = −dΩ

(almost-)semi-Kähler or

(almost) cosymplectic m.
W1 ⊕W2 ⊕W3 a) δΩ = 0, b) Ω ∧ dΩ = 0

KT- or G1-manifold W1 ⊕W3 ⊕W4

a) N is skew-symmetric

b) ∃ char. connection ∇c

half-flat SU(3)-manifold W−

1 ⊕W−

2 ⊕W3 Ω ∧ dΩ = 0 and dΨ+ = 0

Table 5. Some types of U(3)- and SU(3)-structures in dimension six.

where W5 is isomorphic to W4
∼= (C3)∗. Furthermore, W1 and W2 are not irreducible

anymore, but they split into W1 = W+
1 ⊕ W−

1 = R ⊕ R and W2 = W+
2 ⊕ W−

2 =
su(3) ⊕ su(3) (see [CS02], [MC05]). Table 5 summarizes some remarkable classes of
U(3)-structures in dimension 6. Most of these have by now well-established names,
while there is still some confusion for others; these can be recognized by the paren-
theses indicating the different names to be found in the literature. In the last column,
we collected characterizations of these classes (where several are listed, these are to be
understood as equivalent characterizations, not as simultaneous requirements). Ob-
serve that we included in the last line a remarkable class of SU(3)-structures, the so
called half-flat SU(3)-structures (Ψ+ is the real part of the (3, 0)-form defined by J ,
see Section 3.1). The name is chosen in order to suggest that half of all W-components
vanish for these structures. Relying on results of [Hit01], S. Chiossi and S. Salamon
described in [CS02] explicit metrics with Riemannian holonomy G2 on the product
of any half-flat SU(3)-manifold with a suitable interval. A construction of half-flat
SU(3)-manifolds as T 2-principal fibre bundles over Kählerian 4-manifolds goes back
to Goldstein and Prokushkin [GP02] and was generalized by Li, Fu and Yau [LY05],
[FY05]. We refer to Section 5.2 for examples of half-flat SU(3)-structures on nilmani-
folds.

Theorem 4.2. An almost Hermitian 6-manifold (M6, g, J) admits a characteristic
connection ∇c if and only if it is of class W1 ⊕W3 ⊕W4, i.e. if its Nijenhuis tensor
N is skew-symmetric. Furthermore, ∇c is unique and given by the expression

g(∇c
XY, Z) := g(∇g

XY, Z) +
1

2
[N(X, Y, Z) + dΩ(JX, JY, JZ)]
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Proof. In order to apply Theorem 4.1, we need the decomposition of 3-forms into
isotypic U(3)-representations,

Λ3(R6) = Λ3,0 ⊕ E6 ⊕ (C3)∗ = W1 ⊕W3 ⊕W4.

Therefore, the image of Θ consists of the sum W1 ⊕ W3 ⊕ W4 and Θ is injective,
i. e., there exists at most one characteristic torsion form. From the Gray-Hervella
classification, we know that almost Hermitian manifolds without W2-part (so-called G1-
manifolds or KT-manifolds, standing for ‘Kähler with torsion’, although not Kähler)
are characterized by the property that their Nijenhuis tensor N is skew-symmetric. In
Lemma 2.3, it was shown that the stated connection fulfills all requirements, hence by
uniqueness it coincides with the characteristic connection. �

Λ3(R6) admits another decomposition. The map

τ : Λ3(R6) −→ Λ3(R6) , τ(T ) :=
6∑

i=1

(ei Ω) ∧ (ei T )

is U(3)-equivariant. Its square τ 2 is diagonalizable with eigenspaces W1 (eigenvalue
−9) and W3 ⊕W4 (eigenvalue −1). This explains the second characterization of these
two classes in Table 5.

Remark 4.2 (Parallel torsion). In Example 2.3, it had been observed that the charac-
teristic torsion of nearly Kähler manifolds is always parallel (Kirichenko’s Theorem).
Another interesting class of almost Hermitian G1-manifolds with this property are
the so-called generalized Hopf structures, that is, locally conformally Kähler manifolds
(class W4, sometimes abbreviated lcK-manifolds) with parallel Lee form θ := δΩ◦J 6= 0
(in fact, ∇gθ = 0 and ∇cT c = 0 are equivalent conditions for W4-manifolds). Besides
the classical Hopf manifolds, they include for example total spaces of flat principal
S1-bundles over compact 5-dimensional Sasaki manifolds (see [Vai76], [Vai79] for de-
tails); generalized Hopf structures are never Einstein. We recommend the book by
S. Dragomir and L. Ornea [DO98] as a general reference and the articles [Bel00],
[FP05] for complex lcK-surfaces.

In his thesis, N. Schoemann investigates almost hermitian structures with parallel
skew-symmetric torsion in dimension 6. A full classification of the possible algebraic
types of the torsion form is worked out, and based on this a systematic description of
the possible geometries is given. In addition numerous new examples are constructed
(and, partially, classified) on naturally reductive spaces (including compact spaces
with closed torsion form) and on nilmanifolds (see [AFS05] and [Sch06]).

Remark 4.3 (Almost Kähler manifolds). The geometry of almost Kähler manifolds
is strongly related to famous problems in differential geometry. W. Thurston was the
first to construct an explicit compact symplectic manifold with b1 = 3, hence that does
not admit a Kähler structure [Thu76]. E. Abbena generalized this example and gave a
natural associated metric which makes it into an almost Kähler non-Kähler manifold
[Ab84]; many more examples of this type have been constructed since then.

In 1969, S. I. Goldberg conjectured that a compact almost Kähler-Einstein manifold
is Kähler [Gol69]. In this generality, the conjecture is still open. K. Sekigawa proved
it under the assumption of non-negative scalar curvature [Sek87], and it is known that
the conjecture is false for non-compact manifolds: P. Nurowski and M. Przanowski
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gave the first example of a 4-dimensional Ricci-flat almost-Kähler non-Kähler mani-
fold [NP97], J. Armstrong showed some non-existence results [Arm98], while V. Apos-
tolov, T. Drăghici and A. Moroianu constructed non-compact counterexamples to the
conjecture in dimensions ≥ 6 [ADM01]. Different partial results with various addi-
tional curvature assumptions are now available. The integrability conditions for almost
Kähler manifolds were studied in full generality in [AAD02] and [Kir05].

Remark 4.4 (Nearly Kähler manifolds). We close this section with some additional
remarks on nearly Kähler manifolds. Kirichenko’s Theorem (∇cT c = 0) implies that
Hol(∇c) ⊂ SU(3), that the first Chern class of the tangent bundle c1(TM6, J) vanishes,
M6 is spin and that the metric is Einstein. The only known examples are homogeneous
metrics on S6,CP3, S3×S3 and on the flag manifold F (1, 2) = U(3)/U(1)×U(1)×U(1),
although (many?) more are expected to exist. It was shown that these exhaust
all nearly Kähler manifolds that are locally homogeneous (see [Bu05]) or satisfying
Hol(∇c) 6= SU(3) (see [BM01]). A by now classical result asserts that a 6-dimensional
spin manifold admits a real Killing spinor if and only if it is nearly Kähler (see [FG85],
[Gru90] and [BFGK91]). Finally, more recent structure theorems justify why nearly
Kähler manifolds are only interesting in dimension 6: any complete simply connected
nearly Kähler manifold is locally a Riemannian product of Kähler manifolds, twistor
spaces over Kähler manifolds and 6-dimensional nearly Kähler manifolds (see [Na02a],
[Na02b]).

