3-Sasakian manifolds and intrinsic torsion

Bogdan Alexandrov

1 Intrinsic torsion

Let $T := \mathbb{R}^n$ and $G \subset GL(n, \mathbb{R})$ be a subgroup. The following map is clearly *G*-invariant.

$$\delta: T^* \otimes \mathfrak{g} \hookrightarrow T^* \otimes \mathfrak{gl}(n, \mathbb{R})$$

= $T^* \otimes T^* \otimes T \to \Lambda^2 T^* \otimes T$
 $\beta \otimes \gamma \otimes x \mapsto (\beta \wedge \gamma) \otimes x$

Therefore Ker δ , Im δ and $\Lambda^2 T^* \otimes T/\text{Im }\delta$ are also representations of G and the projection $\pi : \Lambda^2 T^* \otimes T \to \Lambda^2 T^* \otimes T/\text{Im }\delta$ is G-invariant.

So, if $P_G M \subset P_{GL(n,\mathbb{R})} M$ is a *G*-structure on a manifold M, then all the above spaces define corresponding associated with $P_G M$ bundles $TM, T^*M, \mathfrak{g}(M) \dots$, and δ and π induce correctly defined bundle maps. Let ∇ and ∇' be connections in P_G . Then

$$\nabla' - \nabla \in \Gamma(T^*M \otimes \mathfrak{g}(M)),$$

$$\delta(\nabla' - \nabla) = T^{\nabla'} - T^{\nabla}$$

$$\Rightarrow T^{\nabla'} - T^{\nabla} \in \Gamma(\operatorname{Im} \delta)$$

$$\Rightarrow \pi \left(T^{\nabla'} - T^{\nabla}\right) = 0.$$

This shows that the following definition is independent of the choice of ∇ .

Def. $T_{P_GM} := \pi \left(T^{\nabla} \right) \in \Gamma(\Lambda^2 T^* \otimes T / \operatorname{Im} \delta)$ is the *intrinsic torsion* of the *G*-structure $P_G M$.

We have furthermore

 $T^{\nabla'} = T^{\nabla} \Leftrightarrow \delta(\nabla' - \nabla) = 0 \Leftrightarrow \nabla' - \nabla \in \Gamma(\operatorname{Ker} \delta)$ $\Leftrightarrow \nabla' = \nabla + A \text{ for some } A \in \Gamma(\operatorname{Ker} \delta).$ Thus, given ∇ , the connections ∇' satisfying $T^{\nabla'} = T^{\nabla}$ are parametrized by $\Gamma(\operatorname{Ker} \delta).$ **Def.** Let $W \subset \Lambda^2 T^* \otimes T / \operatorname{Im} \delta$ be a *G*-invariant subspace. $P_G M$ is said to be of (Gray-Hervella) type *W* if $T_{P_G M} \in \Gamma(W(M)).$ E.g., $T_{P_GM} = 0$ iff there exists a connection ∇ in P_GM with $T^{\nabla} = 0$ (1-integrable G-structure).

Suppose now that N is a G-invariant complement of $\operatorname{Im} \delta$ in $\Lambda^2 T^* \otimes T$. Then there exists a connection with Torsion in $\Gamma(N(M))$. If furthermore δ is injective, then this connection $\nabla^{0,N}$ is unique and is called *the canonical connection* of $P_G M$ with respect to N.

Examples:

1.
$$G = SO(n)$$
 or $O(n)$.
 $\delta_{\mathfrak{so}(n)}: T^* \otimes \underbrace{\mathfrak{so}(n)}_{\cong \Lambda^2 T^*} \to \Lambda^2 T^* \otimes \underbrace{T}_{\cong T^*}$

is an isomorphism. Therefore

Im δ_{so(n)} = Λ²T* ⊗ T ⇒ Λ²T* ⊗ T/Im δ_{so(n)} = 0 ⇒ T<sub>P_{SO(n)}M = 0 and thus there exists a connection ∇ in P_{SO(n)}M with T[∇] = 0.
Ker δ_{so(n)} = 0. Therefore ∇ is unique.
∇ is the Levi-Civita connection.
</sub> 2. $G \subset SO(n)$ or O(n). Then $\mathfrak{g} \subset \mathfrak{so}(n) = \mathfrak{g} \oplus \mathfrak{g}^{\perp}$ Thus

