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Tamed and calibrated almost complex structures

M: compact oriented 2n-dimensional manifold.

A symplectic form w compatible with the orientation is a closed
2-form w such that w" is a volume form compatible with the
orientation.

Definition

An almost complex structure J on a symplectic manifold (M, w)
is tamed by w if wy(u,Ju) > 0,Vx € Mand Vu # 0 € T,yM.

J is calibrated by w (or w is compatible with J) if, in addition,
wx(Ju, Jv) = wx(u, v), Yu,v € T(M.

If J is calibrated by w = (w, J) is an almost-K&hler structure
= 9g(-,-) = w(-,J") is a J-Hermitian metric.
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w: a fixed non-degenerate closed 2-form w on R?" = C".

Je(w) (resp. Ji(w)) = the set of almost-complex structures
calibrated (resp. tamed) by w.
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w: a fixed non-degenerate closed 2-form w on R?" = C".
Je(w) (resp. Ji(w)) = the set of almost-complex structures
calibrated (resp. tamed) by w.

Proposition (Audin)
If on C" one considers the standard symplectic structure
(Jo,w), then the map

Jis (4 o) o (J— o)

is a diffeomorphism from 7;(w) (resp. J¢(w)) onto the open unit
ball in the vector space of (resp. symmetric) matrices L such
that JoL = —LJp.
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w: a fixed non-degenerate closed 2-form w on R?" = C".
Je(w) (resp. Ji(w)) = the set of almost-complex structures
calibrated (resp. tamed) by w.

Proposition (Audin)

If on C" one considers the standard symplectic structure
(Jo,w), then the map

J= (J+do) o (J - )

is a diffeomorphism from 7;(w) (resp. J¢(w)) onto the open unit
ball in the vector space of (resp. symmetric) matrices L such
that JoL = —LJp.

Then, if Jy is calibrated by w and L is a symmetric matrix such
that ||L]|| < 1, oL = —Ldp, then

(I+L)odyo(l+L)"

is still an almost complex structure calibrated by w.
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Symplectic cones

C(M): symplectic cone of M, i.e. the image of the space of
symplectic forms on M compatible with the orientation by the
projection w — [w] € H?(M,R).
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Symplectic cones

C(M): symplectic cone of M, i.e. the image of the space of
symplectic forms on M compatible with the orientation by the
projection w — [w] € H?(M,R).
T. J. Li e W. Zhang studied the following subcones of C(M): the
J-tamed symplectic cone

KY(M) = {[w] € H*(M,R) | wis tamed by J}
and the J-compatible symplectic cone

KS§(M) = {[w] € H*(M,R) | wis compatible with J} .

Motivation

Tamed and calibrated
almost complex structures

C°° pure and full
almost complex
structures

Calibrated and
4-dimensional case

Example of non C °° pure
almost complex structure

Pure and full almost
complex structures
Main result
Sketch of the proof

Link with Hard Lefschetz
condition

Sketch of the Proof
Integrable case

Examples
Nakamura manifold
Families in dimension six

References




Symplectic cones

C(M): symplectic cone of M, i.e. the image of the space of
symplectic forms on M compatible with the orientation by the
projection w — [w] € H?(M,R).

T. J. Li e W. Zhang studied the following subcones of C(M): the
J-tamed symplectic cone

KY(M) = {[w] € H*(M,R) | wis tamed by J}
and the J-compatible symplectic cone
KS§(M) = {[w] € H*(M,R) | wis compatible with J} .

For almost-K&hler manifolds (M, J,w), the cone K§(M) # 0 and
if J is integrable K5(M) coincides with the Kahler cone.
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Theorem (Li, Zhang)
If J is integrable and KC5(M) # 0, one has

(M) = K5(M) + [(H2°(M) & HEA(M)) n (M, R)]
KL(M) N [Hg‘(/\//) N H2(M, R)} = K5(M).

Problem
Find a relation between K'(M) and K5(M) in the case that J is

non integrable, related to the question by Donaldson forn =2 :

if KY(M) # 0 for some J, then K5(M) # 0 as well?

To solve this problem Li and Zhang introduced the analogous
of the previous (real) Dolbeault groups for general almost
complex manifolds (M, J).
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C* pure and full almost complex structures
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C* pure and full almost complex structures
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On (M, J) for the space Q*(M)g of real smooth differential
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M = P QI (M)= ki
J ’ Example of non C > pure
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Main result
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C* pure and full almost complex structures

On (M, J) for the space Q*(M)g of real smooth differential
k-forms one has:

My = P I (M),
p+a=k

where

QBIM)z = {o € Q5IM) © Q4P(M) |0 =} .