4.6. G2-structures in dimension 7. We consider 7-dimensional Riemannian mani-
folds equipped with a G2-structure. Since G2 is the isotropy group of a 3-form ω of
general type, a G2-structure is a triple (M7, g, ω) consisting of a 7-dimensional Rie-
mannian manifold and a 3-form ω of general type at any point. We decompose the
G2-representation (see [FI02])

R
7 ⊗ m = R ⊕ Λ2

14 ⊕ Λ3
27 ⊕ R

7 =: X (1)
1 ⊕ X (14)

2 ⊕ X (27)
3 ⊕W(7)

4 ,

and, consequently, there are again four basic classes and a total of 16 classes G2-
structures (namely, parallel G2-manifolds and 15 non-integrable G2-structures). This
result is known as the Fernández/Gray-classification of G2-structures (see [FG82]);
some important classes are again summarized in tabular form, see Table 6. The
different classes of G2-structures can be characterized by differential equations. They
can be written in a unified way as

dω = λ · ∗ω +
3

4
θ ∧ ω + ∗τ3 , δω = − ∗ d ∗ ω = − ∗ (θ ∧ ∗ω) + ∗(τ2 ∧ ω) ,

where λ is a scalar function corresponding to the X1-part of the intrinsic torsion Γ, τ2,
τ3 are 2- resp. 3-forms corresponding to its X2 resp. X3-part and θ is a 1-form describing
its X4-part, which one sometimes calls the Lee form of the G2-structure. This accounts
for some of the characterizations listed in Table 6. For example, a G2-structure is of
type X1 (nearly parallel G2-structure) if and only if there exists a number λ (it has
to be constant in this case) such that dω = λ ∗ ω holds. Again, this condition is
equivalent to the existence of a real Killing spinor and the metric has to be Einstein
[FK90]; more recently, the Riemannian curvature properties of arbitrary G2-manifolds
have been discussed in detail by R. Cleyton and S. Ivanov [CI06a]. G2-structures of
type X1 ⊕ X3 (cocalibrated G2-structures) are characterized by the condition that the
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name class characterization

nearly parallel G2-manifold X1

a) dω = λ ∗ ω for some λ ∈ R

b) ∃ real Killing spinor

almost parallel or closed (or

calibrated symplectic) G2-m.
X2 dω = 0

balanced G2-manifold X3 δω = 0 and dω ∧ ω = 0

locally conformally parallel G2-m. X4

dω = 3

4
θ ∧ ω and

d ∗ ω = θ ∧ ∗ω for some 1-form θ

cocalibrated (or semi-parallel

or cosymplectic ) G2-manifold
X1 ⊕X3 δω = 0

locally conformally (almost)

parallel G2-manifold
X2 ⊕X4 dω = 3

4
θ ∧ ω

G2T -manifold X1 ⊕X3 ⊕X4

a) d ∗ ω = θ ∧ ∗ω for some 1-form θ

b) ∃ char. connection ∇c

Table 6. Some types of G2-structures in dimension seven.

3-form is coclosed, δω3 = 0. Under the restricted action of G2, one obtains the
following isotypic decomposition of 3-forms on R

7:

Λ3(R7) = R ⊕ Λ3
27 ⊕ R

7 = X1 ⊕ X3 ⊕X4 .

This explains the first part of the following theorem and the acronym ‘G2T -manifolds’
for this class: it stands for ‘G2 with (skew) torsion’. The explicit formula for the
characteristic torsion may be derived directly from the properties of ∇c.

Theorem 4.3 ([FI02, Thm. 4.8]). A 7-dimensional manifold (M7, g, ω) with a fixed
G2-structure ω ∈ Λ3(M7) admits a characteristic connection ∇c if and only if it is of
class X1⊕X3⊕X4, i.e. if there exists a 1-form θ such that d∗ω = θ∧∗ω. Furthermore,
∇c is unique and given by the expression

∇c
XY := ∇g

XY +
1

2

[
− ∗dω − 1

6
g(dω, ∗ω)ω+ ∗(θ ∧ ω)

]
.

∇c admits (at least) one parallel spinor.

This last remarkable property is a direct consequence of our investigation of geo-
metric stabilizers, as explained in Corollary 3.1. For a nearly parallel G2-manifold,
the ∇c-parallel spinor coincides with the Riemannian Killing spinor and the manifold
turns out to be ∇c-Einstein [FI02]. Some subtle effects occur when more spinors enter
the play, as we shall now explain. First, we recall the fundamental theorem on Killing
spinors in dimension 7:

Theorem 4.4 ([FK90], [BFGK91], [FKMS97]). A 7-dimensional simply connected
compact Riemannian spin manifold (M7, g) admits

(1) one real Killing spinor if and only if it is a nearly parallel G2-manifold;
(2) two real Killing spinors if and only if it is a Sasaki-Einstein manifold;
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(3) three real Killing spinors if and only if it is a 3-Sasaki manifold.

Furthermore, 3 is also the maximal possible number of Killing spinors for M7 6= S7.
On the other side, the characteristic connection ∇c of a G2T -manifold has 2 resp. 4
parallel spinors if its holonomy reduces further to SU(3) resp. SU(2). But there is no
general argument identifying Killing spinors with parallel spinors: the characteristic
connection of a Sasaki-Einstein manifold does not necessarily admit parallel spinors
(see [FI02], [FI03a]), a 3-Sasaki manifold does not even admit a characteristic connec-
tion in any reasonable sense (each Sasaki structure has a characteristic connection,
but it does not preserve the other two Sasaki structures), see Section 2.6 and [AF04a].
This reflects the fact that Sasaki-Einstein and 3-Sasaki manifolds do not fit too well
into the general framework of G-structures.

Remark 4.5 (Parallel torsion). For a nearly parallel G2-manifold, the explicit formula
from Theorem 4.3 implies that the characteristic torsion T c is proportional to ω, hence
it is trivially ∇c-parallel. For the larger class of cocalibrated G2-manifolds (class
X1⊕X3), the case of parallel characteristic torsion has been investigated systematically
by Th. Friedrich (see [Fri06]). Again, many formerly unknown examples have been
constructed, for example, from deformations of η-Einstein Sasaki manifolds, from S1-
principal fibre bundles over 6-dimensional Kähler manifolds or from naturally reductive
spaces.

4.7. Spin(7)-structures in dimension 8. Let us consider Spin(7)-structures on 8-
dimensional Riemannian manifolds. The subgroup Spin(7) ⊂ SO(8) is the real Spin(7)-
representation ∆7 = R8, the complement m = R7 is the standard 7-dimensional rep-
resentation and the Spin(7)-structures on an 8-dimensional Riemannian manifold M8

correspond to the irreducible components of the tensor product

R
8 ⊗ m = R

8 ⊗ R
7 = ∆7 ⊗ R

7 = ∆7 ⊕ K = R
8 ⊕ K ,

where K denotes the kernel of the Clifford multiplication ∆7 ⊗ R7 → ∆7. It is well
known that K is an irreducible Spin(7)-representation, i.e. there are two basic classes
of Spin(7)-structures (the Fernández classification of Spin(7)-structures, see [Fer86]).
For 3-forms, we find the isotypic decomposition

Λ3(R8) = ∆7 ⊕ K ,

showing that Λ3(R8) and R8⊗m are isomorphic. Theorem 4.1 yields immediately that
any Spin(7)-structure on an 8-dimensional Riemannian manifold admits a unique con-
nection with totally skew-symmetric torsion. The explicit formula for its characteristic
torsion may be found in [Iv04].

5. Weitzenböck formulas for Dirac operators with torsion

5.1. Motivation. The question whether or not the characteristic connection of a G-
structure admits parallel tensor fields differs radically from the corresponding problem
for the Levi-Civita connection. In particular, one is interested in the existence of par-
allel spinor fields, interpreted in superstring theory as supersymmetries of the model.
The main analytical tool for the investigation of parallel spinors is the Dirac operator
and several remarkable identities for it. We discuss two identities for the square of
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the Dirac operator. While the first one is straightforward and merely of computa-
tional difficulty, the second relies on comparing the Dirac operator corresponding to
the connection with torsion T with the spinorial Laplace operator corresponding to
the connection with torsion 3T . Such an argument has been used in the literature
at several places. The first was probably S. Slebarski ([Sle87a], [Sle87b]) who noticed
that on a naturally reductive space, the connection with torsion one-third that of the
canonical connection behaves well under fibrations; S. Goette applied this property to
the computation of the η-invariant on homogeneous spaces [Goe99]. J.-P. Bismut used
such a rescaling for proving an index theorem for Hermitian manifolds [Bis89]. It is
implicit in Kostant’s work on a ‘cubic Dirac operator’, which can be understood as an
identity in the Clifford algebra for the symbol of the Dirac operator of the rescaled
canonical connection on a naturally reductive space ([Kos99], [Agr03]).

5.2. The square of the Dirac operator and parallel spinors. Consider a Rie-
mannian spin manifold (Mn, g, T ) with a 3-form T ∈ Λ3(Mn) as well as the one-
parameter family of linear metric connections with skew-symmetric torsion (s ∈ R),

∇s
XY := ∇g

XY + 2s T (X, Y,−) .

