Classification of abelian complex structures on

6-dimensional Lie algebras

Maria Laura Barberis

Universidad Nacional de Cérdoba, Argentina CONICET
g
CIEM - CONICET <

Workshop on Dirac operators and special geometries
Castle Rauischholzhausen
27 September 2009

Joint work with A. Andrada and I. Dotti Preprint: arXiv:0908.3213

1/1



@ Basic definitions.

A motivating example.

Relation to HKT geometry.

Generalities on abelian complex structures.

o Affine Lie algebras and their standard complex structure.



@ Basic definitions.

A motivating example.

Relation to HKT geometry.

Generalities on abelian complex structures.
o Affine Lie algebras and their standard complex structure.
@ The 4-dimensional case.

Outline of the classification in dimension 6.



Basic definitions

@ A complex structure on a real Lie algebra g is J € End (g)
satisfying:

2=, Jix,y] — [Ux,y] — [x, Jy] — J[Ux, Jy] =0, (1)

forany x,y € g.



Basic definitions

@ A complex structure on a real Lie algebra g is J € End (g)
satisfying:

2=, Jix,y] — [Ux,y] — [x, Jy] — J[Ux, Jy] =0, (1)

forany x,y € g.

@ Complex Lie algebras are those for which J is bi-invariant:

Jx,yl =[x, dyl, Yx,y€g. (2)



Basic definitions

@ A complex structure on a real Lie algebra g is J € End (g)
satisfying:
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@ Complex Lie algebras are those for which J is bi-invariant:
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[Ux, Jy] = [x,¥], Vx,y €g. (3)
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Basic definitions

@ Two complex structures J; and J, on g are said to be
equivalent if there exists o € Aut (g) satisfying:

JQOé:Ole.

e Two pairs (g1, J1) and (g2, J2) are holomorphically isomorphic
if there exists a Lie algebra isomorphism « : g1 — go such
that:

J2 o=« J1.

@ Given a complex structure J on g, set | g/, := g’ + Jg' | We

will say that J is proper when
o) %9

e S. Salamon (2001): If g is nilpotent, every complex structure
on g is proper.
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@ There are two abelian complex structures on aff(C) up to
equivalence:
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A motivating example: aff(C)

J1 is proper.

J1 anticommutes with .

e For x = (x1,x2,x3) € S2,

Je i=x1J1 +x0b + x3 1 J

is an abelian complex structure on aff(C).

Jy~Jy for x=(+£1,0,0).

Jy ~ J for x #(£1,0,0).
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Relation to HKT geometry

o A hyperhermitian structure on a smooth manifold M is
({Jata=1,23,8), where
©Q {Ju}a=123 are complex structures such that
S =—hh =k,
@ g is a Riemannian metric which is Hermitian with respect to

Jo, a=1,2,3.

o Given a hyperhermitian structure ({Jo}a=123,8) on M, g is
called hyper-Kahler with torsion (HKT) if there exists a
connection V on M satisfying

Q@ Vg=0, VJ,=0a=12,3,

@ the torsion tensor ¢(X,Y,Z) =g(X,T(Y,Z2))is
skew-symmetric.
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This class of metrics has been introduced by P.S. Howe -
G.Papadopoulos (1996).

@ A left invariant hyperhermitian metric on a Lie group G is
HKT if and only if

g([Jix, hyl, z) + g([hy, hz], x) + g([hrz, J1x], y)
= g([)2x, h2yl, 2) + g([hay, f22], x) + g([)22, J2x], ¥)
= g([hx, By, 2) + g([hy, hz), x) + g([Js2, J3x], ¥).

for all x,y,z € g, the Lie algebra of G.

@ Given an abelian hypercomplex structure, any hyperhermitian
metric is HKT.
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Relation to HKT geometry

Theorem (Dotti - Fino, 2002)

If G is a 2-step nilpotent Lie group with a left invariant HKT
structure ({Ja}a=1,2,3,&), then the hypercomplex structure is
abelian.

@ Question. Does the above result hold for any nilpotent Lie
group?