S: afinite set of pairs of integers. Let

S E S )
zi= @ 279 B= P B,
(p,g)€S (p,q)€S

where 277 and BY'7 are the spaces of real d-closed (resp.

d-exacts) (p, q)-forms.
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There is a natural map
ps - Zf/l’)’f — ZJS/B,

where B is the space of d-exact forms.
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There is a natural map
ps - ZJS/B‘)9 — ZJS/B,

where B is the space of d-exact forms.
We will write ps(Z5/B3) as Z5/B5.
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There is a natural map

ps - ZJS/B‘)9 — ZJS/B,

where B is the space of d-exact forms.
We will write ps(Z5/B3) as Z5/B5.

Define

HS(M)s = {la] | a € 25} =

S
ZJ
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There is a natural map
ps: Z3/BS — Z3/B,
where B is the space of d-exact forms.
We will write ps(Z5/B3) as Z5/B5.
Define s
HS M)z = {[o] | o € 25} = 22

Then
H (M) + HEOOA (M) © H(M, ),
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Jis C* pure and full if and only if -
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2 1,1 (2,0),(0,2)
H*(M.R) = H) (M)r & H; (M) eiirly= S
a\mas?complex stvucluvpe

o Jis C pure if and only if H)' (M)r N HE P O (M)z = {0}.  rusasiuramss

e Jis C* full if and only if
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Does the previous property hold in higher dimension?
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Example of non C> pure almost complex structure

A compact manifold of real dimension 6 may admit non C*
pure almost complex structures.
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Example of non C> pure almost complex structure

A compact manifold of real dimension 6 may admit non C*
pure almost complex structures.

Example

Consider the nilmanifold M8, compact quotient of the Lie group:

de =0, j=1,...,4,
de® = e'?,
de® = e's.
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Example of non C> pure almost complex structure

A compact manifold of real dimension 6 may admit non C*
pure almost complex structures.

Example

Consider the nilmanifold M8, compact quotient of the Lie group:

de =0, j=1,...,4,
de® = e'?,
de® = e's.

The left-invariant almost complex structure on M®, defined by

n'=e'+ie?, nP=e*+ie*, 1®=e+ied,

is not C* pure, since one has that

[Re(n' A77%)] = [ + €] = [€*] = [Re(n' A1?)] = [€"° — €*].
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Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension 2n.
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Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension 2n.

Ex(M) the space of k-currents on M, i.e. the topological dual of

Q2n-k(M).
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Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension 2n.

Ex(M) the space of k-currents on M, i.e. the topological dual of
QZn—k(M).

Since the smooth k-forms can be considered as
(2n — k)-currents, then

Hk(M7 R) = H2n_k(M7 R)7

where Hx(M,R) is the k-th de Rham homology group.
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Pure and full almost complex structures

(M, J) (almost) complex manifold of (real) dimension 2n.

Ex(M) the space of k-currents on M, i.e. the topological dual of
QZn—k(M).

Since the smooth k-forms can be considered as
(2n — k)-currents, then

Hk(M7 R) = H2n_k(M7 R)7

where Hx(M,R) is the k-th de Rham homology group.

e A k-current is a boundary if and only if it vanishes on the
space of closed k-forms.
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On (M, J) for the space of real k-currents £(M)g one has:

(M= P & (M),

p+a=k

where Sg,q(M)R is the space of real k-currents of bidimension
(P, Q).
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On (M, J) for the space of real k-currents £(M)g one has:
D &
p+a=k

where Sg,
(P, ).

S: afinite set of pairs of integers. Let

ZS— @ pq7 @ pq’

(p,q)€S (p,q)€S

q(M)r is the space of real k-currents of bidimension

where Zg’q and B’J,’q are the space of real d-closed (resp.
boundary) currents of bidimension (p, q).
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On (M, J) for the space of real k-currents £(M)g one has:
D &
p+a=k

where Sg,
(P, ).

S: afinite set of pairs of integers. Let

ZS— @ pq7 @ pq’

(p,q)€S (p,q)€S

q(M)r is the space of real k-currents of bidimension

where Zg’q and Bg’q are the space of real d-closed (resp.
boundary) currents of bidimension (p, q).

Define
J J Zé
Hs(M)r = {[a] | « € 25} = B

where B denotes the space of currents which are boundaries.
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Definition (Li, Zhang)

An almost complex structure J is pure if

H;{1 (M)g N HE/2,0),(0,2)(M)]R = {0} or equivalently if
7T17132 n Z;IJ = 6{1.