In particular, the superscript s = 0 corresponds to the Levi-Civita connection and
s = 1/4 to the connection with torsion T considered before. As before, we shall also
sometimes use the superscript g to denote the Riemannian quantities corresponding to
s = 0. These connections can all be lifted to connections on the spinor bundle ΣMn,
where they take the expression

∇s
Xψ := ∇g

Xψ + s(X T ) · ψ .
Two important elliptic operators may be defined on ΣMn, namely, the Dirac operator
and the spinor Laplacian associated with the connection ∇s:

Ds :=
n∑

k=1

ek · ∇s
ek

= D0 + 3sT , ∆s(ψ) = (∇s)∗∇sψ = −
n∑

k=1

∇s
ek
∇s

ek
ψ + ∇s

∇
g
ei

ei
ψ .

By a result of Th. Friedrich and S. Sulanke [FS79], the Dirac operator D∇ associated
with any metric connection ∇ is formally self-adjoint if and only if the ∇-divergence
div∇(X) :=

∑
i g(∇ei

X, ei) of any vector field X coincides with its Riemannian ∇g-
divergence. Writing ∇ = ∇g+A, this is manifestly equivalent to

∑
i g(A(ei, X), ei) = 0

and trivially satisfied for metric connections with totally skew-symmetric torsion8.
Shortly after P. Dirac introduced the Dirac operator, E. Schrödinger noticed the

existence of a remarkable formula for its square [Schr32]. Of course, since the concept
of spin manifold had not yet been established, all arguments of that time were of local
nature, but contained already all important ingredients that would be established
in a more mathematical way later. By the sixties and the seminal work of Atiyah
and Singer on index theory for elliptic differential operators, Schrödinger’s article
was almost forgotten and the formula rediscovered by A. Lichnerowicz [Li63]. In our
notation, the Schrödinger-Lichnerowicz formula states that

(D0)2 = ∆0 +
1

4
scal0 .

8One checks that it also holds for metric connections with vectorial torsion, but not for connections
of Cartan type A′.
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Our goal is to derive useful relations for the square of Ds. In order to state the first
formula, let us introduce the first order differential operator

(9) Dsψ :=

n∑

k=1

(ek T) · ∇s
ek
ψ = D0ψ + s

n∑

k=1

(ek T) · (ek T) · ψ .

Theorem 5.1 ([FI02, Thm 3.1, 3.3]). Let (Mn, g,∇s) be an n-dimensional Riemann-
ian spin manifold with a metric connection ∇s of skew-symmetric torsion 4s·T . Then,
the square of the Dirac operator Ds associated with ∇s acts on an arbitrary spinor field
ψ as

(10) (Ds)2ψ = ∆s(ψ) + 3s dT · ψ − 8s2 σT · ψ + 2s δT · ψ − 4sDsψ +
1

4
scals · ψ .

Furthermore, the anticommutator of Ds and T is

(11) Ds ◦ T + T ◦Ds = dT + δT − 8s σT − 2Ds .

scals denotes the scalar curvature of the connection ∇s. Remark that scal0 = scalg

is the usual scalar curvature of the underlying Riemannian manifold (Mn, g) and that
the relation scals = scal0 −24s2‖T‖2 holds. Moreover, the divergence δT can be taken
with respect to any connection ∇s from the family, hence we do not make a notational
difference between them (see Proposition A.2).

This formula for (Ds)2 has the disadvantage of still containing a first order differen-
tial operator with uncontrollable spectrum as well as several 4-forms that are difficult
to treat algebraically, hence it is not suitable for deriving vanishing theorems. It has
however a nice application in the study of ∇s-parallel spinors for different values of s.
As motivation, let’s consider the following example:

Example 5.1. Let G be a simply connected Lie group, g a biinvariant metric and
consider the torsion form T (X, Y, Z) := g([X, Y ], Z). The connections ∇±1/4 are flat
[KN69], hence they both admit non-trivial parallel spinor fields.

Such a property for the connections with torsions ±T is required in some superstring
models. Theorem 5.1 now implies that there cannot be many values s admitting ∇s-
parallel spinors.

Theorem 5.2 ([AF04a, Thm. 7.1.]). Let (Mn, g, T ) be a compact spin manifold, ∇s

the family of metric connections defined by T as above. For any ∇s-parallel spinor ψ,
the following formula holds:

64 s2

∫

Mn

〈σT · ψ, ψ〉 +

∫

Mn

scals · ‖ψ‖2 = 0 .

If the mean value of 〈σT · ψ, ψ〉 does not vanish, the parameter s is given by

s =
1

8

∫

Mn

〈dT · ψ, ψ〉
/∫

Mn

〈σT · ψ, ψ〉 .

If the mean value of 〈σT · ψ, ψ〉 vanishes, the parameter s depends only on the Rie-
mannian scalar curvature and on the length of the torsion form,

0 =

∫

Mn

Scals =

∫

Mn

scalg − 24s2

∫

Mn

‖T‖2 .
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Finally, if the 4-forms dT and σT are proportional (for example, if ∇1/4T = 0), there
are at most three parameters with ∇s-parallel spinors.

Remark 5.1. The property that dT and σT are proportional is more general than
requiring parallel torsion. For example, it holds for the whole family of connections
∇t on naturally reductive spaces discussed in Sections 2.2 and 5.3, but its torsion is
∇t-parallel only for t = 1.

Example 5.2. On the 7-dimensional Aloff-Wallach space N(1, 1) = SU(3)/S1, one
can construct a non-flat connection such that ∇s0 and ∇−s0 admit parallel spinors for
suitable s0, hence showing that both cases from Theorem 5.2 can actually occur in non-
trivial situations. On the other hand, it can be shown that on a 5-dimensional Sasaki
manifold, only the characteristic connection ∇c can have parallel spinors [AF04a].

Inspired by the homogeneous case (see Section 5.3), we were looking for an alter-
native comparison of (Ds)2 with the Laplace operator of some other connection ∇s′

from the same family. Since (Ds)2 is a symmetric second order differential operator
with metric principal symbol, a very general result by P. B. Gilkey claims that there
exists a connection ∇ and an endomorphism E such that (Ds)2 = ∇∗∇ + E [Gil75].
Based on the results of Theorem 5.1, one shows:

Theorem 5.3 (Generalized Schrödinger-Lichnerowicz formula, [AF04a, Thm. 6.2]).
The spinor Laplacian ∆s and the square of the Dirac operator Ds/3 are related by

(Ds/3)2 = ∆s + s dT +
1

4
scalg − 2s2 ‖T‖2 .

We observe thatDs/3 appears basically by quadratic completion. A first consequence
is a non linear version of Theorem 2.8.

Theorem 5.4 ([AF04a, Thm. 6.3]). Let (Mn, g, T ) be a compact, Riemannian spin
manifold of non positive scalar curvature, scalg ≤ 0. If there exists a solution ψ 6= 0
of the equations

∇Xψ = ∇g
Xψ +

1

2
(X T ) · ψ = 0 , 〈dT · ψ, ψ〉 ≤ 0 ,

the 3-form and the scalar curvature vanish, T = 0 = scalg, and ψ is parallel with
respect to the Levi-Civita connection.

Theorem 5.4 applies, in particular, to Calabi-Yau or Joyce manifolds, where we
know that ∇g-parallel spinors exist by Wang’s Theorem (Theorem 3.1). Let us perturb
the connection ∇g by a suitable 3-form (for example, a closed one). Then the new
connection ∇ does not admit ∇-parallel spinor fields: the Levi-Civita connection and
its parallel spinors are thus, in some sense, rigid. Nilmanifolds are a second family of
examples where the theorem applies. A further family of examples arises from certain
naturally reductive spaces with torsion form T proportional to the torsion form of
the canonical connection, see [Agr03]. From the high energy physics point of view, a
parallel spinor is interpreted as a supersymmetry transformation. Hence the physical
problem behind the above question (which in fact motivated our investigations) is
really whether a free “vacuum solution” can also carry a non-vacuum supersymmetry,
and how the two are related.
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Naturally, Theorem 5.4 raises the question to which extent compactness is really
necessary. We shall now show that it is by using the equivalence between the inclusion
Hol(∇) ⊂ G2 and the existence of a ∇-parallel spinor for a metric connection with
skew-symmetric torsion known from Corollary 3.1. For this, it is sufficient to find a 7-
dimensional Riemannian manifold (M7, g) whose Levi-Civita connection has a parallel
spinor (hence is Ricci-flat, in particular), but also admits a ∇-parallel spinor for some
other metric connection with skew-symmetric torsion.

