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Introduction

Sasakian structures are the analogues in odd dimensions of Kahler
structures, and they can be defined in terms of the Riemannian cone.

Given a Riemannian manifold (M, g), its Riemannian cone is the product
M x RT equipped with the cone metric t?g + d t2.

A manifold M?"t1 equipped with a 1-form « is contact if the 2-form
t?da + 2tdt A a is symplectic on the cone. Equivalently, a A (d«a)™ # 0.

If, moreover, this 2-form is Kahler, then (M, g) is called Sasakian.

This is the characterization given by Boyer-Galicki ('99) of Sasakian
manifolds.



The original definition, given by Sasaki in the '60s, involves a quadruple
(®,,&,9), where & is a (1,1)-tensor, o is a 1-form and £ is a nowhere
vanishing vector field on M such that

a(é) =1, P’ =-I1+¢(Ra
§(BX,BY) = g(X, V) — a(X)a(Y),
29(X,®Y) =da(X,Y)

Ne = —da®¢,

where Ng, the Nijenhuis tensor associated to P, is given by

No(X,Y) = ®[X,Y] + [0X,dY] — B[ X, Y] — B[X, PY].



In the '90s Boyer, Galicki and their co-authors established relationships
between Sasakian structures (or related structures such as Sasaki-Einstein,
3-Sasakian) and string theory and other geometries such as algebraic or
quaternionic-Kahler geometry.

Some properties:
e P({)=0, ao®=0, dalX)=0, g X)=aX) VX;
e ¢ is a Killing vector field of unit length;
o R(X,Y) =a(Y)X —a(X)Y; therefore Ric,(, &) = 2n.
e The sectional curvature of all plane sections containing & are equal to 1.

e Let M?"*! be a compact Sasakian manifold, then the Betti numbers b,
are even, for p odd, p < n or p even, p > n+ 1 [Blair-Goldberg '67, Fujitani
'66].



Some examples of Sasakian manifolds:

e R?"F1 with the contact form a=dz — i y;dx;, £ = 2 and

29 =a®a+ )y (daf+dy)),
=1

O O O O O O
o — 2o —_ Z)=o.
(8:@-) Oy, + Yy (6’%) ox;’ ¢ (82) 0

e S27*1: considering the Hopf fibration 7 : S2"*! — CP™ as a special case
of the Boothby-Wang fibration.




In dimension 3 a homogeneous Sasakian manifold is a Lie group endowed
with a left-invariant Sasakian structure [Perrone '98].

By [Perrone-Vanhecke '91] a compact, simply connected, 5-dimensional
homogeneous contact manifold is diffeomorphic to S® or to the product
S? x S3. Moreover, both S° and S? x S? carry Sasaki-Einstein structures.

[Conti '07] classified Sasaki-Einstein 5-manifolds of cohomogeneity 1.

[Diatta '08] classified 5-dimensional Lie groups equipped with left-
Invariant contact structures.



Left-invariant Sasakian structures on Lie groups

We aim to classify 5-dimensional Lie groups endowed with left-invariant
Sasakian structures. This is equivalent to determining all 5-dimensional
Sasakian Lie algebras.

A Sasakian structure on a Lie algebra g is a quadruple (®, o, &, g), where
¢ € End(g), a € g*, £ € g and ¢ is an inner product on g such that

a§)=1, ' =-TI+{a, ¢gO@X,PY)=yg(X,Y)-a(X)aY),
29(X7(I)Y):d04(X7Y)7 Nq;z—d&@f,
where Ng is defined as before. A Lie algebra equipped with a Sasakian

structure will be called a Sasakian Lie algebra. The vector & will be called
the Reeb vector.



Example

The classical example of a Sasakian Lie algebra is given by the (2n + 1)-
dimensional real Heisenberg Lie algebra §o,,4.1. We recall that

[)Qn_|_1 — span{Xl, ... ,Xn, Yl, .. ,Yn, Z},

X, Y| =2, i=1,...,n;

in this case, a Sasakian structure is defined by
o(X;,)=Y;, oY) =-X;, ®(Z2)=0,i=1,...,n,

the inner product g is obtained by || X;||? = ||Yi|[* =1/2, ||Z]| =1, (= Z
and « is the dual 1-form of Z.



Fundamental property

In general for a Lie algebra g with a contact structure o we can prove
the following property for its center 3(g).

a € g* is called a contact form if a A (da)™ # 0; there always exists a
unique & € g such that a(§) =1 and a([&,x]) =0 for all x € g.

Proposition: Let (g, «) be a contact Lie algebra with £ its Reeb vector and
let 3(g) be the center of g. Then

1. dimj(g) < 1;

2. if dim3(g) = 1, then 3(g) = R&.



