3-Sasakian manifolds and intrinsic
torsion

BOoGDAN ALEXANDROV

1 Intrinsic torsion

Let T :=R"™ and G C GL(n,R) be a subgroup.

The following map is clearly G-invariant.
0:T"®g—T"®@gln, R)
—T*RT*@T — N°T*®T
BRY®z — (BAY)®
Therefore Kerd, Im ¢ and A°T* ® T/Im§ are
also representations of G and the projection
1 N°T*QT — A*T*®T/Im § is G-invariant.
S0, it PaM C Fgr,r)M 1s a G-structure
on a manifold M, then all the above spaces de-
fine corresponding associated with P M bun-
dles TM, T*M, g(M) ..., and § and 7 induce
correctly defined bundle maps.
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Let V and V/ be connections in Pg. Then
V' -V el(T*M @ g(M)),
SV =) =TV — TV
=7V — 7V e I(Im )
= T (Tvl — Tv> = 0.

This shows that the following definition is inde-
pendent of the choice of V.

Def. Tp =7 (TV) e T(A2T*QT/Tm §) is

the intrinsic torsion of the G-structure Po M.
We have furthermore

TV =TV & §(V'-V) =0 & V-V € ['(Ker §)

& V' =V + A for some A € I'(Ker ).
Thus, given V., the connections V’ satisfying

TV' = TV are parametrized by ['(Kerd).

Def. Let W C A°T*®T/Im § be a G-invariant
subspace. Py M is said to be of (Gray-Hervella)
type Wit Tppp € T(W(M)).
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E.g., Tp,p = 01if there exists a connection V in
PoM with TV =0 (1-integrable G-structure).

Suppose now that N is a G-invariant comple-
ment of Im § in A°T* @ T. Then there exists a
connection with Torsion in I'(N(M)). If further-
more § is injective, then this connection V04 is

unique and is called the canonical connection
of PoM with respect to N.

Examples:
1.G =50(n) or O(n).
Og0(n) ° e a@ — AT RN
AT =1
is an isomorphism. Therefore
o m 550(71) — A2 QT
= N*T* @ T/Im 644, = 0
= 1p SO(n)
connection V in PSO(n)M with TV = 0.
o Ker 550(71) = (. Therefore V is unique.

A7 = 0 and thus there exists a

V is the Levi-Civita connection.
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2.G C SO(n) or O(n).
Then g C so(n) = g & g Thus
0

so(n)

g : T"®g < T*®(g@gL) = T*®so(n) —
N2T*@T = 8oy (T @) B0 (T* @)
50 0g is injective, Im dg = dg6(,,) (1™ @ g) and
Ogo(n) (T ® g') is a G-invariant complement

of Imdy in A*T* @ T. Thus there exists a
unique connection V" with Torsion

TV € D(dg(n)(T*M ® g(M))). Equiva-
lently, VY is characterized by VY = V + Ay
with Ag € T(T*M ® g-(M)).

Because of the isomorphisms

N*T*@T /T §g = 6,0, (T @) = T*g™

we have  Tp.pr < ™V & Ag

and the Gray-Hervella-type classification is
usually done in terms of a decomposition
T*Qgt=W, @ - &W, of T*® g+
into irreducible G-invariant summands.
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2 3-Sasakian manifolds

Def. (M,g) is a 3- Sasakzan mamfold if the
cone (M M xRy, G = rg + dr?) is hyper-
Kahler.

In this case there exist orthogonal
I,J,K € T(End(TM))
which satisty the quaternionic identities. Let
r = —fﬁr!rzl &g = =IO lr=1,€k = —K0r|,—1,
= span{¢y, £, €k}
I = [‘Vi’ J = JlVL’ K = K’VL
Iy =0, Jly=0, Kly=0.

Then TM = VL@V, V is trivialised by the or-
thonormal frame &7, &7, &y, and I, J, K satisty
the quaternionic identities and are orthogonal
on V. Thus we obtain an Sp(n)-structure on
M, where the action of Sp(n) C SO(4n + 3)

n R¥+3 = R @ R3 is given by the standard
representation on R*” and the trivial one on R?.
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3 Sp(n)Sp(1)-structures on
(4n + 3)-dimensional manifolds

If we consider an Sp(n)-structure as above, we
have

T" ® s]o(n)L = 1OR @ other summands .

57 o4 33
n>3 OI n=2 Or n=1

Since the dimension of the trivial representation
is too big, we shall consider a more general G-
structure.

