3-Sasakian manifolds and intrinsic torsion

Bogdan Alexandrov

1 Intrinsic torsion

Let $T:=\mathbb{R}^{n}$ and $G \subset G L(n, \mathbb{R})$ be a subgroup. The following map is clearly G-invariant.

$$
\begin{aligned}
\delta: T^{*} \otimes \mathfrak{g} \hookrightarrow & \hookrightarrow T^{*} \otimes \mathfrak{g l}(n, \mathbb{R}) \\
=T^{*} \otimes T^{*} \otimes T & \rightarrow \Lambda^{2} T^{*} \otimes T \\
& \beta \otimes \gamma \otimes x \mapsto(\beta \wedge \gamma) \otimes x
\end{aligned}
$$

Therefore Ker $\delta, \operatorname{Im} \delta$ and $\Lambda^{2} T^{*} \otimes T / \operatorname{Im} \delta$ are also representations of G and the projection $\pi: \Lambda^{2} T^{*} \otimes T \rightarrow \Lambda^{2} T^{*} \otimes T / \operatorname{Im} \delta$ is G-invariant. So, if $P_{G} M \subset P_{G L(n, \mathbb{R})} M$ is a G-structure on a manifold M, then all the above spaces define corresponding associated with $P_{G} M$ bundles $T M, T^{*} M, \mathfrak{g}(M) \ldots$, and δ and π induce correctly defined bundle maps.

Let ∇ and ∇^{\prime} be connections in P_{G}. Then

$$
\begin{gathered}
\nabla^{\prime}-\nabla \in \Gamma\left(T^{*} M \otimes \mathfrak{g}(M)\right), \\
\delta\left(\nabla^{\prime}-\nabla\right)=T^{\nabla^{\prime}}-T^{\nabla} \\
\Rightarrow T^{\nabla^{\prime}}-T^{\nabla} \in \Gamma(\operatorname{Im} \delta) \\
\Rightarrow \pi\left(T^{\nabla^{\prime}}-T^{\nabla}\right)=0 .
\end{gathered}
$$

This shows that the following definition is independent of the choice of ∇.
Def. $T_{P_{G} M}:=\pi\left(T^{\nabla}\right) \in \Gamma\left(\Lambda^{2} T^{*} \otimes T / \operatorname{Im} \delta\right)$ is the intrinsic torsion of the G-structure $P_{G} M$.
We have furthermore
$T^{\nabla^{\prime}}=T^{\nabla} \Leftrightarrow \delta\left(\nabla^{\prime}-\nabla\right)=0 \Leftrightarrow \nabla^{\prime}-\nabla \in \Gamma(\operatorname{Ker} \delta)$
$\Leftrightarrow \nabla^{\prime}=\nabla+A$ for some $A \in \Gamma(\operatorname{Ker} \delta)$.
Thus, given ∇, the connections ∇^{\prime} satisfying $T^{\nabla^{\prime}}=T^{\nabla}$ are parametrized by $\Gamma(\operatorname{Ker} \delta)$.
Def. Let $W \subset \Lambda^{2} T^{*} \otimes T / \operatorname{Im} \delta$ be a G-invariant subspace. $P_{G} M$ is said to be of (Gray-Hervella) type W if $T_{P_{G} M} \in \Gamma(W(M))$.
E.g., $T_{P_{G} M}=0$ iff there exists a connection ∇ in $P_{G} M$ with $T^{\nabla}=0$ (1-integrable G-structure). Suppose now that N is a G-invariant complement of $\operatorname{Im} \delta$ in $\Lambda^{2} T^{*} \otimes T$. Then there exists a connection with Torsion in $\Gamma(N(M))$. If furthermore δ is injective, then this connection $\nabla^{0, N}$ is unique and is called the canonical connection of $P_{G} M$ with respect to N.