 $\delta_{\mathfrak{g}}: T^* \otimes \mathfrak{g} \stackrel{i}{\hookrightarrow} T^* \otimes (\mathfrak{g} \oplus \mathfrak{g}^{\perp}) = T^* \otimes \mathfrak{so}(n) \stackrel{\delta_{\mathfrak{so}(n)}}{\to} \Lambda^2 T^* \otimes T = \delta_{\mathfrak{so}(n)}(T^* \otimes \mathfrak{g}) \oplus \delta_{\mathfrak{so}(n)}(T^* \otimes \mathfrak{g}^{\perp})$ So $\delta_{\mathfrak{g}}$ is injective, $\operatorname{Im} \delta_g = \delta_{\mathfrak{so}(n)}(T^* \otimes \mathfrak{g})$ and $\delta_{\mathfrak{so}(n)}(T^* \otimes \mathfrak{g}^{\perp})$ is a *G*-invariant complement of $\operatorname{Im} \delta_g$ in $\Lambda^2 T^* \otimes T$. Thus there exists a unique connection ∇^0 with Torsion $T^{\nabla^0} \in \Gamma(\delta_{\mathfrak{so}(n)}(T^*M \otimes \mathfrak{g}^{\perp}(M)))$. Equivalently, ∇^0 is characterized by $\nabla^0 = \nabla + A_0$ with $A_0 \in \Gamma(T^*M \otimes \mathfrak{g}^{\perp}(M))$. Because of the isomorphisms

 $\Lambda^2 T^* \otimes T / \operatorname{Im} \delta_{\mathfrak{g}} \cong \delta_{\mathfrak{so}(n)}(T^* \otimes \mathfrak{g}^{\perp}) \cong T^* \otimes \mathfrak{g}^{\perp}$

we have $T_{P_GM} \leftrightarrow T^{\nabla^0} \leftrightarrow A_0$ and the Gray-Hervella-type classification is usually done in terms of a decomposition $T^* \otimes \mathfrak{g}^{\perp} = W_1 \oplus \cdots \oplus W_k$ of $T^* \otimes \mathfrak{g}^{\perp}$ into irreducible *G*-invariant summands.

2 3-Sasakian manifolds

Def. (M, g) is a 3-Sasakian manifold if the cone $(\widehat{M} = M \times \mathbb{R}_+, \widehat{g} = r^2g + dr^2)$ is hyper-Kähler.

In this case there exist orthogonal

$$\widehat{I}, \widehat{J}, \widehat{K} \in \Gamma(End(T\widehat{M}))$$

which satisfy the quaternionic identities. Let

$$\xi_I = -\widehat{I}\partial_r|_{r=1}, \xi_J = -\widehat{J}\partial_r|_{r=1}, \xi_K = -\widehat{K}\partial_r|_{r=1},$$
$$V = \operatorname{span}\{\xi_I, \xi_J, \xi_K\},$$
$$I = \widehat{I}|_{V^{\perp}}, \quad J = \widehat{J}|_{V^{\perp}}, \quad K = \widehat{K}|_{V^{\perp}},$$
$$I|_V = 0, \quad J|_V = 0, \quad K|_V = 0.$$

Then $TM = V^{\perp} \oplus V$, V is trivialised by the orthonormal frame ξ_I, ξ_J, ξ_K , and I, J, K satisfy the quaternionic identities and are orthogonal on V^{\perp} . Thus we obtain an Sp(n)-structure on M, where the action of $Sp(n) \subset SO(4n + 3)$ on $\mathbb{R}^{4n+3} = \mathbb{R}^{4n} \oplus \mathbb{R}^3$ is given by the standard representation on \mathbb{R}^{4n} and the trivial one on \mathbb{R}^3 .

3 Sp(n)Sp(1)-structures on (4n+3)-dimensional manifolds

If we consider an Sp(n)-structure as above, we have

$$T^* \otimes \mathfrak{sp}(n)^{\perp} = \underbrace{15\mathbb{R} \oplus \text{other summands}}_{\substack{57\\n \ge 3} \text{ or } \substack{54\\n=2}}^{54} \text{ or } \substack{33\\n=1}^{33}}.$$

Since the dimension of the trivial representation is too big, we shall consider a more general Gstructure.

Let $G := Sp(n)Sp(1) \subset SO(4n+3)$ acting on $\mathbb{R}^{4n+3} = \mathbb{R}^{4n} \oplus \mathbb{R}^3$ by the standard representation of Sp(n)Sp(1) on $\mathbb{R}^{4n} \cong \mathbb{H}^n$ and through the projection $Sp(n)Sp(1) \to SO(3)$ on \mathbb{R}^3 . (Then $Sp(n) \subset G$ acts on \mathbb{R}^{4n+3} as above.)