Gibbons et al. produced non-complete metrics with Riemannian holonomy G2 in
[GLPS02]. Those metrics have among others the interesting feature of admitting a
2-step nilpotent isometry group N acting on orbits of codimension one. By [ChF05]
such metrics are locally conformal to homogeneous metrics on rank-one solvable ex-
tension of N , and the induced SU(3)-structure on N is half-flat. In the same paper
all half-flat SU(3) structures on 6-dimensional nilpotent Lie groups whose rank-one
solvable extension is endowed with a conformally parallel G2 structure were classified.
Besides the torus, there are exactly six instances, which we considered in relation to
the problem posed. It turns out that four metrics of the six only carry integrable G2

structures, thus reproducing the pattern of the compact situation, whilst one admits
complex solutions, a physical interpretation for which is still lacking. The remaining
solvmanifold (Sol, g)—which has exact Riemannian holonomy G2—provides a positive
answer to both questions posed above, hence becoming the most interesting. The Lie
algebra associated to this solvmanifold has structure equations

[ei, e7] = 3
5
mei, i = 1, 2, 5, [ej , e7] = 6

5
mej , j = 3, 4, 6,

[e1, e5] = −2
5
me3, [e2, e5] = −2

5
me4, [e1, e2] = −2

5
me6 .

The homogeneous metric it bears can be also seen as a G2 metric on the product R×T,
where T is the total space of a T 3-bundle over another 3-torus. For the sake of an
easier formulation of the result, we denote by ∇T the metric connection with torsion
T .

Theorem 5.5 ([ACF05, Thm. 4.1.]). The equation ∇T Ψ = 0 admits 7 solutions for
some 3-form, namely:

a) A two-parameter family of pairs (Tr,s,Ψr,s) ∈ Λ3(Sol) × Σ(Sol) such that
∇Tr,sΨr,s = 0;
for r = s the torsion Tr,r = 0 and Ψr,r is a multiple of the ∇g-parallel spinor.

b) Six ‘isolated’ solutions occuring in pairs, (T ε
i ,Ψ

ε
i ) ∈ Λ3(Sol) × Σ(Sol) for

i = 1, 2, 3 and ε = ±.

All these G2 structures admit exactly one parallel spinor, and for

|r| 6= |s|: ωr,s is of general type R ⊕ S2
0R

7 ⊕ R
7,

r = s: ωr,r is ∇g-parallel,

r = −s: the G2 class has no R-part.

Here, ωr,s denotes the defining 3-form of the G2-structure, see eq. (8).

Remark 5.2. A routine computation establishes that 〈dT ·Ψ,Ψ〉 < 0 for all solutions
found in Theorem 5.5, except for the integrable case r = s of solution a) where it
vanishes trivially since T = 0.
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Remark 5.3. The interaction between explicit Riemannian metrics with holonomy G2

on non-compact manifolds and the non-integrable G2-geometries as investigated with
the help of connections with torsion was up-to-now limited to “cone-type arguments”,
i.e. a non-integrable structure on some manifold was used to construct an integrable
structure on a higher dimensional manifold (like its cone, an so on). It is thus a natural
question whether the same Riemannian manifold (M, g) can carry structures of both
type simultaneously. This appears to be a remarkable property, of which the above
example is the only known instance. To emphasize this, consider that the projective
space CP 3 with the well-known Kähler-Einstein structure and the nearly Kähler one
inherited from triality does not fit the picture, as they refer to different metrics.

5.3. Naturally reductive spaces and Kostant’s cubic Dirac operator. On ar-
bitrary manifolds, only Weitzenböck formulas that express D2 through the Laplacian
are available. On homogeneous spaces, it makes sense to look for expressions for D2 of
Parthasarathy type, that is, in terms of Casimir operators. Naturally reductive spaces
Mn = G/H with their family of metric connections (X, Y ∈ m)

∇t
XY := ∇g

XY − t

2
[X, Y ]m

were in fact investigated prior to the more general case described in the previous
section. As symmetric spaces are good toy models for integrable geometries, homoge-
neous non-symmetric spaces are a very useful field for ‘experiments’ in non-integrable
geometry. Furthermore, many examples of such geometries are in fact homogeneous.
We will show that the main achievement in [Kos99] was to realize that, for the pa-
rameter value t = 1/3, the square of Dt may be expressed in a very simple way in
terms of Casimir operators and scalars only ([Kos99, Thm 2.13], [Ste99, 10.18]). It is
a remarkable generalization of the classical Parthasarathy formula for D2 on symmet-
ric spaces (formula (1) in this article, see [Par72]). We shall speak of the generalized
Kostant-Parthasarathy formula in the sequel. S. Slebarski used the connection ∇1/3

to prove a ”vanishing theorem” for the kernel of the twisted Dirac operator, which can
be easily recovered from Kostant’s formula (see [Lan00, Thm 4]). His articles [Sle87a]
and [Sle87b] contain several formulas of Weitzenböck type for D2, but none of them is
of Parthasarathy type.

In order to exploit the full power of harmonic analysis, it is necessary to extend
the naturally reductive metric 〈 , 〉 on m to the whole Lie algebra g of G. By a clas-
sical theorem of B. Kostant, there exists a unique Ad(G) invariant, symmetric, non
degenerate, bilinear form Q on g such that

Q(h ∩ g,m) = 0 and Q|m = 〈 , 〉

if G acts effectively on Mn and g = m + [m,m], which we will tacitly assume from
now on [Kos56]. In general, Q does not have to be positive definite; if it is, the metric
is called normal homogeneous. Assume furthermore that there exists a homogeneous

spin structure on M , i. e., a lift Ãd : H → Spin(m) of the isotropy representation
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such that the diagram

Spin(m)

�
�

�
�

�
Ãd

�

H
Ad- SO(m)

λ

6

commutes, where λ denotes the spin covering. Moreover, denote by ãd the cor-
responding lift into spin(m) of the differential ad : h → so(m) of Ad. Let κ :
Spin(m) → GL(∆m) be the spin representation, and identify sections of the spinor
bundle ΣMn = G× eAd ∆m with functions ψ : G→ ∆m satisfying

ψ(gh) = κ
(
Ãd (h−1)

)
ψ(g) .

The Dirac operator takes for ψ ∈ ΣMn the form

Dtψ =

n∑

i=1

ei(ψ) +
1 − t

2
H · ψ ,

where H is the third degree element in the Clifford algebra Cl(m) of m induced from
the torsion,

H :=
3

2

∑

i<j<k

〈[ei, ej]m, ek〉 ei · ej · ek .

This fact suggested the name ”cubic Dirac operator” to B. Kostant. Two expressions
appear over and over again for naturally reductive spaces: these are the m- and h-parts
of the Jacobi identity,

Jacm(X, Y, Z) := [X, [Y, Z]m]m + [Y, [Z,X]m]m + [Z, [X, Y ]m]m ,

Jach(X, Y, Z) := [X, [Y, Z]h] + [Y, [Z,X]h] + [Z, [X, Y ]h] .

Notice that the summands of Jach(X, Y, Z) automatically lie in m by the assumption
that M is reductive. The Jacobi identity for g implies Jacm(X, Y, Z)+Jach(X, Y, Z) =
0. In fact, since the torsion is given by T t(X, Y ) = −t[X, Y ]m, one immediately sees
that 〈Jacm(X, Y, Z), V 〉 is just −σT t(X, Y, Z, V ) as defined before. From the explicit
formula for T t and the property ∇1T 1 = 0, it is a routine computation to show that
(see [Agr03, Lemma 2.3, 2.5])

∇t
ZT

t(X, Y ) =
1

2
t(t− 1)Jacm(X, Y, Z) , dT t(X, Y, Z, V ) = −2t 〈Jacm(X, Y, Z), V 〉 .

In particular, dT t and σT t are always proportional (see Remark 5.1). The first formula
implies X ∇t

XT
t = 0, hence δtT t = 0 and it equals the Riemannian divergence δgT t

by Proposition A.2 of the Appendix. Since the Ad(G)-invariant extension Q of 〈 , 〉
is not necessarily positive definite when restricted to h, it is more appropriate to work
with dual rather than with orthonormal bases. So pick bases xi, yi of h wich are dual
with respect to Qh, i.e., Qh(xi, yj) = δij. The (lift into the spin bundle of the) Casimir
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operator of the full Lie algebra g is now the sum of a second order differential operator
(its m-part) and a constant element of the Clifford algebra (its h-part)

Ωg(ψ) = −
n∑

i=1

e2i (ψ) −
dimh∑

j=1

ãd (xj) ◦ ãd (yj) · ψ for ψ ∈ ΣMn .