Examples:

$$
\begin{aligned}
& \text { 1. } G=S O(n) \text { or } O(n) \\
& \qquad \delta_{\mathfrak{s o}(n)}: T^{*} \otimes \underbrace{\mathfrak{s o}(n)}_{\cong \Lambda^{2} T^{*}} \rightarrow \Lambda^{2} T^{*} \otimes \underbrace{T}_{\cong T^{*}}
\end{aligned}
$$

is an isomorphism. Therefore

- $\operatorname{Im} \delta_{\mathfrak{s o}(n)}=\Lambda^{2} T^{*} \otimes T$

$$
\Rightarrow \Lambda^{2} T^{*} \otimes T / \operatorname{Im} \delta_{\mathfrak{s o}(n)}=0
$$

$\Rightarrow T_{P_{S O(n)} M}=0$ and thus there exists a connection ∇ in $P_{S O(n)} M$ with $T^{\nabla}=0$.

- $\operatorname{Ker} \delta_{\mathfrak{s o}(n)}=0$. Therefore ∇ is unique.
∇ is the Levi-Civita connection.

2. $G \subset S O(n)$ or $O(n)$.

Then $\mathfrak{g} \subset \mathfrak{s o}(n)=\mathfrak{g} \oplus \mathfrak{g}^{\perp}$ Thus
$\delta_{\mathfrak{g}}: T^{*} \otimes \mathfrak{g} \stackrel{i}{\hookrightarrow} T^{*} \otimes\left(\mathfrak{g} \oplus \mathfrak{g}^{\perp}\right)=T^{*} \otimes \mathfrak{s o}(n) \xrightarrow{\delta_{\mathfrak{s o}(n)}}$
$\Lambda^{2} T^{*} \otimes T=\delta_{\mathfrak{s o}(n)}\left(T^{*} \otimes \mathfrak{g}\right) \oplus \delta_{\mathfrak{s o}(n)}\left(T^{*} \otimes \mathfrak{g}^{\perp}\right)$ So $\delta_{\mathfrak{g}}$ is injective, $\operatorname{Im} \delta_{g}=\delta_{\mathfrak{s o}(n)}\left(T^{*} \otimes \mathfrak{g}\right)$ and $\delta_{\mathfrak{s o}(n)}\left(T^{*} \otimes \mathfrak{g}^{\perp}\right)$ is a G-invariant complement of $\operatorname{Im} \delta_{g}$ in $\Lambda^{2} T^{*} \otimes T$. Thus there exists a unique connection ∇^{0} with Torsion $T^{\nabla^{0}} \in \Gamma\left(\delta_{\mathfrak{s o}(n)}\left(T^{*} M \otimes \mathfrak{g}^{\perp}(M)\right)\right)$. Equivalently, ∇^{0} is characterized by $\nabla^{0}=\nabla+A_{0}$ with $A_{0} \in \Gamma\left(T^{*} M \otimes \mathfrak{g}^{\perp}(M)\right)$.
Because of the isomorphisms
$\Lambda^{2} T^{*} \otimes T / \operatorname{Im} \delta_{\mathfrak{g}} \cong \delta_{\mathfrak{s o}(n)}\left(T^{*} \otimes \mathfrak{g}^{\perp}\right) \cong T^{*} \otimes \mathfrak{g}^{\perp}$
we have $\quad T_{P_{G} M} \leftrightarrow T^{\nabla^{0}} \leftrightarrow A_{0}$
and the Gray-Hervella-type classification is usually done in terms of a decomposition $T^{*} \otimes \mathfrak{g}^{\perp}=W_{1} \oplus \cdots \oplus W_{k}$ of $T^{*} \otimes \mathfrak{g}^{\perp}$ into irreducible G-invariant summands.

2 3-Sasakian manifolds

Def. (M, g) is a 3 -Sasakian manifold if the cone $\left(\widehat{M}=M \times \mathbb{R}_{+}, \widehat{g}=r^{2} g+\mathrm{d} r^{2}\right)$ is hyperKähler.