We have

$$T^* \otimes \mathfrak{g}^{\perp} = \underbrace{2\mathbb{R} \oplus \text{other summands}}_{31 \text{ for } n > 1 \text{ or } 18 \text{ for } n = 1}_{31 \text{ for } n > 1 \text{ or } 18 \text{ for } n = 1}_{9 \text{ for } n > 1 \text{ or } 8 \text{ for } n = 1}$$

One basis of $2\mathbb{R} \subset T^* \otimes \mathfrak{g}^{\perp}$ is given by

$$\begin{split} A(P,Q) &= \mathfrak{S}(g(IP,Q)\xi_I - \eta_I(Q)IP),\\ B(P,Q) &= \mathfrak{S}(\eta_I(P)IQ - n\eta_J \wedge \eta_K(P,Q)\xi_I)\\ \text{and } \mathbb{R} \subset T^* \otimes \mathfrak{g} \text{ is spanned by}\\ C(P,Q) &= \mathfrak{S}\eta_I(P)(IQ + 2\eta_J(Q)\xi_K - 2\eta_K(Q)\xi_J).\\ \text{Here } \eta_I, \eta_J, \eta_K \text{ are dual to } \xi_I, \xi_J, \xi_K \text{ and } \mathfrak{S}\\ \text{denotes the cyclic sum with respect to } I, J, K.\\ \text{Let } T_A, T_B, T_C \text{ be the corresponding torsions.}\\ \text{Then all invariant complements of} \end{split}$$

$$\mathbb{R} = \operatorname{span}\{T_C\} = \operatorname{Im} \delta \cap \underbrace{\operatorname{span}\{T_A, T_B, T_C\}}_{3\mathbb{R} \subset \Lambda^2 T^* \otimes T}$$

are of the form

 $N_{x,y} = \operatorname{span}\{T_A + xT_C, T_B + yT_C\}, x, y \in \mathbb{R}.$ For the canonical connections $\nabla^{0,N_{x,y}}$ we have $T^{\nabla^{0,N_{x,y}}} = \lambda(T_A + xT_C) + \mu(T_B + yT_C),$ $\nabla^{0,N_{x,y}} = \nabla + \lambda(A + xC) + \mu(B + yC),$ where in the first instance λ and μ are functions.

Notice that they are the same for all x, y.

Thm 1 If the the torsion of $\nabla^0 = \nabla^{0,N_{0,0}}$ is $T^0 = \lambda T_A + \mu T_B$, then λ and μ are constants and the curvature tensors of ∇^0 and ∇ satisfy

 $R^0 = \widetilde{R}^0 + R_{\text{hyper}}, \quad R = \widetilde{R} + R_{\text{hyper}},$

where \widetilde{R}^0 and \widetilde{R} are explicit G-invariant tensors (which depend on λ, μ) and R_{hyper} is a hyper-Kähler curvature tensor on V^{\perp} . In particular, Ric has two eigenvalues:

$$Ric|_{V} = 2(n+2)(2\lambda^{2} + 4\lambda\mu + (n+2)\mu^{2}),$$
$$Ric|_{V^{\perp}} = 2\lambda((4n+5)\lambda + 2(n+2)^{2}\mu).$$

Proof: $R^0 \in \Lambda^2 \otimes \mathfrak{g}, \nabla^0 T^0 \in 2T^* \otimes \mathbb{R}$ and $T^0(T^0(\cdot, \cdot), \cdot)$ is an explicit *G*-invariant tensor. Then decompose the spaces $\Lambda^2 \otimes \mathfrak{g}$ and $2T^*$ into *G*-irreducible components and use the Bianchi identity

$$b(R^{0} - \nabla^{0}T^{0} - T^{0}(T^{0}(\cdot, \cdot), \cdot)) = 0$$

and Schur's lemma.

General constructions:

Let (M, g) have a *G*-structure, so that the potential of ∇^0 is $\lambda A + \mu B$.