In order to prove the generalized Kostant-Parthasarathy formula for the square of Dt,
similar technical prerequisites as in Section 5.2 are needed, but now expressed with
respect to representation theoretical quantities instead of analytical ones. We refer to
[Agr03] for details and will rather formulate the final result without detours. Observe
that the dimension restriction below (n ≥ 5) is not essential, for small dimensions a
similar formula holds, but it looks slightly different.

Theorem 5.6 (Generalized Kostant-Parthasarathy formula, [Agr03, Thm 3.2]). For
n ≥ 5, the square of Dt is given by

(Dt)2ψ = Ωg(ψ) +
1

2
(3t− 1)

∑

i,j,k

〈[ei, ej]m, ek〉 ei · ej · ek(ψ)

− 1

2

∑

i<j<k<l

〈
ei, Jach(ej, ek, el) +

9(1 − t)2

4
Jacm(ej , ek, el)

〉
· ei · ej · ek · el · ψ

+
1

8

∑

i,j

Qh

(
[ei, ej], [ei, ej ]

)
ψ +

3(1 − t)2

24

∑

i,j

Qm

(
[ei, ej], [ei, ej]

)
ψ .

Qualitatively, this result is similar to equation (10) of Theorem 5.1, although one
cannot be deduced directly from the other. Again, the square of the Dirac operator
is written as the sum of a second order differential operator (the Casimir operator), a
first order differential operator, a four-fold product in the Clifford algebra and a scalar
part (recall that δtT t = 0, hence this term has no counterpart here). An immediate
consequence is the special case t = 1/3:

Corollary 5.1 (The Kostant-Parthasarathy formula for t = 1/3). For n ≥ 5 and
t = 1/3, the general formula for (Dt)2 reduces to

(D1/3)2ψ = Ωg(ψ) +
1

8

[∑

i,j

Qh([ei, ej], [ei, ej ]) +
1

3

∑

i,j

Qm([ei, ej], [ei, ej ])
]
ψ

= Ωg(ψ) +
1

8

[
scal1/3 +

1

9

∑

i,j

Qm([ei, ej ], [ei, ej])
]
ψ .

Remark 5.4. In particular, one immediately recovers the classical Parthasarathy
formula for a symmetric space, since then all scalar curvatures coincide and [ei, ej] ∈ h.
In fact, compared with Theorem 5.3, Corollary 5.1 has the advantage of containing
no 4-form action on the spinor and the draw-back that the Casimir operator of a
naturally reductive space is not necessarily a non-negative operator (see Section 5.4
for a detailed investigation of this point).

As in the classical Parthasarathy formula, the scalar term as well as the eigenvalues
of Ωg(ψ) may be expressed in representation theoretical terms if G (and hence M) is
compact.
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Lemma 5.1 ([Agr03, Lemma 3.6]). Let G be compact, n ≥ 5, and denote by ̺g

and ̺h the half sum of the positive roots of g and h, respectively. Then the Kostant-
Parthasarathy formula for (D1/3)2 may be restated as

(D1/3)2ψ = Ωg(ψ) +
[
Q(̺g, ̺g) −Q(̺h, ̺h)

]
ψ = Ωg(ψ) + 〈̺g − ̺h, ̺g − ̺h〉ψ .

In particular, the scalar term is positive independently of the properties of Q.

We can formulate our first conclusion from Corollary 5.1:

Corollary 5.2 ([Agr03, Cor. 3.1]). Let G be compact. If the operator Ωg is non-

negative, the first eigenvalue λ
1/3
1 of the Dirac operator D1/3 satisfies the inequality

(
λ

1/3
1

)2 ≥ Q(̺g, ̺g) −Q(̺h, ̺h) .

Equality occurs if and only if there exists an algebraic spinor in ∆m which is fixed

under the lift κ(ÃdH) of the isotropy representation.

Remark 5.5. This eigenvalue estimate is remarkable for several reasons. Firstly, for
homogeneous non symmetric spaces, it is sharper than the classical Parthasarathy
formula. For a symmetric space, one classically obtains λ2

1 ≥ scal/8. But since the
Schrödinger-Lichnerowicz formula yields immediately λ2

1 ≥ scal/4, the lower bound in
the classical Parthasarathy formula is never attained. In contrast, there exist many
examples of homogeneous non symmetric spaces with constant spinors. Secondly,
it uses a lower bound wich is always strictly positive; for many naturally reductive
metrics with negative scalar curvature a pure curvature bound would be of small
interest. Our previously discussed generalizations of the Schrödinger-Lichnerowicz
yield no immediate eigenvalue estimate. S. Goette derived in [Goe99, Lemma 1.17] an
eigenvalue estimate for normal homogeneous naturally reductive metrics, but it is also
not sharp.

Remark 5.6. Since Dt is a G-invariant differential operator on M by construction,
Theorem 5.6 implies that the linear combination of the first order differential operator
and the multiplication by the element of degree four in the Clifford algebra appearing
in the formula for (Dt)2 is again G invariant for all t. Hence, the first order differential
operator

D̃ψ :=
∑

i,j,k

〈[Zi, Zj]m, Zk〉Zi · Zj · Zk(ψ)

has to be a G-invariant differential operator, a fact that cannot be seen directly by
any simple arguments. It has no analogue on symmetric spaces and certainly deserves
further separate investigations. Of course, it should be understood as a ‘homogeneous
cousin’ of the more general operator D defined in equation (9).

5.4. A Casimir operator for characteristic connections. Typically, the canoni-
cal connection of a naturally reductive homogeneous space M can be given an alter-
native geometric characterization—for example, as the unique metric connection with
skew-symmetric torsion preserving a given G-structure. Once this is done, D1/3, scalg

and ‖T‖2 are geometrically invariant objects, whereas Ωg still heavily relies on the
concrete realization of the homogeneous space M as a quotient. At the same time,
the same interesting G-structures exist on many non-homogeneous manifolds. Hence
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it was our goal to find a tool similar to Ωg which has more intrinsic geometric meaning
and which can be used in both situations just described [AF04b].

We consider a Riemannian spin manifold (Mn, g,∇) with a metric connection ∇
and skew-symmetric torsion T . Denote by ∆T the spinor Laplacian of the connection
∇.

Definition 5.1. The Casimir operator of (Mn, g,∇) is the differential operator acting
on spinor fields by

Ω :=(D1/3)2 +
1

8
(dT − 2σT ) +

1

4
δ(T ) − 1

8
scalg − 1

16
‖T‖2

=∆T +
1

8

(
3 dT − 2σT + 2 δ(T ) + scal

)
.

Remark 5.7. A naturally reductive space Mn = G/H endowed with its canonical
connection satisfies dT = 2σT and δT = 0, hence Ω = Ωg by Theorem 5.1. For
connections with dT 6= 2σT and δT 6= 0, the numerical factors are chosen in such a
way to yield an overall expression proportional to the scalar part of the right hand
side of equation (10).

Example 5.3. For the Levi-Civita connection (T = 0) of an arbitrary Riemannian
manifold, we obtain

Ω = (Dg)2 − 1

8
scalg = ∆g +

1

8
scalg .

The second equality is just the classical Schrödinger-Lichnerowicz formula for the
Riemannian Dirac operator, whereas the first one is — in case of a symmetric space
— the classical Parthasarathy formula.

Example 5.4. Consider a 3-dimensional manifold of constant scalar curvature, a con-
stant a ∈ R and the 3-form T = 2 a dM3. Then

Ω = (Dg)2 − aDg − 1

8
scalg .

The kernel of the Casimir operator corresponds to eigenvalues λ ∈ Spec(Dg) of the
Riemannian Dirac operator such that

8 (λ2 − aλ) − scalg = 0 .

In particular, the kernel of Ω is in general larger then the space of ∇-parallel spinors.
Indeed, such spinors exist only on space forms. More generally, fix a real-valued smooth
function f and consider the 3-form T := f · dM3. If there exists a ∇-parallel spinor

∇g
Xψ + (X T ) · ψ = ∇g

Xψ + f ·X · ψ = 0 ,

then, by a theorem of A. Lichnerowicz (see [Li87]), f is constant and (M3, g) is a space
form.

Let us collect some elementary properties of the Casimir operator.

Proposition 5.1 ([AF04b, Prop. 3.1]). The kernel of the Casimir operator contains
all ∇-parallel spinors.
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Proof. By Theorem 5.1, one of the integrability conditions for a ∇-parallel spinor
field ψ is (

3 dT − 2σT + 2 δ(T ) + scal
)
· ψ = 0 .