Proposition: (A.-Fino-Vezzoni) Let (g, @, «, &, g) be a Sasakian Lie algebra
with 3(g) = R&. Then the quadruple (ker o, 8, ®, g) is a Kahler Lie algebra,
where 6 is the component of the Lie bracket of g on ker .

Corollary: Let (g,P,,&,g) be a Sasakian Lie algebra with 3(g) = RE.
Then g/3(g) inherits a natural Kahler structure.

Conversely, let (b, [, |p,w, g) be a Kahler Lie algebra and set g = h R E.
Then defining

[X7Y]:[X7Y]U_W(X7Y)€a [fah]:()

for X,Y € b we obtain a new Lie algebra (g, [, ]) equipped with a natural
Sasakian structure.



Particular case: nilpotent Lie algebras

It is known that in dimensions 3 and 5 the only nilpotent Sasakian Lie
algebras are the real Heisenberg algebras b3 and b5, respectively ([Geiges
'97] and [Ugarte '07]). We show next that this still holds in any dimension.

Proposition: (A.-Fino-Vezzoni) Let g be a (2n + 1)-dimensional nilpotent
Lie algebra admitting a Sasakian structure. Then g is isomorphic to the
(2n + 1)-dimensional Heisenberg Lie algebra.

Proof: Let (®,q,&, g) be a Sasakian structure on g. Since g is nilpotent it
has non-trivial center 3(g) = R&. The quotient g/3(g) is a Kahler nilpotent
Lie algebra and, as a consequence, it is abelian. This implies immediately
that g is isomorphic to the Heisenberg Lie algebra.
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Proposition: Let (g, ®,a,&, g) be a Sasakian Lie algebra. Then

1. ad¢® = ® adg, and therefore kerades and Im ade are ®-invariant
subspaces of g;

2. ad¢ ® is symmetric with respect to g;

3. adg is skew-symmetric with respect to g, thus (Im ad¢)* = ker adg .
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Corollary: Let (g, P, ,&,g) be a Sasakian Lie algebra. Then there is an
orthogonal decomposition

g = kerade @ Im ade .

Proposition: Let (g, ®, o, &, g) be a Sasakian Lie algebra with trivial center.

1. If dimg > 5, then kerade is a Sasakian Lie subalgebra of g with
non-trivial center.

2. If X € keradg,Y € Im adg, then [ X, Y] € Im ade.
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With respect to the decomposition g = ker ad¢ @ Im ad¢, we have

0 O A 0
(ad€)|kera — (O U) ) (I)|keroz — (O D) )

where U: Im ad¢ — Im ad¢ is non-singular, and
A*=D*=-1 DU=UD.

In particular, if g is solvable, then the Reeb vector ¢ cannot belong to the
commutator g'.

13



5-dimensional Sasakian Lie algebras with trivial center

In [Ovando '06] a classification of 4-dimensional Kahler Lie algebras was
given. Using this with our previous we obtain the following result:
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Theorem: (AFV) Any 5-dimensional Sasakian Lie algebra g with non-trivial
center is isomorphic to one of the following solvable Lie algebras (for § > 0):

g1 = (0,0,0,0,e"* + €**) ~ b5

g2 = (0,—€'%,0,0,e™* + €**) ~ aff(R) X hs;

gs = (O, —eB3 e!? 0,6t + 623) ~ R x (hs x R);

g1 = (0,—e'%,0,—€>* e + %) ~ aff(R) x aff(R) x R;

2

(ca}

Ot

1
VRN

1 1
5614’_6247 _el2 34 12 - e34) ~ R x (R x b3);

[

g = (26 4, —624, —el? 4 634, 0, 623) ~ R X ny ;

0 )
g‘; _ 5614 +€24’_614 4 5624’_612 +5e34,0,612 B 5634) ~ R x (R x b3);
gg _ <€14,5634, _562470’ el o 623) ~ R x (h3 x R).
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Corollary: A unimodular Sasakian Lie algebra with non-trivial center is
isomorphic either to the nilpotent Heisenberg Lie algebra hs or the solvable
Lie algebra gs. The simply connected Lie group G3 with Lie algebra gs
admits a co-compact discrete subgroup I'.

The group G5 is isomorphic to R® with a certain product, and it can be
checked that the subset

1
' = {<2ﬂm1,m2,m3,m4, 2—m5> |m; € Z}
T

is a discrete subgroup that acts freely and properly discontinuously on G3.
Moreover, the quotient manifold I'\G3 is compact.