In this case there exist orthogonal

$$
\widehat{I}, \widehat{J}, \widehat{K} \in \Gamma(E n d(T \widehat{M}))
$$

which satisfy the quaternionic identities. Let

$$
\begin{gathered}
\xi_{I}=-\left.\widehat{I} \partial_{r}\right|_{r=1}, \xi_{J}=-\left.\widehat{J} \partial_{r}\right|_{r=1}, \xi_{K}=-\left.\widehat{K} \partial_{r}\right|_{r=1}, \\
V=\operatorname{span}\left\{\xi_{I}, \xi_{J}, \xi_{K}\right\} \\
I=\left.\widehat{I}\right|_{V^{\perp}}, \quad J=\left.\widehat{J}\right|_{V^{\perp}}, \quad K=\left.\widehat{K}\right|_{V^{\perp}} \\
\left.I\right|_{V}=0,\left.\quad J\right|_{V}=0,\left.\quad K\right|_{V}=0
\end{gathered}
$$

Then $T M=V^{\perp} \oplus V, V$ is trivialised by the orthonormal frame $\xi_{I}, \xi_{J}, \xi_{K}$, and I, J, K satisfy the quaternionic identities and are orthogonal on V^{\perp}. Thus we obtain an $S p(n)$-structure on M, where the action of $S p(n) \subset S O(4 n+3)$ on $\mathbb{R}^{4 n+3}=\mathbb{R}^{4 n} \oplus \mathbb{R}^{3}$ is given by the standard representation on $\mathbb{R}^{4 n}$ and the trivial one on \mathbb{R}^{3}.
$3 \quad S p(n) S p(1)$-structures on $(4 n+3)$-dimensional manifolds

If we consider an $S p(n)$-structure as above, we have

$$
T^{*} \otimes \mathfrak{s p}(n)^{\perp}=\underbrace{15 \mathbb{R} \text { or }_{n=2}^{54} \text { or }{ }_{n=1}^{33}}_{\substack{57 \\ n \geq 3}} \underset{n=1}{150} \text {. }
$$

Since the dimension of the trivial representation is too big, we shall consider a more general G structure.
Let $G:=S p(n) S p(1) \subset S O(4 n+3)$ acting on $\mathbb{R}^{4 n+3}=\mathbb{R}^{4 n} \oplus \mathbb{R}^{3}$ by the standard representation of $S p(n) S p(1)$ on $\mathbb{R}^{4 n} \cong \mathbb{H}^{n}$ and through the projection $S p(n) S p(1) \rightarrow S O(3)$ on \mathbb{R}^{3}. (Then $S p(n) \subset G$ acts on $\mathbb{R}^{4 n+3}$ as above.)
We have
$T^{*} \otimes \mathfrak{g}^{\perp}=\underbrace{2 \mathbb{R} \oplus \text { other summands },}_{31 \text { for } n>1 \text { or } 18 \text { for } n=1}$
$T^{*} \otimes \mathfrak{g}=\underbrace{\mathbb{R} \oplus \text { other summands }}_{9 \text { for } n>1 \text { or } 8 \text { for } n=1}$.

One basis of $2 \mathbb{R} \subset T^{*} \otimes \mathfrak{g}^{\perp}$ is given by

$$
\begin{gathered}
A(P, Q)=\mathfrak{S}\left(g(I P, Q) \xi_{I}-\eta_{I}(Q) I P\right) \\
B(P, Q)=\mathfrak{S}\left(\eta_{I}(P) I Q-n \eta_{J} \wedge \eta_{K}(P, Q) \xi_{I}\right)
\end{gathered}
$$

and $\mathbb{R} \subset T^{*} \otimes \mathfrak{g}$ is spanned by
$C(P, Q)=\mathfrak{S} \eta_{I}(P)\left(I Q+2 \eta_{J}(Q) \xi_{K}-2 \eta_{K}(Q) \xi_{J}\right)$.
Here $\eta_{I}, \eta_{J}, \eta_{K}$ are dual to $\xi_{I}, \xi_{J}, \xi_{K}$ and \mathfrak{S} denotes the cyclic sum with respect to I, J, K.
Let T_{A}, T_{B}, T_{C} be the corresponding torsions. Then all invariant complements of

$$
\mathbb{R}=\operatorname{span}\left\{T_{C}\right\}=\operatorname{Im} \delta \cap \underbrace{\operatorname{span}\left\{T_{A}, T_{B}, T_{C}\right\}}_{3 \mathbb{R} \subset \Lambda^{2} T^{*} \otimes T}
$$

