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A problem of R. Liouville (1889)

Cover a plane with curves, one curve through each point in each direction.
How can you tell whether these curves are geodesics of some metric?

Path geometry: y′′ = F (x, y, y′). Douglas (1936).

When are the paths unparametrised geodesics of some connection Γ
on U ⊂ R2? Elliminate the parameter in ẍa + Γa

bcẋ
bẋc ∼ ẋa.

y′′ = A0(x, y)+A1(x, y)y′+A2(x, y)(y′)2+A3(x, y)(y′)3, xa = (x, y).

Liouville (1889), Tresse (1896), Cartan (1922) –projective structures.

When are the paths geodesics of g = Edx2 + 2Fdxdy +Gdy2 ?
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bcẋ
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Projective Structures

A projective structure on an open set U ⊂ Rn is an equivalence class
of torsion free connections [Γ]. Two connections Γ and Γ̂ are
equivalent if they share the same unparametrised geodesics.

The geodesic flows project to the same foliation of P(TU). The
analytic expression for this equivalence class is

Γ̂c
ab = Γc

ab + δa
cωb + δb

cωa, a, b, c = 1, 2, . . . , n

for some one–form ω = ωadx
a.

A ‘forgotten’ subject. Goes back to Tracy Thomas (1925), Elie
Cartan (1922).

In two dimensions there is a link with second order ODEs. Projective
invariants of [Γ] = point invariants of the ODE. Liouville (1889),
Tresse (1896), Cartan, ..., Hitchin, Bryant, Tod, Nurowski, Godliński.
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Metrisability Problem

A basic unsolved problem in projective differential geometry is to
determine the explicit criterion for the metrisability of projective structure

What are the necessary and sufficient local conditions on a connection
Γc

ab for the existence of a one form ωa and a symmetric
non–degenerate tensor gab such that the projectively equivalent
connection

Γc
ab + δa

cωb + δb
cωa

is the Levi-Civita connection for gab.

We mainly focus on local metricity: The pair (g, ω) with det (g) 6= 0
is required to exist in a neighbourhood of a point p ∈ U .

Vastly overdetermined system of PDEs for g and ω: There are
n2(n+ 1)/2 components in a connection, and (n+ n(n+ 1)/2)
components in (ω, g). Naively expect n(n2 − 3)/2 conditions on Γ.
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Summary of the Results in 2D

Neccesary condition: obstruction of order 5 in the components of a
connection in a projective class. Point invariant for a second order
ODE whose integral curves are the geodesics of [Γ] or a weighted
scalar projective invariant of the projective class.

Sufficient conditions: In the generic case (what does it mean?)
vanishing of two invariants of order 6. Non–generic cases: one
obstruction of order at most 8. Need real analyticity: No set of local
obstruction can guarantee metrisability of the whole surface U in the
smooth case even if U is simply connected.

Counter intuitive - naively expect only one condition (metric = 3
functions of 2 variables, projective structure = 4 functions of 2
variables).
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Second order ODEs

Geodesic equations for xa(t) = (x(t), y(t))

ẍc + Γc
abẋ

aẋb = vẋc.

Eliminate the parameter t: second order ODE

d2y

dx2
= A3(x, y)

(dy
dx

)3
+A2(x, y)

(dy
dx

)2
+A1(x, y)

(dy
dx

)
+A0(x, y)

where

A0 = −Γ2
11, A1 = Γ1

11 − 2Γ2
12, A2 = 2Γ1

12 − Γ2
22, A3 = Γ1

22.

This formulation removes the projective ambiguity.
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Prolongation

Metric g = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2 gives

A0 = (E∂yE − 2E∂xF + F∂xE) (EG− F 2)−1/2,
A1 = (3F∂yE +G∂xE − 2F∂xF − 2E∂xG) (EG− F 2)−1/2,
A2 = (2F∂yF + 2G∂yE − 3F∂xG− E∂yG) (EG− F 2)−1/2,
A3 = (2G∂yF −G∂xG− F∂yG) (EG− F 2)−1/2, (∗)

First order homogeneous differential operator with one–dimensional
fibres

σ0 : J1(S2(T ∗U)) −→ J0(Pr(U))

Differentiating (∗) prolongs this operator to bundle maps

σk : Jk+1(S2(T ∗U)) −→ Jk(Pr(U))

Liouville (1889). Relations (∗) linearise:

E = ψ1/∆, F = ψ2/∆, G = ψ3/∆, ∆ = (ψ1ψ3 − ψ2
2)2.
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Liouville System (1889)