Jis full if Ho(M,R) = H1J)1(M)R r H(Jz,O),(o,z)(M)R~
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Definition (Li, Zhang)

An almost complex structure J is pure if

H1J71 (M)g N HE/2,0),(0,2)(M)]R = {0} or equivalently if
7T17182 n Z;IJ = B%/J'

Jis full if Ho(M,R) = H1J’1(M)R r H(Jz,o)’(o’z)(M)R.
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Relation between C*> pure and full and pure and full?
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Main result

If a 2-form w on M?" is not necessarily closed but it is only
non-degenerate, (M?", w) is called almost symplectic.
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Main result

If a 2-form w on M?" is not necessarily closed but it is only
non-degenerate, (M?", w) is called almost symplectic.

Theorem (—, Tomassini)

Let (M?",w) be an almost symplectic compact manifold and J
be a C> pure and full almost complex structure calibrated by w.
Then J is pure.

If, in addition, either n = 2 or any class in HJ’1 (M2™M)g
(HSZ’O)’(O’Z) (M2")g resp.) has a harmonic representative in Zjﬂ
(252’0)’(0’2) resp.) with respect to the metric induced by w and J,
then J is pure and full.
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Main result

If a 2-form w on M?" is not necessarily closed but it is only
non-degenerate, (M?", w) is called almost symplectic.

Theorem (—, Tomassini)

Let (M?",w) be an almost symplectic compact manifold and J
be a C> pure and full almost complex structure calibrated by w.
Then J is pure.

If, in addition, either n = 2 or any class in HJ’1 (MZ”)R
(HSZ’O)’(O’Z) (M2")g resp.) has a harmonic representative in Zjﬂ
(252’0)’(0’2) resp.) with respect to the metric induced by w and J,
then J is pure and full.

Remark

¢ In order to get the pureness of J, it is enough to assume that
Jis C* full.

e If n = 2, then by previous Theorem any almost complex
structure J is pure and full.

Motivation

Tamed and calibrated
almost complex structures

Symplectic cones

C°° pure and full
almost complex
structures

Calibrated and
4-dimensional case

Example of non C °° pure
almost complex structure

Pure and full almost
complex structures

Sketch of the proof

Link with Hard Lefschetz
condition

Sketch of the Proof
Integrable case

Examples
Nakamura manifold
Families in dimension six

References




Sketch of the proof
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Sketch of the proof

We start to prove that J is pure, i.e. 71182 N Z1J’1 = 81{1.
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Sketch of the proof

We start to prove that J is pure, i.e. 1,182 N Z{, = By ;.

Let Tem BN Z{ = Tfm ,10dS, where S'is a real
3-current and d(m, 1dS) =
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Sketch of the proof

We start to prove that J is pure, i.e. 1,182 N Z{, = By ;.

Let Tem BN Z{ = Tfm ,10dS, where S'is a real
3-current and d(, 1dS) =

We have to show that T = 71 1dS is a boundary, i.e. that
T(a) = 0, for any closed real 2-form «.
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Sketch of the proof

We start to prove that J is pure, i.e. 1,182 N Z{, = By ;.
Let T e m 182N Z{ = T = my 1dS, where S'is a real
3-current and d(, 1dS) = 0.

We have to show that T = 71 1dS is a boundary, i.e. that
T(a) = 0, for any closed real 2-form «.

If « is exact, then (71 1dS)(«) = 0.
If [o] # 0 € H?(M?" R), since J is C* pure and full, we have

a=ay + ag + dvy, withay € 23’17 ap € ZSZ’O)’(O’Q),
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Sketch of the proof

We start to prove that J is pure, i.e. 1,182 N Z{, = By ;.

Let T e m 182N Z{ = T = my 1dS, where S'is a real
3-current and d(, 1dS) = 0.

We have to show that T = 71 1dS is a boundary, i.e. that
T(a) = 0, for any closed real 2-form «.

If « is exact, then (71 1dS)(«) = 0.
If [o] # 0 € H?(M?" R), since J is C* pure and full, we have

a=ay+az+ dy, withay € 23’17 s € ZSZ’O)’(O’Q),

Then

T(a) = (71,1dS)() = (m1,1dS) (a1 + ap) = (dS)(1) =0
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e lf n =2, let [T] € Ho(M* R); then 3 a smooth closed 2-form «
such that [T] = [o].
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e lf n =2, let [T] € Ho(M* R); then 3 a smooth closed 2-form «
such that [T] = [o].
Since J is > full, we have that [a] = [a4] + [az], with aq € 2]
and as € 252,0),(0,2)_
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e lf n =2, let [T] € Ho(M* R); then 3 a smooth closed 2-form «

such that [T] = [o].