are of the form
$N_{x, y}=\operatorname{span}\left\{T_{A}+x T_{C}, T_{B}+y T_{C}\right\}, x, y \in \mathbb{R}$.
For the canonical connections $\nabla^{0, N_{x, y}}$ we have

$$
\begin{aligned}
& T^{\nabla^{0, N x, y}}=\lambda\left(T_{A}+x T_{C}\right)+\mu\left(T_{B}+y T_{C}\right), \\
& \nabla^{0, N_{x, y}}=\nabla+\lambda(A+x C)+\mu(B+y C),
\end{aligned}
$$

where in the first instance λ and μ are functions. Notice that they are the same for all x, y.

Thm 1 If the the torsion of $\nabla^{0}=\nabla^{0, N_{0,0}}$ is $T^{0}=\lambda T_{A}+\mu T_{B}$, then λ and μ are constants and the curvature tensors of ∇^{0} and ∇ satisfy

$$
R^{0}=\widetilde{R}^{0}+R_{\text {hyper }}, \quad R=\widetilde{R}+R_{\text {hyper }}
$$

where \widetilde{R}^{0} and \widetilde{R} are explicit G-invariant tensors (which depend on λ, μ) and $R_{\text {hyper }}$ is a hyper-Kähler curvature tensor on V^{\perp}. In particular, Ric has two eigenvalues:

$$
\begin{gathered}
\left.R i c\right|_{V}=2(n+2)\left(2 \lambda^{2}+4 \lambda \mu+(n+2) \mu^{2}\right), \\
\left.R i c\right|_{V^{\perp}}=2 \lambda\left((4 n+5) \lambda+2(n+2)^{2} \mu\right) .
\end{gathered}
$$

Proof: $\quad R^{0} \in \Lambda^{2} \otimes \mathfrak{g}, \nabla^{0} T^{0} \in 2 T^{*} \otimes \mathbb{R}$ and $T^{0}\left(T^{0}(\cdot, \cdot), \cdot\right)$ is an explicit G-invariant tensor. Then decompose the spaces $\Lambda^{2} \otimes \mathfrak{g}$ and $2 T^{*}$ into G-irreducible components and use the Bianchi identity

$$
b\left(R^{0}-\nabla^{0} T^{0}-T^{0}\left(T^{0}(\cdot, \cdot), \cdot\right)\right)=0
$$

and Schur's lemma.

General constructions:

Let (M, g) have a G-structure, so that the potential of ∇^{0} is $\lambda A+\mu B$.

1. Then for $g_{c, d}=d^{2}\left(\left.g\right|_{V^{\perp}}+\left.c^{2} g\right|_{V}\right)$ we obtain a G-structure, where the potential of $\nabla^{0, g_{c, d}}$ is $\lambda_{c, d} A^{g_{c, d}}+\mu_{c, d} B^{g_{c, d}}$ with

$$
\lambda_{c, d}=\frac{c}{d} \lambda, \quad \mu_{c, d}=\frac{1}{c d}\left(\mu-\frac{2\left(c^{2}-1\right)}{n+2} \lambda\right) .
$$

2. If we change the sign of $\xi_{I}, \xi_{J}, \xi_{K}$, then we obtain a G-structure, where the signs of λ and μ are also changed.

Examples:

1. Let (M, g) be 3-Sasakian. Then

$$
\begin{gathered}
\lambda=-1, \quad \mu=\frac{1}{n+2} \quad \text { for } g, \\
\lambda=-\frac{c}{d}, \quad \mu=\frac{2-c^{2}}{(n+2) c d} \quad \text { for } g_{c, d} .
\end{gathered}
$$