Theorem (B - I. Dotti - M. Verbitsky, 2007)

Let (N,{Ja}a=123,8) be an HKT nilmanifold such that {J,} is
left invariant. Then the hypercomplex structure {J,} is abelian.
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Examples.
O Let hopp1 =span{e,...,en, 20} be the Heisenberg algebra:
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Abelian complex structures

An abelian complex structure J satisfies:

o (1,0)-vectors in g€ commute;
o The center 3 of g is J-stable;

o For any x € g, ad, = —adyJ.

Examples.
O Let hopp1 =span{e,...,en, 20} be the Heisenberg algebra:
[e2i-1,€i] =20, 1<i<n,
and {z1,...,zok41} a basis of R?*1 An abelian complex

structure on hop 1 X R?$*1 s given by:
Jezi—1 = +tey;, Jz3j = zpj41, 1<i<n 0<j<k
@ Let aff(R) = span{er, &2} with Lie bracket: [e1, e2] = e. It
has a unique abelian complex structure up to equiv.:

Je1 = es.
10/1
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A general result

If g is an even dimensional real Lie algebra with 1-dimensional
commutator g', then:

@ g is isomorphic to either ha, 1 x R2*1 or aff(R) x R2k;

Q@ AIll these Lie algebras carry abelian complex structures and
every complex structure on g is abelian;

© There are [g] + 1 equivalence classes of complex structures
on bapy1 X R2k+1;

@ There is a unique complex structure on aff(R) x R?* up to
equivalence.
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Obstructions

@ Petravchuk (1988): If g is a real Lie algebra admitting an
abelian complex structure, then g is 2-step solvable.

e B - Dotti (2004): If g is solvable, codimg’ =1 and dimg > 2,
then g does not admit abelian complex structures.

o If g is k-step nilpotent with an abelian complex structure J,

set |g, ;=g + Jg'|. Then

gg G ggfl for all i < .

In particular, if dimg =2m, g is at most m-step nilpotent.

@ B - Dotti (2004): For arbitrary m, there exist m-step nilpotent
Lie algebras of dim. 2m carrying abelian complex structures.
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Affine Lie algebras
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Affine Lie algebras

o Let (A,-) be a finite dimensional associative, commutative
algebra. Set aff(A) := A® A with Lie bracket:

[(a,), (b, b)) = (0,a- b — b- ), a,ba, b eA

In particular, when A =R or A = C, we obtain the Lie algebra
of the group of affine motions of either R or C.

o Let J be the endomorphism of aff(A) defined by
J(a,d') = (4, —a), a,a € A

J defines an abelian complex structure on aff(A), which we
will call standard.

13/1



The four dimensional case

Theorem (J.E. Snow, 1990)

Let g be a 4-dimensional Lie algebra admitting an abelian complex
structure. Then g is isomorphic to aff(A;) for some 1 < <6,
where A; are given by:




The four dimensional case

Theorem (J.E. Snow, 1990)

Let g be a 4-dimensional Lie algebra admitting an abelian complex
structure. Then g is isomorphic to aff(A;) for some 1 < <6,
where A; are given by:
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The 6-dimensional case

Proposition

Ifdims = 6 and J is an abelian complex structure on s such that
s, is nilpotent, then s', is abelian.

To carry out the classification, we consider separately the following
cases:

@ s is nilpotent,
@ s is not nilpotent and J is proper,

© s is not nilpotent and J is not proper.

o We start by classifying the 6-dim. nilpotent Lie algebras
carrying abelian complex structures.

@ This can also be obtained as a consequence of results of
Salamon (2001) and Cordero - Fernandez - Ugarte (2002).
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The nilpotent case

Theorem

Let n be a non-abelian 6-dimensional nilpotent Lie algebra with an
abelian complex structure J. Then n is isomorphic to one (and
only one) of the following Lie algebras:

ny == h3 x R3,

np = bhs X R,

n3 = b3 x b3,

ng = bh3(C),

v el=s, Bel=lbel=c
n: [en, e] = e, [er, ea] = [e2, e5] = e,

ny: [e1,e2] = €4, [elye3] = _[627 e4] = 65,
[e1, e4] = [e2, &3] = 6.