�

If the torsion form T is ∇-parallel, the formulas for the Casimir operator simplify.
Indeed, in this case we have (see the Appendix)

dT = 2σT , δ(T) = 0 ,

and the Ricci tensor Ric of ∇ is symmetric. Using the formulas of Section 5.2 (in
particular, Theorems 5.1 and 5.3), we obtain a simpler expressions for the Casimir
operator.

Proposition 5.2 ([AF04b, Prop. 3.2]). For a metric connection with parallel torsion
(∇T = 0), the Casimir operator can equivalently be written as:

Ω = (D1/3)2 − 1

16

(
2 scalg + ‖T‖2

)
= ∆T +

1

16

(
2 scalg + ‖T‖2

)
− 1

4
T 2

= ∆T +
1

8

(
2 dT + scal

)
.

Integrating these formulas, we obtain a vanishing theorem for the kernel of the Casimir
operator.

Proposition 5.3 ([AF04b, Prop. 3.3]). Assume that M is compact and that ∇ has
parallel torsion T . If one of the conditions

2 scalg ≤ −‖T‖2 or 2 scalg ≥ 4T2 − ‖T‖2 ,

holds, the Casimir operator is non-negative in L2(S).

Example 5.5. For a naturally reductive space M = G/H , the first condition can never
hold, since by Lemma 5.1, 2 scalg + ‖T‖2 is strictly positive. In concrete examples,
the second condition typically singles out the normal homogeneous metrics among the
naturally reductive ones.

Proposition 5.4 ([AF04b, Prop. 3.4]). If the torsion form is ∇-parallel, the Casimir
operator Ω and the square of the Dirac operator (D1/3)2 commute with the endomor-
phism T,

Ω ◦ T = T ◦ Ω , (D1/3)2 ◦ T = T ◦ (D1/3)2 .

The endomorphism T acts on the spinor bundle as a symmetric endomorphism with
constant eigenvalues.

Theorem 5.7. Let (Mn, g,∇) be a compact Riemannian spin manifold equipped with
a metric connection ∇ with parallel, skew-symmetric torsion, ∇T = 0. The endomor-
phism T and the Riemannian Dirac operator Dg act in the kernel of the Dirac operator
D1/3. In particular, if, for all µ ∈ Spec(T ), the number −µ/4 is not an eigenvalue of
the Riemannian Dirac operator, then the kernel of D1/3 is trivial.

If ψ belongs to the kernel of D1/3 and is an eigenspinor of the endomorphism T , we
have 4 · Dgψ = −µ · ψ, µ ∈ Spec(T ). Using the estimate of the eigenvalues of the
Riemannian Dirac operator (see [Fri80]), we obtain an upper bound for the minimum
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scalgmin Riemannian scalar curvature in case that the kernel of the operator D1/3 is non
trivial.

Proposition 5.5. Let (Mn, g,∇) be a compact Riemannian spin manifold equipped
with a metric connection ∇ with parallel, skew-symmetric torsion, ∇T = 0. If the
kernel of the Dirac operator D1/3 is non trivial, then the minimum of the Riemannian
scalar curvature is bounded by

max
{
µ2 : µ ∈ Spec(T )

}
≥ 4n

n− 1
scalgmin .

Remark 5.8. If (n−1)µ2 = 4n scalg is in the spectrum of T and there exists a spinor
field ψ in the kernel of D1/3 such that T · ψ = µ · ψ, then we are in the limiting case
of the inequality in [Fri80]. Consequently, Mn is an Einstein manifold of non-negative
Riemannian scalar curvature and ψ is a Riemannian Killing spinor. Examples of this
type are 7-dimensional 3-Sasakian manifolds. The possible torsion forms have been
discussed in [AF04a], Section 9.

We discuss in detail what happens for 5-dimensional Sasakian manifold. Let (M5, g,
ξ, η, ϕ) be a (compact) 5-dimensional Sasakian spin manifold with a fixed spin struc-
ture, ∇c its characteristic connection. We orient M5 by the condition that the differ-
ential of the contact form is given by dη = 2(e1 ∧ e2 + e3 ∧ e4), and write henceforth
eij... for ei ∧ ej ∧ . . .. Then we know that

∇T c = 0 , T c = η ∧ dη = 2 (e12 + e34) ∧ e5 , (T c)2 = 8 − 8 e1234

and

Ω = (D1/3)2 − 1

8
scalg − 1

2
= ∆T c +

1

8
scalg − 3

2
+ 2 e1234 .

We study the kernel of the Dirac operator D1/3. The endomorphism T c acts in the
5-dimensional spin representation with eigenvalues (−4, 0, 0, 4) and, according to The-
orem 5.7, we have to distinguish two cases. If D1/3ψ = 0 and T c · ψ = 0, the spinor
field is harmonic and the formulas of Proposition 5.2 yield in the compact case the
condition ∫

M5

(
2 scalg + 8

)
‖ψ‖2 ≤ 0 .

Examples of that type are the 5-dimensional Heisenberg group with its left invariant
Sasakian structure and its compact quotients (Example 4.1) or certain S1-bundles over
a flat torus. The space of all ∇-parallel spinors satisfying T c ·ψ0 = 0 is a 2-dimensional
subspace of the kernel of the operator D1/3 (see [FI02], [FI03a]). The second case for
spinors in the kernel is given by D1/3ψ = 0 and T c · ψ = ±4ψ. The spinor field
is an eigenspinor for the Riemannian Dirac operator, Dgψ = ∓ψ. The formulas of
Proposition 5.2 and Proposition 5.5 yield in the compact case two conditions:

∫

M5

(
scalg − 12

)
‖ψ‖2 ≤ 0 and 5 scalgmin ≤ 16 .
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The paper [FK90] contains a construction of Sasakian manifolds admitting a spinor
field of that algebraic type in the kernel of D1/3. We describe the construction ex-
plicitly. Suppose that the Riemannian Ricci tensor Ricg of a simply-connected, 5-
dimensional Sasakian manifold is given by the formula

Ricg = −2 · g + 6 · η ⊗ η .

Its scalar curvature equals scalg = −4. In the simply-connected and compact case,
they are total spaces of S1 principal bundles over 4-dimensional Calabi-Yau orbifolds
(see [BG99]). There exist (see [FK90], Theorem 6.3) two spinor fields ψ1, ψ2 such that

∇g
Xψ1 = −1

2
X · ψ1 +

3

2
η(X) · ξ · ψ1 , T · ψ1 = −4ψ1 ,

∇g
Xψ2 =

1

2
X · ψ2 −

3

2
η(X) · ξ · ψ2 , T c · ψ2 = 4ψ2 .

In particular, we obtain

Dgψ1 = ψ1 , T c · ψ1 = −4ψ1 , and Dgψ2 = −ψ2 , T c · ψ2 = 4ψ2 ,

and therefore the spinor fields ψ1 and ψ2 belong to the kernel of the operator D1/3.

Next, we investigate the kernel of the Casimir operator. Under the action of the torsion
form, the spinor bundle ΣM5 splits into three subbundles ΣM5 = Σ0 ⊕ Σ4 ⊕ Σ−4

corresponding to the eigenvalues of T c. Since ∇T c = 0, the connection ∇ preserves
the splitting. The endomorphism e1234 acts by the formulas

e1234 = 1 on Σ0 , e1234 = −1 on Σ4 ⊕ Σ−4 .

Consequently, the formula

Ω = ∆T c +
1

8
scalg − 3

2
+ 2 e1234

shows that the Casimir operator splits into the sum Ω = Ω0 ⊕ Ω4 ⊕ Ω−4 of three
operators acting on sections in Σ0, Σ4 and Σ−4. On Σ0, we have

Ω0 = ∆T c +
1

8
scalg +

1

2
= (D1/3)2 − 1

8
scalg − 1

2
.

In particular, the kernel of Ω0 is trivial if scalg 6= −4. The Casimir operator on Σ4⊕Σ−4

is given by

Ω±4 = ∆T c +
1

8
scalg − 7

2
= (D1/3)2 − 1

8
scalg − 1

2
and a non trivial kernel can only occur if −4 ≤ scalg ≤ 28. A spinor field ψ in the
kernel of the Casimir operator Ω satisfies the equations

(D1/3)2 · ψ =
1

8
(4 + scalg)ψ , T c · ψ = ±4ψ .

In particular, we obtain
∫

M5

〈
(Dg ± 1)2ψ, ψ

〉
=

1

8

∫

M5

(
4 + scalg

)
‖ψ‖2 ,

and the first eigenvalue of the operator (Dg ± 1)2 is bounded by the scalar curvature,

λ1(Dg ± 1)2 ≤ 1

8

(
4 + scalgmax

)
.