In all cases $\quad \lambda<0, \quad 2 \lambda+(n+2) \mu<0$.
2 . Let (M, g) be 3 -Sasakian with signature (3, $4 n$). Then for the metric $d^{2}\left(-\left.g\right|_{V^{\perp}}+\left.c^{2} g\right|_{V}\right)$

$$
\lambda=\frac{c}{d}, \quad \mu=-\frac{1+2 c^{2}}{(n+2) c d} .
$$

In all cases $\quad \lambda>0, \quad 2 \lambda+(n+2) \mu<0$.
3. Let M^{\prime} be hyper-Kähler, $M=M^{\prime} \times S O(3)$ with the product metric. On M we have a G structure with $\lambda=0, \quad \mu<0$ (depending on the scaling of the metric on $S O(3)$) and we have $2 \lambda+(n+2) \mu<0$.
4. Let $\left(M^{\prime}, g^{\prime}, I^{\prime}, J^{\prime}, K^{\prime}\right)$ be hyper-Kähler. Then

$$
\mathrm{d} \Omega_{I^{\prime}}=0, \quad \mathrm{~d} \Omega_{J^{\prime}}=0, \quad \mathrm{~d} \Omega_{K^{\prime}}=0
$$

Hence locally there exist $\alpha_{I^{\prime}}, \alpha_{J^{\prime}}, \alpha_{K^{\prime}}$ such that

$$
\Omega_{I^{\prime}}=\mathrm{d} \alpha_{I^{\prime}}, \quad \Omega_{J^{\prime}}=\mathrm{d} \alpha_{J^{\prime}}, \quad \Omega_{K^{\prime}}=\mathrm{d} \alpha_{K^{\prime}} .
$$

Let $M=M^{\prime} \times \mathbb{R}^{3}$ and u, v, w be the coordinates on \mathbb{R}^{3}. Fix $\nu<0$ and define

$$
\begin{gathered}
\xi_{I}=\partial_{u}, \quad \eta_{I}=\mathrm{d} u-\nu \alpha_{I^{\prime}} \\
\xi_{J}=\partial_{v}, \quad \eta_{J}=\mathrm{d} v-\nu \alpha_{J^{\prime}}, \\
\xi_{K}=\partial_{w}, \quad \eta_{K}=\mathrm{d} w-\nu \alpha_{K^{\prime}}, \\
V=\operatorname{span}\left\{\xi_{I}, \xi_{J}, \xi_{K}\right\}=T \mathbb{R}^{3}, \\
V^{\perp}=\left\{X: \eta_{I}(X)=\eta_{J}(X)=\eta_{K}(X)=0\right\}
\end{gathered}
$$

(notice that $V^{\perp} \neq T M^{\prime}$),

$$
\begin{gathered}
g=g^{\prime}+\eta_{I}^{2}+\eta_{J}^{2}+\eta_{K}^{2} \\
\left.I\right|_{V}=0,\left.\quad J\right|_{V}=0,\left.\quad K\right|_{V}=0 \\
I X^{\prime}=h I^{\prime} X^{\prime}, X^{\prime}=h J^{\prime} X^{\prime}, K X^{\prime}=h K^{\prime} X^{\prime}
\end{gathered}
$$

for $X^{\prime} \in T M^{\prime}$. Thus we obtain a G-structure on M with $\quad \lambda=-\frac{\nu}{2}>0, \quad \mu=\frac{\nu}{n+2}<0$ and $2 \lambda+(n+2) \mu=0$.
5. We obtain further examples if we apply the second "general construction" on the above ones.
6. Let M^{\prime} be hyper-Kähler. Then $M=M^{\prime} \times \mathbb{R}^{3}$ with the product metric has a G-structure with $\quad \lambda=0, \quad \mu=0$.

Thm 2 1. Every pair (λ, μ) appears exactly once in the above list of examples.
2. A manifold with a G-structure of the considered type with torsion $T^{\nabla^{0}}=\lambda T_{A}+\mu T_{B}$ is locally equivalent to the corresponding example.

Rem. For each (λ, μ) there exists a unique connection with totally skew-symmetric torsion:

$$
\nabla^{a}=\nabla+\lambda A+\mu B+(\lambda-\mu) C .
$$

Consider a 3-Sasakian Wolf space, written in the form $H \cdot S p(1) / L \cdot S p(1)$. Then the second Einstein metric is one of the normal metrics and ∇^{a} is the corresponding canonical connection.