Since J is > full, we have that [a] = [a4] + [az], with aq € 2]

and as €

e lf n> 2, let [T] € Ho(M?" R), then 3 a smooth harmonic
(2n — 2)-form g such that [T] = [4].

(2,0),(0,2)
2§ :
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e lf n =2, let [T] € Ho(M* R); then 3 a smooth closed 2-form «
such that [T] = [o].

Since J is > full, we have that [a] = [a4] + [az], with aq € 2]
and as € 232,0),(0,2)_

e lf n> 2, let [T] € Ho(M?" R), then 3 a smooth harmonic

(2n —2)-form 3 such that [T] = [3].

The 2-form v = 3 defines [y] € H?(M?",R). By the
assumption, 3 real harmonic forms v € Q}“ (M?")g and

12 € QFPOA(M); such that (] = [1] + el

Motivation

Tamed and calibrated
almost complex structures

Symplectic cones

C°° pure and full
almost complex
structures

Calibrated and
4-dimensional case

Example of non C°° pure
almost complex structure
Pure and full almost
complex structures
Main result

Link with Hard Lefschetz
condition

Sketch of the Proof
Integrable case

Examples
Nakamura manifold
Families in dimension six

References




e lf n =2, let [T] € Ho(M* R); then 3 a smooth closed 2-form «
such that [T] = [o].

Since J is > full, we have that [a] = [a4] + [az], with aq € 2]
and as € ZSZ’O)’(O’Q).

e lf n> 2, let [T] € Ho(M?" R), then 3 a smooth harmonic

(2n —2)-form 3 such that [T] = [3].

The 2-form v = 3 defines [y] € H?(M?",R). By the
assumption, 3 real harmonic forms v € Q}“(MZ”)R and

12 € QFPOA(M); such that (] = [1] + el

The (2n — 2)-forms 1 = xy; and 2 = x72 then can be viewed
as elements respectively of Z;’J and Z(JZ,O),(O,Z) =

[T] = [B1] + [B2].
O
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Link with Hard Lefschetz condition
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Link with Hard Lefschetz condition
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Link with Hard Lefschetz condition

A symplectic manifold (M?", w) satisfies the Hard Lefschetz
condition if :

W QTH(MPY) — QTR(MPT), 0 WF A
induce isomorphisms in cohomology.

Theorem (-, Tomassini)

Let (M?",w) be a compact symplectic manifold which satisfies
Hard Lefschetz condition and J be a C* pure and full almost
complex structure calibrated by w. Then J is pure and full.
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Link with Hard Lefschetz condition

A symplectic manifold (M?", w) satisfies the Hard Lefschetz
condition if :

W QTH(MPY) — QTR(MPT), 0 WF A
induce isomorphisms in cohomology.

Theorem (—, Tomassini)

Let (M?" w) be a compact symplectic manifold which satisfies
Hard Lefschetz condition and J be a C* pure and full almost
complex structure calibrated by w. Then J is pure and full.

Problem

Find for n > 2 an example of compact symplectic manifold
(M7, w) which satisfies Hard Lefschetz condition and with an
non pure and full almost complex structure calibrated by w.
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Sketch of the Proof
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Sketch of the Proof

e If n = 2 the result follows by the last Theorem.
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Sketch of the Proof

e If n = 2 the result follows by the last Theorem.

e If n > 2 Jis pure. We have to show that

Ho(M?",R) = Hi 1 (MP")z © Hpp 0) 0.2) (M)
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J is C* pure and full =

18] =[] + [,
[l € H)' (M), [u] € HEZ O O2 (MRn)g.
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J is C* pure and full =

[8] =[] + [¥],

[e] € H) (MP)g, [] € HEZ O 2 (M),
Then

a=[T|=[BAw"?]=[pAw" 2] + [ Aw"2].
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J is C* pure and full =

[8] =[] + [¥],

[e] € H) (MP)g, [] € HEZ O 2 (M),
Then

a=[T|=[BAw"?]=[pAw" 2] + [ Aw"2].

Since ¢, ¢ are real 2-forms of type (1,1), (2,0) + (0,2)
respectively and w"~2 is a real form of type (n—2,n —2) =

a=[T]=[RI+[S], ReH{{(M*)g,S e Hjg 02 (M"):.
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J is C* pure and full =

[8] =[] + [¥],

[e] € H) (MP)g, [] € HEZ O 2 (M),
Then

a=[T|=[BAw"?]=[pAw" 2] + [ Aw"2].