60 I. AGRICOLA

Let us consider special classes of Sasakian manifolds. A first case is scalg = −4. Then
the formula for the Casimir operator simplifies,

Ω0 = ∆T c = (D1/3)2 , Ω±4 = ∆T − 4 = (D1/3)2 .

If M5 is compact, the kernel of the operator Ω0 coincides with the space of ∇-parallel
spinors in the bundle S0. A spinor field ψ in the kernel the operator Ω±4 is an eigen-
spinor of the Riemannian Dirac operator,

Dg(ψ) = ∓ψ , T · ψ = ±4ψ .

Compact Sasakian manifolds admitting spinor fields in the kernel of Ω0 are quotients
of the 5-dimensional Heisenberg group (see [FI03a], Theorem 4.1). Moreover, the 5-
dimensional Heisenberg group and its compact quotients admit spinor fields in the
kernel of Ω±4, too.

A second case is scalg = 28. Then

Ω0 = ∆T c + 4 = (D1/3)2 − 4 , Ω±4 = ∆T c = (D1/3)2 − 4 .

The kernel of Ω0 is trivial and the kernel of Ω±4 coincides with the space of ∇-parallel
spinors in the bundle S±4. Sasakian manifolds admitting spinor fields of that type
have been described in [FI02], Theorem 7.3 and Example 7.4.

If −4 < Scalg < 28, the kernel of the operator Ω0 is trivial and the kernel of Ω±4

depends on the geometry of the Sasakian structure. Let us discuss Einstein-Sasakian
manifolds. Their scalar curvature equals scalg = 20 and the Casimir operators are

Ω0 = ∆T c + 3 , Ω±4 = ∆T c − 1 = (D1/3)2 − 3 .

If M5 is simply-connected, there exist two Riemannian Killing spinors (see [FK90])

∇g
Xψ1 =

1

2
X · ψ1 , Dg(ψ1) = −5

2
ψ1, T c · ψ1 = 4ψ1 ,

∇g
Xψ2 = −1

2
X · ψ2 , Dg(ψ2) =

5

2
ψ2 , T c · ψ2 = −4ψ2 .

We compute the Casimir operator

Ω(ψ1) = −3

4
ψ1 , Ω(ψ2) = −3

4
ψ2 .

In particular, the Casimir operator of a Einstein-Sasakian manifold has negative eigen-
values. The Riemannian Killing spinors are parallel sections in the bundles Σ±4 with
respect to the flat connections ∇±

∇+
Xψ := ∇g

Xψ − 1

2
X · ψ in Σ4 , ∇−

Xψ := ∇g
Xψ +

1

2
X · ψ in Σ−4 .

We compare these connections with our canonical connection ∇:

(
∇±

X −∇X

)
· ψ± = ± i

2
g(X, ξ) · ψ± , ψ± ∈ Σ±4 .

The latter equation means that the bundle Σ4 ⊕Σ−4 equipped with the connection ∇
is equivalent to the 2-dimensional trivial bundle with the connection form

A =
i

2
η ·

[
−1 0

0 1

]
.
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The curvature of ∇ on these bundles is given by the formula

R∇ =
i

2
dη ·

[
−1 0

0 1

]
= i (e1 ∧ e2 + e3 ∧ e4) ·

[
1 0
0 −1

]
.

Since the divergence div(ξ) = 0 of the Killing vector field vanishes, the Casimir oper-
ator on Σ4 ⊕ Σ−4 is the following operator acting on pairs of functions:

Ω4 ⊕ Ω−4 = ∆T − 1 = ∆ − 3

4
+

[
−i 0

0 i

]
ξ .

Here ∆ means the usual Laplacian of M5 acting on functions and ξ is the differentiation
in direction of the vector field ξ. In particular, the kernel of Ω coincides with solutions
f : M5 → C of the equation

∆(f) − 3

4
f ± i ξ(f) = 0 .

The L2-symmetric differential operators ∆ and i ξ commute. Therefore, we can diag-
onalize them simultaneously. The latter equation is solvable if and only if there exists
a common eigenfunction

∆(f) = µ f , i ξ(f) = λ f , 4(µ+ λ) − 3 = 0 .

The Laplacian ∆ is the sum of the non-negative horizontal Laplacian and the operator
(i ξ)2. Now, the conditions

λ2 ≤ µ , 4(µ+ λ) − 3 = 0

restrict the eigenvalue of the Laplacian, 0 ≤ µ ≤ 3. On the other side, by the
Lichnerowicz-Obata Theorem, we have 5 ≤ µ, a contradiction. In particular, we
proved

Theorem 5.8. The Casimir operator of a compact 5-dimensional Sasaki-Einstein
manifold has trivial kernel; in particular, there are no ∇c-parallel spinors.

The same argument estimates the eigenvalues of the Casimir operator. It turns out
that the smallest eigenvalues of Ω is negative and equals −3/4. The eigenspinors are
the Riemannian Killing spinors. The next eigenvalue of the Casimir operator is at
least

λ2(Ω) ≥ 17

4
−

√
5 ≈ 2.014 .

In the literature, similar results for almost Hermitian 6-manifolds and G2-manifolds
admitting a characteristic connection can be found.

5.5. Some remarks on the common sector of type II superstring theory.
The mathematical model discussed in the common sector of type II superstring theory
(also sometimes referred to as type I supergravity) consists of a Riemannian manifold
(Mn, g), a metric connection ∇ with totally skew-symmetric torsion T and a non-
trivial spinor field Ψ. Putting the full Ricci tensor aside for starters and assuming
that the dilaton is constant, there are three equations relating these objects:

(∗) ∇Ψ = 0 , δ(T ) = 0 , T · Ψ = µ · Ψ .

The spinor field describes the supersymmetry of the model. It has been our con-
viction throughout this article that this is the most important of the equations, as
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non-existence of ∇-parallel spinors implies the breakdown of supersymmetry. Yet,
interesting things can be said if looking at all equations simultaneously. Since ∇ is a
metric connection with totally skew-symmetric torsion, the divergences δ∇(T ) = δg(T )
of the torsion form coincide (see Proposition A.2). We denote this unique 2-form sim-
ply by δ(T ). The third equation is an algebraic link between the torsion form T and
the spinor field Ψ. Indeed, the 3-form T acts as an endomorphism in the spinor bun-
dle and the last equation requires that Ψ is an eigenspinor for this endomorphism.
Generically, µ = 0 in the physical model; but the mathematical analysis becomes
more transparent if we first include this parameter. A priori, µ may be an arbitrary
function. Since T acts on spinors as a symmetric endomorphism, µ has to be real.
Moreover, we will see that only real, constant parameters µ are possible. Recall that
the conservation law δ(T ) = 0 implies that the Ricci tensor Ric∇ of the connection ∇
is symmetric, see the Appendix. Denote by scal∇ the ∇-scalar curvature and by scalg

the scalar curvature of the Riemannian metric. Based on the results of Section 5.2,
the existence of the ∇-parallel spinor field yields the so called integrability conditions,
i.e. relations between µ, T and the curvature tensor of the connection ∇.

Theorem 5.9 ([AFNP05, Thm 1.1.]). Let (Mn, g,∇, T,Ψ, µ) be a solution of (∗) and
assume that the spinor field Ψ is non-trivial. Then the function µ is constant and we
have

‖T‖2 = µ2 − scal∇

2
≥ 0 , scalg =

3

2
µ2 +

scal∇

4
.

Moreover, the spinor field Ψ is an eigenspinor of the endomorphism defined by the
4-form dT ,

dT · Ψ = −scal∇

2
· Ψ .

Since µ has to be constant, equation T · Ψ = µ · Ψ yields:

Corollary 5.3. For all vectors X, one has

(∇XT ) · Ψ = 0 .

The set of equations (∗) is completed in the common sector of type II superstring
theory by the condition Ric∇ = 0 and the requirement µ = 0. In [Agr03], it had
been shown that the existence of a non-trivial solution of this system implies T = 0
on compact manifolds. Theorem 5.9 enables us to prove the same result without
compactness assumption and under the much weaker curvature assumption scal∇ = 0:

Corollary 5.4. Assume that there exists a spinor field Ψ 6= 0 satisfying the equations
(∗). If µ = 0 and scal∇ = 0, the torsion form T has to vanish.