Idea of proof

n is k-step nilpotent with k = 2 or 3. )

o If k =2, then:

N {nl or ny, if dimn’ =1
n=

n3,ng or ng, if dimn’ =2

17/1



Idea of proof

n is k-step nilpotent with k = 2 or 3. )
o If k =2, then:
| n1orny, if dimn’ =1
n=
n3,ng or ng, if dimn’ =2

o If k = 3, we obtain:

12

{%, if dimn2 =1
n

ny, if dimn? =2
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Equivalence classes of abelian complex structures

Ca(n) := { abelian complex structures on n}
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Equivalence classes of abelian complex structures

Ca(n) := { abelian complex structures on n}

Ca(n)/Aut (n) = moduli space of abelian complex structures on n.

Theorem (A-B-D, 2009)

o The Lie algebras ny,n5 and ng have a unique abelian complex
structure up to equivalence.

o The Lie algebra ny has two abelian complex structures up to
equivalence.

@ The moduli space of abelian complex structures on n3 is
homeomorphic to R.

@ The moduli space of abelian complex structures on ny is
homeomorphic to (0.1] x Zs.

@ The moduli space of abelian complex structures on ny is
homeomorphic to [—1,0) U (0, 1].




The Lie algebra n3 = h3 x b3

[e1, &] = e, [es, e4] = €5 J
( -1
1 0
0 -1
Ca(n3): 1 0 t#o
s (—s?2—1)/t
t —S
0 -1 )
1 0
0 -1
Ca(n3)/Aut (n3) = 1 0 :seR
s (—-s?2-1)
\ 1 —S )
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The Lie algebra ny

[e1, @] = e, [er,e3]=—[er,ea] = €5, [e1,e4] =[e2, &3] =65 J
(/0 —1 )
1 0
0 1
Ca(“?): 10 :t;éO
s (—s2—-1)/t
t —s )
0 -1
1 0
0 1
Ca(n7)/Aut (n7) = o 0< [t <1
0 —1/t
\ t O 20/1




Orbits in C,(n7)

For tp # 0, +1:

Oto.) = {(u, 0zt (v-5) = (5)7- 1} — F (o), J

1+ u?

1
and c=ty+ —.
to

O(O,—l) = {(0’ _1)} ) O(O,l) = {(O? 1)} :

where F(u,v) =v +
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The Lie algebra ny = h3(C)

le1, €3] = —[e2,ea] = €5, [er, ea] = [e2, €3] = & J
Ji
Ca(na) = s (=s>—1)/t|:k=1or2, t#0
t —Ss
where
-1 0 0 -1
0 -1 1 0
A=11 0 k= 0 1
01 -1 0
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The Lie algebra ny

J
Ca(ng)/Aut (ng) = { ( ' 0 l/t) ck=1or2 te(0, 1]} =~ (0,1]
t 0
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Non-nilpotent s, proper J

o If dims’, =2, or

o dims’, = 4 and ¢, is non-abelian,

‘ then (s, J) is decomposable |
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Non-nilpotent s, proper J

o If dims’, =2, or

o dims’, = 4 and ¢, is non-abelian,

‘ then (s, J) is decomposable ‘

o If 5’J = R*, we obtain:
@ A non-standard complex structure on aff(C) x R2.

@ Two Lie algebras s1, s2: 51 has two non-equivalent structures
and s, has a unique structure.

© A 2-parameter family of non-isomorphic Lie algebras. Each
one admits a unique structure up to equivalence.
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Non-nilpotent s, non-proper J

Theorem (A-B-D, 2009)

Let s be a 6-dimensional Lie algebra with a non-proper abelian
complex structure J. Then dims’ = 3 and (s, J) is holomorphically
isomorphic to aff(A) with its standard complex structure, where A

is a 3-dimensional commutative associative algebra such that
A% = A.




Non-nilpotent s, non-proper J

Theorem (A-B-D, 2009)

Let s be a 6-dimensional Lie algebra with a non-proper abelian
complex structure J. Then dims’ = 3 and (s, J) is holomorphically
isomorphic to aff(A) with its standard complex structure, where A
is a 3-dimensional commutative associative algebra such that

A2 = A. A=A for somel < i <5, where

a a
Al = b 5 A2 = b —C b}
c c b
a a b c
Az = b ¢ JAL = a b ,
b a
a 0 c
A5 = a b
a