1. Then for $g_{c,d} = d^2(g|_{V^{\perp}} + c^2g|_V)$ we obtain a *G*-structure, where the potential of $\nabla^{0,g_{c,d}}$ is $\lambda_{c,d}A^{g_{c,d}} + \mu_{c,d}B^{g_{c,d}}$ with

$$\lambda_{c,d} = \frac{c}{d}\lambda, \quad \mu_{c,d} = \frac{1}{cd}\left(\mu - \frac{2(c^2 - 1)}{n + 2}\lambda\right).$$

2. If we change the sign of ξ_I, ξ_J, ξ_K , then we obtain a *G*-structure, where the signs of λ and μ are also changed.

Examples:

1. Let (M, g) be 3-Sasakian. Then

$$\lambda = -1, \quad \mu = \frac{1}{n+2} \quad \text{for } g,$$
$$\lambda = -\frac{c}{d}, \quad \mu = \frac{2-c^2}{(n+2)cd} \quad \text{for } g_{c,d}.$$

In all cases $\lambda < 0$, $2\lambda + (n+2)\mu < 0$.

2. Let (M, g) be 3-Sasakian with signature (3, 4n). Then for the metric $d^2(-g|_{V^{\perp}} + c^2g|_V)$

$$\lambda = \frac{c}{d}, \quad \mu = -\frac{1+2c^2}{(n+2)cd}$$

In all cases $\lambda > 0$, $2\lambda + (n+2)\mu < 0$.

3. Let M' be hyper-Kähler, $M = M' \times SO(3)$ with the product metric. On M we have a Gstructure with $\lambda = 0$, $\mu < 0$ (depending on the scaling of the metric on SO(3)) and we have $2\lambda + (n+2)\mu < 0$. 4. Let (M', g', I', J', K') be hyper-Kähler. Then $d\Omega_{I'} = 0$, $d\Omega_{J'} = 0$, $d\Omega_{K'} = 0$. Hence locally there exist $\alpha \mu$, $\alpha \mu$, $\alpha \kappa$ such

Hence locally there exist $\alpha_{I'}$, $\alpha_{J'}$, $\alpha_{K'}$ such that

 $\Omega_{I'} = \mathrm{d}\alpha_{I'}, \quad \Omega_{J'} = \mathrm{d}\alpha_{J'}, \quad \Omega_{K'} = \mathrm{d}\alpha_{K'}.$ Let $M = M' \times \mathbb{R}^3$ and u, v, w be the coordinates on \mathbb{R}^3 . Fix $\nu < 0$ and define

$$\xi_I = \partial_u, \quad \eta_I = \mathrm{d}u - \nu \alpha_{I'},$$

$$\xi_J = \partial_v, \quad \eta_J = \mathrm{d}v - \nu \alpha_{J'},$$

$$\xi_K = \partial_w, \quad \eta_K = \mathrm{d}w - \nu \alpha_{K'},$$

$$V = \mathrm{span}\{\xi_I, \xi_J, \xi_K\} = T\mathbb{R}^3,$$

$$V^{\perp} = \{X : \eta_I(X) = \eta_J(X) = \eta_K(X) = 0\}$$

 $V^{\perp} = \{X : \eta_I(X) = \eta_J(X) = \eta_K(X) = 0\}$ (notice that $V^{\perp} \neq TM'$),

$$g = g' + \eta_I^2 + \eta_J^2 + \eta_K^2,$$

$$I|_V = 0, \quad J|_V = 0, \quad K|_V = 0,$$

$$IX' = hI'X', X' = hJ'X', KX' = hK'X'$$

for $X' \in TM'$. Thus we obtain a *G*-structure
on *M* with $\lambda = -\frac{\nu}{2} > 0, \quad \mu = \frac{\nu}{n+2} < 0$
and $2\lambda + (n+2)\mu = 0.$

- 5. We obtain further examples if we apply the second "general construction" on the above ones.
- 6. Let M' be hyper-Kähler. Then $M = M' \times \mathbb{R}^3$ with the product metric has a G-structure with $\lambda = 0$, $\mu = 0$.
- **Thm 2** 1. Every pair (λ, μ) appears exactly once in the above list of examples.
- 2. A manifold with a G-structure of the considered type with torsion $T^{\nabla^0} = \lambda T_A + \mu T_B$ is locally equivalent to the corresponding example.

Rem. For each (λ, μ) there exists a unique connection with totally skew-symmetric torsion:

$$\nabla^a = \nabla + \lambda A + \mu B + (\lambda - \mu)C.$$

Consider a 3-Sasakian Wolf space, written in the form $H \cdot Sp(1)/L \cdot Sp(1)$. Then the second Einstein metric is one of the normal metrics and ∇^a is the corresponding canonical connection.