This result underlines the strength of the algebraic identities in Theorem 5.9. Phys-
ically, this result may either show that the dilaton is a necessary ingredient for T 6= 0
(while it is not for T = 0) or that the set of equations is too restrictive (it is derived
from a variational principle).

Remark 5.9. In the common sector of type II string theories, the ”Bianchi identity”
dT = 0 is often required in addition. It does not affect the mathematical structure of
the equations (∗), hence we do not include it into our discussion.
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On a naturally reductive space, even more is true. The generalized Kostant-Partha-
sarathy formula implies for the family of connections ∇t:

Theorem 5.10 ([Agr03, Thm. 4.3]). If the operator Ωg is non-negative and if ∇t

is not the Levi-Civita connection, there do not exist any non trivial solutions to the
equations

∇tψ = 0 , T t · ψ = 0 .

The last equation in type II string theory deals with the Ricci tensor Ric∇ of the
connection. Usually one requires for constant dilaton that the Ricci tensor has to
vanish (see [GMW03]). The result above, however, indicates that this condition may
be too strong. Understanding this tensor as an energy-momentum tensor, it seems to
be more convenient to impose a weaker condition, namely

div(Ric∇) = 0 .

A subtle point is however the fact that there are a priori two different divergence
operators. The first operator divg is defined by the Levi-Civita connection of the
Riemannian metric, while the second operator div∇ is defined by the connection ∇.
By Lemma A.2, they coincide if Ric is symmetric, that is, if δT = 0. This is for
example satisfied if ∇T = 0. We can then prove:

Corollary 5.5. Let (Mn, g,∇, T,Ψ, µ) be a a manifold with metric connection defined
by T and assume that there exists a spinor 0 6= ψ ∈ ΣMn such that

∇ψ = 0 , ∇T = 0 , T · ψ = µ · ψ .
Then all scalar curvatures are constant and the divergence of the Ricci tensor vanishes,
div(Ric∇) = 0.

This is one possible way to weaken the original set of equations in such a way that
the curvature condition follows from the other ones, as it is the case for T = 0—there,
the existence of a ∇g-parallel spinor implies Ricg = 0. Of course, only physics can
provide a definite answer whether these or other possible replacements are ‘the right
ones’.

Incorporating a non-constant dilaton Φ ∈ C∞(Mn) is more subtle. The full set of
equations reads in this case

Ric∇ +
1

2
δT + 2∇gdΦ = 0 , δT = 2 grad(Φ) T, ∇ψ = 0 , (2 dΦ − T ) · ψ = 0 .

In some geometries, it is possible to interpret it as a partial conformal change of the
metric. In dimension 5, this allows the proof that Φ basically has to be constant:

Theorem 5.11 ([FI03a]). Let (M5, g, ξ, η, ϕ) be a normal almost contact metric struc-
ture with Killing vector field ξ, ∇c its characteristic connection and Φ a smooth func-
tion on M5. If there exists a spinor field ψ ∈ ΣM5 such that

∇cψ = 0 , (2 dΦ − T ) · ψ = 0 ,

then the function Φ is constant.

In higher dimension, the picture is less clear, basically because a clean geometric
interpretation of Φ is missing.
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Note added in proof. In January 2007, I learned from P. Nurowski that E. Fer-
apontov discovered a non-integrable GL(2,R)-geometry in dimension 5 through his
investigations of non-linear partial differential equations in hydrodynamics. It turns
out that this is a an analogue of the 5-dimensional SO(3)-geometry discussed in Sec-
tion 4.4 with indefinite signature (3, 2), which furthermore includes the conformal
invariance of the defining quantities. M. Godlinski and P. Nurowski then observed
that such geometries can be constructed as solution spaces of certain 5th order or-
dinary differential equations modulo contact transformations, yielding in particular
non-homogeneous examples. For further details, please consult the forthcoming pub-
lications by Ferapontov and Godlinski/Nurowski.

Appendix A. Compilation of remarkable identities for connections

with skew-symmetric torsion

We collect in this appendix some more or less technical formulas that one needs in
the investigation of metric connections with skew-symmetric torsion. In order to keep
this exposition readable, we decided to gather them in a separate section.

We tried to provide at least one reference with full proofs for every stated result;
however, no claim is made whether these are the articles where these identities ap-
peared for the first time. In fact, many of them have been derived and rederived
by authors when needed, some had been published earlier but the authors had not
considered it worth to publish a proof etc.

In this section, the connection ∇ is normalized as

∇XY = ∇g
XY +

1

2
T (X, Y, ∗) , ∇Xψ = ∇g

Xψ +
1

4
(X T ) · ψ .

It then easily follows that the Dirac operators are related by D∇ = Dg + (3/4)T .

Definition A.1. Recall that for any 3-form T , an algebraic 4-form σT quadratic in T

may be defined by 2 σT =
n∑

i=1

(ei T )∧(ei T ), where e1, . . . , en denotes an orthonormal

frame. Alternatively, σT may be written without reference to an orthonormal frame
as

σT (X, Y, Z, V ) = g
(
T (X, Y ), T (Z, V )

)
+ g

(
T (Y, Z), T (X, V )

)
+ g

(
T (Z,X), T (Y, V )

)
.

We first encountered σT in the first Bianchi identity for metric connections with torsion
T (Theorem 2.6).

Proposition A.1 ([Agr03, Prop. 3.1.]). Let T be a 3-form, and denote by the same
symbol its associated (2, 1)-tensor. Then its square inside the Clifford algebra has no
contribution of degree 6 and 2, and its scalar and fourth degree part are given by

T 2
0 =

1

6

n∑

i,j=1

‖T (ei, ej)‖2 =: ‖T‖2, T 2
4 = −2 · σT .
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Lemma A.1 ([Agr03, Lemma 2.4.]). If ω is an r-form and ∇ any connection with
torsion, then

(dω)(X0, . . . , Xr) =
r∑

i=0

(−1)i(∇Xi
ω)(X0, . . . , X̂i, . . . , Xr)

−
∑

0≤i<j≤r

(−1)i+jω(T (Xi, Xj), X0, . . . , X̂i, . . . , X̂j, . . . , Xr) .

Corollary A.1 ([IP01]). For a metric connection ∇ with torsion T , the exterior
derivative of T is given by

dT (X, Y, Z, V ) =
X,Y,Z
σ [(∇XT )(Y, Z, V )] − (∇V T )(X, Y, Z) + 2 σT (X, Y, Z, V ).

In particular, dT = 2σT if ∇T = 0.

Proposition A.2 ([AF04a, Prop. 5.1.]). Let ∇ be a connection with skew-symmetric
torsion and define the ∇-divergence of a differential form ω as

δ∇ω := −
n∑

i=1

ei ∇ei
ω .

Then, for any exterior form ω, the following formula holds:

δ∇ω = δgω − 1

2
·

n∑

i,j=1

(ei ej T ) ∧ (ei ej ω) .

In particular, for the torsion form itself, we obtain δ∇T = δgT =: δT .

Corollary A.2. If the torsion form T is ∇-parallel, then its divergence vanishes,

δgT = δ∇T = 0 .

We define the divergence for a (0, 2)-tensor S as div∇(S)(X) :=
∑

i(∇ei
S)(X, ei)

and denote by divg the divergence with respect to the Levi-Civita connection ∇g.
Then

divg(S)(X) − div∇(S)(X) = −1

2

n∑

i,j=1

S(ei, ej) T(ei, X, ej) = 0

because S is symmetric while T is antisymmetric, and we conclude immediately:

Lemma A.2 ([AFNP05, Lemma 1.1]). If ∇ is a metric connection with totally skew-
symmetric torsion and S a symmetric 2-tensor, then

divg(S) = div∇(S) .
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Theorem A.1 ([IP01]). The Riemannian curvature quantities and the ∇-curvature
quantities are related by

Rg(X, Y, Z, V ) = R∇(X, Y, Z, V ) − 1

2
(∇XT )(Y, Z, V ) +

1

2
(∇Y T )(X,Z, V )

− 1

4
g
(
T (X, Y ), T (Z, V )

)
− 1

4
σT (X, Y, Z, V )

Ricg(X, Y ) = Ric∇(X, Y ) +
1

2
δT (X, Y ) − 1

4

dim M∑

i=1

g
(
T (ei, X), T (ei, Y )

)
scal∇

= scalg − 3

2
‖T‖2 .

In particular, Ric∇ is symmetric if and only if δT = 0,

Ric∇(X, Y ) − Ric∇(Y,X) = −δT (X, Y ) .
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