The solvmanifold T\G3 is by construction the total space of an S'-
bundle over a 4-dimensional non-completely solvable Kahler solvmanifold
(this Kahler solvmanifold was found by Hasegawa in 2006).
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5-dimensional Sasakian Lie algebras with trivial center

Let (g, P, ,&,g) be a 5-dimensional Sasakian Lie algebra with trivial
center.

First, if g = g then the only contact Lie algebra is s[(2,R) x R?,
according to [Diatta '08]. However, we can prove the following

Proposition: The Lie algebra s[(2,R) x R? does not admit any Sasakian
structure.

Now we can consider the case of 5-dimensional Sasakian Lie algebras
with trivial center and such that g’ # g. In this case

dim ker(ad¢)| ker o = dimIm(ade) = 2.
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There exists an orthonormal basis {e1,...,e4} of kera with respect to
which @y, can be written as

o 1 0 O
-1 0 0 O
(I)|keroz _ O O 0 1
0O 0 —1 0

and kerads = span{&,e;,ea}, Im adg = span{es,eqs}. Moreover in this
basis

0O 0 0 O
0 0 0 O
(ade)ikera =1 o o —p
0 0 b O
Note that in terms of {e1,...,e4} the 2-form da takes the standard form

da = 2 (el? + e34).
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Set e5 = ¢ and denote by {e!,...,e°} the dual basis of {eq,...
Since b # 0, we may assume b = +1.

Case A: b = 1. The Maurer-Cartan equations are given by

de! = aqe'? + age’?,

de? = byel? + bg 3t

de® = —e*® + cpe'® + el + e + c5e??,
de = 3 4 foeld 4 fael 1 fre2 4 fze2t
de® = 2(e*? + &),
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Case B: b = —1. The Maurer-Cartan equations are given by

de' = a; e'? + age®*,
de”
de® = e* 4 cye’® + cze! +cpe® +c5e??, (2)
de = —e¥ 1 frel® 4 fae 4 e 4+ fr e,

de® = 2(e'? + %)

12 34
ble —|— b66 )

Now, imposing the conditions d* = 0 and Ny = —de® ® e5, we obtain
in each case a system of equations, whose solutions give rise to the Lie
algebras with trivial center admitting Sasakian structures.
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Theorem: (AFV) If a 5-dimensional Sasakian Lie algebra g has trivial
center, then it is isomorphic to one of the following Lie algebras:

e the direct product sl(2,R) x aff(R),
e the direct product su(2) x aff(R),

e the solvable (non-unimodular) Lie algebra go, with Lie bracket given by

[617 63] — €3, [617 64] — %647 [617 65] — 5657
[62764] — €5, [62765] —€y4, [64,65] — —€3,
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5-dimensional Sasaki a-Einstein Lie algebras

In [Diatta '08] it was proved that no left-invariant Sasakian structure
on a Lie group can be Sasaki-Einstein. Thus, we will look for left-invariant
Sasaki a-Einstein structures.

When the Ricci tensor of a Sasakian manifold (M, ®, «, &, g) satisfies the
equation Ric, = A\g + v o ® a for some constants A, v € R, the Sasakian
structure is called a-Einstein.

Sasaki a-Einstein metrics are natural analogues of Kahler-Einstein metrics.

Theorem: (Boyer-Galicki-Matzeu '99) Every Sasaki a-Einstein manifold is
of constant scalar curvature equal to s =2n(A+ 1), and A +v = 2n.
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A Sasakian Lie algebra (g, ®,,&,g) is called a-Einstein if the Ricci
tensor Ric, of the metric g satisfies Ric, = A\g+v a® « for some A\, v € R.

Some known facts in 5 dimensions:

e The canonical Sasakian structure on b5 is a-Einstein [Tomassini-Vezzoni
'08].

e The Lie algebra gy from the previous theorem is the only solvable (non

nilpotent) 5-dimensional Lie algebra admitting a Sasaki a-Einstein structure
[de Andrés-Fernandez-Fino-Ugarte '08].

Thus, we only have to consider the non-solvable Sasakian Lie algebras,
which are s[(2,R) x aff(R) and su(2) x aff(R).
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Proposition: The Lie algebra s[(2,R) x aff(R) admits Sasaki a-Einstein
structures, while no Sasakian structure on su(2) x aff(R) is a-Einstein.

To sum up, we can now state the following

Theorem: (AFV) The only 5-dimensional Lie algebras admitting a Sasaki
a-Einstein structure are b5, go and s[(2, R) x aff(R).

Corollary: The nilmanifolds I'\ H5 are the only compact manifolds of the
form T'\G (with G a simply connected Lie group and I' C G a lattice)
which admit invariant Sasaki a-Einstein structures.
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