A projective structure [Γ] is metrisable on a neighbourhood of a point
p ∈ U iff there exists functions ψi(x, y), i = 1, 2, 3 defined on a
neighbourhood of p such that ψ1ψ3 − ψ2

2 does not vanish at p and such
that the equations

∂ψ1

∂x
=

2
3
A1ψ1 − 2A0ψ2,

∂ψ3

∂y
= 2A3ψ2 −

2
3
A2ψ3,

∂ψ1

∂y
+ 2

∂ψ2

∂x
=

4
3
A2ψ1 −

2
3
A1ψ2 − 2A0ψ3,

∂ψ3

∂x
+ 2

∂ψ2

∂y
= 2A3ψ1 −

4
3
A1ψ3 +

2
3
A2ψ2

hold on the domain of definition.
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Prolongation σk : Jk+1(S2(T ∗U)) −→ Jk(Pr(U))

k rank(Jk+1(S2(T ∗U))) rank(Jk(Pr(U))) rank(kerσk) co-rank(kerσk)
0 9 4 5 0
1 18 12 6 0
2 30 24 6 0
3 45 40 5 0
4 63 60 3 0
5 84 84 1 1 = 1
6 108 112 1 5 = 3 + 2
7 135 144 1 10 = 6 + 6− 2

No obstruction on a projective structure before the order 5.

5-jets. At least a 1D fiber, at most 83D image. First obstruction M .

6-jets. Dimension 112− 3 = 109. The image of the 7-jets of metric
structures can have dimension 108− 1 = 107. Two more 6th order
obstructions E1, E2.

7-jets. The image has codimension 10. 2 relations between the first
derivatives of E1 = E2 = 0 and the second derivatives of the 5th
order equation M = 0. The system is involutive.
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Invariant approach

Let Γ ∈ [Γ]. The curvature decomposition

[∇a,∇b]Xc = Rab
c
dX

d, Rab
c
d = δc

aPbdX
d − δc

bPadX
d + βabδ

c
d

where βab is skew.

If we change the connection in the projective class then

P̂ab = Pab −∇aωb + ωaωb, β̂ab = βab + 2∇[aωb].

Assume the cohomology class [β] ∈ H2(U,R) vanishes. Set βab = 0.

Now Pab = Pba. Bianchi identity: Γ is flat on canonical bundle.
There exists a volume form εab such that

∇aε
bc = 0.

Use εab to rise indices. Residual freedom ωa = ∇af

εab −→ e3f εab, h −→ ewfh, projective weight w.
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Invariant approach

Prolongation of the Liouville condition ∇(aσbc) = 0:

1 ∇aσ
bc = δb

aµ
c + δc

aµ
b,

2 ∇aµ
b = δb

aρ− Pacσ
bc, (∗)

3 ∇aρ = −2Pabµ
b + 2Yabcσ

bc

for some tensors Ψα = (σab, µa, ρ), where Yabc = 1
2(∇aPbc −∇bPac).

Commute covatiant derivatives (curvature), set Yc := εabYabc.

ΨαΣα := 5Yaµ
a + (∇aYb)σab = 0. (∗∗)

Differetiate (∗∗) twice. Use (∗) to eliminate derivatives of Σα. Get six
homogeneous linear equations on six unknowns (σab, µa, ρ)

F2 Ψ = 0.

The determinat of the 6 by 6 matrix F2 gives the 5th order
obstruction M - a section of Λ2(T ∗U)⊗14

det (F2)([Γ]) (dx ∧ dy)⊗14

is a projective invariant.
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Explicit Invariant: 1746 terms!

det (F2) =
(
QgiSmpTnjkUacVdeqXbfhl −

1
6
PpRmSnqXacgiXbehkXdfjl

−1
2
PpSmqTnjlUceXadgkXbfhi −

1
2
PpTmgiTnjkUacVdeqXbfhl

+
1
2
PpRmTngiVacqXdejkXbfhl −

1
2
QgiRmSnpVacqXdejkXbfhl

−1
2
QgiRmTnjkVacpVdeqXbfhl −

1
4
QgiSmpSnqUacXdejkXbfhl

1
4
QgiTmjkTnhlUacVdepVbfq

)
εabεcdεef εghεijεklεmnεpq,

where

Pa ≡ 5Ya, Qab ≡ 12Zab, Rc ≡ 5Yc, Sca ≡ 5∇aYc + 2Zac,

Tcab ≡ 5∇(a∇b)Yc + 4∇(aZb)c − 5PabYc − 15Pc(aYb), Ucd ≡ Zcd,

Xcdab ≡ ∇(a∇b)Zcd − 5(∇(aPb)(c)Yd) − 5Pc(a∇b)Yd − 5Pd(a∇b)Yc

−Pc(aZb)d − Pd(aZb)c + 10Y(aYb)(cd), Vcda ≡ ∇aZcd − 5Pa(cYd).
Dunajski (DAMTP, Cambridge) Metricity 25 September 2009 12 / 18