Let G := Sp(n)Sp(1) C SO(4n + 3) acting
on R 3 — R @ R3 by the standard rep-
resentation of Sp(n)Sp(1) on R* = H" and
through the projection Sp(n)Sp(l) — SO(3)
on R3. (Then Sp(n) C G acts on R¥*H3 as

above.)
We have

T* ® gL = 2R & other summandsg,
31 for n>1 or 18 for n=1
T ® g = R @ other summands .
9 for n>1 or 8 for n=1
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One basis of 2R € T* @ g+ is given by

A(P,Q) = 6&(g(IP, Q)¢ — ni(Q)IP),
B(P,Q) = &(n;(P)IQ —nnjy Ang(P,Q)¢r)
and R C T* ® g is spanned by

C(P,Q) = 6n(P)IQ+2n;(Q)&x—2nk (Q)E.1)-

Here ny,n7,ni are dual to £7,€7,& and &
denotes the cyclic sum with respect to I, J, K.

Let Ty, T'g, T be the corresponding torsions.
Then all invariant complements of

R = span{T} =Imd N §Paﬂ{TA> 1'p, TC};
SRCAT*@T

are of the form
Ny y =span{Ty + 2T, T +yIc}, xz,y € R.
For the canonical connections V%V¢y we have
VO,NQ[;7y
T = ANTy +2T¢) + (T + yTo),
VOANey — ¥ 4 A(A + 2C) + u(B + yC),
where in the first instance A and @ are functions.

Notice that they are the same for all x, v.
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Thm 1 If the the torsion of V! = vUNoo 4
TV = \T'4 + uTg, then A and u are constants
and the curvature tensors of VY and V satisfy

0 50, D
R =R + Rhypera R=R+ Rhypera

where RY and R are explicit G-invariant ten-
sors (which depend on A, ) and Rygpe 18

a hyper-Kdhler curvature tensor on VL. In
particular, Ric has two eigenvalues:

Ricly = 2(n +2)(2A% + 4+ (n + 2)p?),
Ricly,1 = 2M((4n +5)A +2(n + 2)% ).
Proof: R'e AN ®g, VTV c2T* @ R
and TV(TVY(,-), -) is an explicit G-invariant ten-
sor. Then decompose the spaces A? & g and

2T* into G-irreducible components and use the
Bianchi identity

b(RY — VTV — TV, ), ) =0

and Schur’s lemma. L]



General constructions:
Let (M, g) have a G-structure, so that the po-
tential of V¥ is N\A + pB.

1. Then for g. 4 = d2(g]VL + ¢?gly,) we obtain

a G-structure, where the potential of vV 9e,d
1S )\deAde + ,quBgC’d with

c 1 2(c? — 1)
Aed == =— | p— .
C,d d ) IU’C,d Cd ( n _I_ 2 >\>

2. If we change the sign of &7,€& 7, &y, then we
obtain a G-structure, where the signs of A
and p are also changed.




Examples:
1. Let (M, g) be 3-Sasakian. Then

1
C 2 — 2
& M T 2ed e

Inall cases A <0, 2A+(n+2)u <O0.

2. Let (M, g) be 3-Sasakian with signature (3, 4n).
Then for the metric d2(—g|VL + Zgly)

c 1+ 2¢?
A=—, [U=— .
d (n + 2)cd
[nall cases A>0, 2A+ (n+2)u < 0.
3. Let M’ be hyper-Kahler, M = M’ x SO(3)
with the product metric. On M we have a G-
structure with A =0, p < 0 (depending

on the scaling of the metric on SO(3)) and
we have 2\ + (n +2)p < 0.
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4. Let (M',¢', 1", J', K') be hyper-Kéahler. Then
dQ[/:O, dQJ/:O, dQK/:O

Hence locally there exist ajr, oy, ager such
that

Q]/:dOé]/, QJ/:dOZJ/, QK/:dOZK/.
Let M = M’ x R3 and w, v, w be the coor-
dinates on R>. Fix v < 0 and define

{1 =0, np=du—vap,
=0y, mnj=dv—rvay,
fK — @w, nNK = dw — vVoper,
V = span{és, &5,€x} = TR,
={X :ni(X) =ny(X) =ng(X) =0}
(notice that V+ £ TM'),
g=9 +nf+n7+nk,
]‘V:O7 J|V207 K‘V:O,
IX'=hI'X' X'=hJ X KX =hK'X'
for X' € TM'. Thus we obtain a G-structure

on M with A= —5 >0, 5 < 0
and 2\ + (n + 2)p = 0.
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5. We obtain further examples if we apply the
second "general construction” on the above
ones.

6. Let M’ be hyper-Kahler. Then M = M’'xR3
with the product metric has a G-structure
with A =0, upu=0.

Thm 2 1. Every pair (N, u) appears exactly
once in the above list of examples.

2. A manifold with a G-structure of the con-

0
sidered type with torsion TY = XNTx+uTp
1s locally equivalent to the corresponding
example.

Rem. For each (A, i) there exists a unique con-
nection with totally skew-symmetric torsion:

V=V +AA+uB+ (A—p)C.

Consider a 3-Sasakian Wolf space, written in the
form H - Sp(1)/L-Sp(1). Then the second Ein-

stein metric is one of the normal metrics and V¢
is the corresponding canonical connection.
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