Tractor bundle

Solution to the prolonged Liouville system = paralel section

dΨ + Ω Ψ = 0

of a rank six vector bundle E→ U with connection.

First integrability condition FΨ = 0, where

F = dΩ + Ω ∧ Ω = (∂xΩ2 − ∂yΩ1 + [Ω1,Ω2])dx ∧ dy
= Fdx ∧ dy.

Differentiate (DaF )Ψ = 0, (DaDbF )Ψ = 0, ..., where
DaF = ∂aF + [Ωa, F ].
After K steps FKΨ = 0, where FK is a K(K + 1)/2 by 6 matrix.

Stop when rank (FK) = rank (FK+1). The space of parallel sections
has dimension (6− rank(FK)).
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Sufficient Conditions

A projective structure is generic in a neighbourhood of p ∈ U if rank
F2 is maximal and equal to 5 and

P ([Γ]) := W1W3 − (W2)2 6= 0

in this neighbourhood, where (W1, ...,W6)T spans KerF2([Γ]).

In the generic case there will exist a metric in the (real analytic)
projective class if the rank of the next derived matrix F3 does not go
up and is equal to five. Two invariants of order 6.

If rankF2([Γ]) < 5 (non–generic case) non–degenerate kernel always
exists, and

rank (F5) ≤ 5

is sufficient for the existence of the metric. One invariant of order 8.

Spinoff: Koenigs Theorem: The space of metrics compatible with a
given projective structures can have dimensions 0, 1, 2, 3, 4 or 6.
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The importance of 6th order conditions

One parameter family of projective structures

d2y

dx2
= c ex + e−x

(dy
dx

)2
.

5th order condition holds if ĉ = 48c− 11 is a root of a quartic

ĉ4 − 11286 ĉ2 − 850968 ĉ− 19529683 = 0.

The 6th order conditions are satisfied iff

3 ĉ5 + 529 ĉ4 + 222 ĉ3 − 2131102 ĉ2 − 103196849 ĉ− 1977900451 = 0,

ĉ3 − 213 ĉ2 − 7849 ĉ− 19235 = 0.

These three polynomials do not have a common root. We can make
the 5th order obstruction vanish, but the two 6th order obstructions
E1, E2 do not vanish.
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Related problem: conformal to Kähler in 4D

Given a Riemannian manifold (M, g) is there a non-zero function Ω such
that Ω2g is Kähler with respect to some complex structure?

Leads to overdetermined PDEs. Proceed as before: prolong,
construct a curvature, restrict its holonomy, find conformal invariants.

Solved recently in dimension four: MD, Paul Tod, arXiv:0901.2261.

Also read Semmelmann, arXiv:math/0206117.

Link with the Liouville problem: Given a 2D projective structure
(U, [Γ]) construct a signature (2, 2) metric on TU

g = dza ⊗ dxa −Πc
ab(x) zc dx

a ⊗ dxb, a, b, c = 1, 2.

where Πc
ab = Γc

ab −
1
3Γd

daδ
c
b −

1
3Γd

dbδ
c
a. Walker (1953), Yano–Ishihara,

..., Nurowski–Sparling, MD–West.

Theorem (MD, Tod): The metric g is conformal to (para) Kähler iff
the projective structure is metrisable.
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Twistor Theory

One-to-one correspondence between holomorphic projective structures
(U, [Γ]) and complex surfaces T with a family of rational curves.

�
�
�
�

�
�
�
�

T=twistor space M

geodesics ←→ points

points ←→ rational curves with normal bundle O(1).

Double fibration U ←− P(TU) −→ T = P(TU)/Dx, where
Dx = za ∂

∂xa − Γc
abz

azb ∂
∂zc is a geodesic spray.

(U, [Γ]) is metrisable iff T is equipped with a preferred section of the
line bundle κT

−2/3, where κT is the canonical bundle.
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