Since ¢, ¢ are real 2-forms of type (1,1), (2,0) + (0,2)
respectively and w"~2 is a real form of type (n—2,n —2) =

a=[T]=[RI+[S], ReH{{(M*)g,S e Hjg 02 (M"):.

— J is pure and full.
O
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Integrable case
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Integrable case

If J is integrable, in general it is not necessarily (C>) pure and
full.

If J is an integrable almost complex structure and the Frdlicher
spectral sequence degenerates at E;, then J is pure and full
[Li, Zhang].

Theorem (-, Tomassini)

If (M =T\G,J) is a complex parallelizable manifold and
H?(M,R) = H?(g), then J is C* full and it is pure.
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Integrable case

If J is integrable, in general it is not necessarily (C>) pure and
full.

If J is an integrable almost complex structure and the Frdlicher
spectral sequence degenerates at E;, then J is pure and full
[Li, Zhang].

Theorem (-, Tomassini)

If (M =T\G,J) is a complex parallelizable manifold and
H?(M,R) = H?(g), then J is C* full and it is pure.

= Let (M, J) be a complex parallelizable nilmanifold. Then J is
C* full and it is pure.
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Nakamura manifold

Let G be the solvable Lie group with structure equations

(o, o2 _ g% g3 L g% 0 o!5 _ e

_e16 + 634).
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Nakamura manifold

Let G be the solvable Lie group with structure equations

(o, o2 _ g% _g13 | o% (0 e!5 _g? _g!6 634).

G = (C3, ), with * defined in terms of the coordinates
Zj = Xj + ix3j by

t(Z1,22,Z3)>|< t(W1, Wo, W3) = t(Z1 -+ W1,e_W122—|-W2, eW123+ W3).

Motivation

Tamed and calibrated
almost complex structures

Symplectic cones

C°° pure and full
almost complex
structures

Calibrated and
4-dimensional case

Example of non C°° pure
almost complex structure
Pure and full almost
complex structures
Main result

Sketch of the proof

Link with Hard Lefschetz
condition

Sketch of the Proof
Integrable case

Examples

Families in dimension six

References




Nakamura manifold

Let G be the solvable Lie group with structure equations
(0 g2 _ g% _g13 4 g% 0 o5 _ g _g16 4 634).

G = (C3, ), with * defined in terms of the coordinates

Zj = Xj + ix3j by

t(Z1,22,Z3)>|< t(W1, Wo, W3) = t(Z1 -+ W1,e_W122—|-W2, eW123+ W3).

The Nakamura manifold is the compact quotient X& = '\ G.
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By de Bartolomeis-Tomassini we have

H2(X5, R)

= R< [614], [626 _ 635], [623 _ 656],
[cos(2x4)(€%® + €%6) — sin(2x4)(e?® + €%9)],

[sin(2x4)(e® + €%) — cos(2x4)(e® + )] > .
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By de Bartolomeis-Tomassini we have

HZ(XG,R) = R< [614], [626 _ 635], [623 _ 656],
[cos(2x4)(€%® + €%6) — sin(2x4)(e?® + €%9)],

[sin(2x4)(e?® + €%8) — cos(2x4) (€% + €%°)] > .

o X8 has a left-invariant J defined by:
o —e tiet, P=e+ie®, 1= +ie?

calibrated by w = e'* + &% + €52
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The harmonic forms

e'* €% — 3% cos(2x4)(e?® + %) — sin(2x4)(e?® + %),
sin(2x4)(€® + %) — cos(2x,)(e?® + &%)

are all of type (1,1) and e*® — e is of type (2,0) =
J is pure and full.
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The harmonic forms

e'* €% — 3% cos(2x4)(e?® + %) — sin(2x4)(e?® + %),
sin(2x4)(€® + %) — cos(2x,)(e?® + &%)

are all of type (1,1) and e*® — e is of type (2,0) =
J is pure and full.

o X® admits the pure and full bi-invariant complex structure J:

it =e' +ie*, PR =e®+ie® i’ =e+ied.
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Families in dimension six
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Families in dimension six

Consider the completely solvable Lie algebra
5 = s0l(3) ® s0l(3) with structure equations

(07 —f12, f34, 07 f‘157 f46).
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Families in dimension six

Consider the completely solvable Lie algebra
5 = s0l(3) ® s0l(3) with structure equations

(0, —f12, f34, O, f‘IS7 f46).

S admits a compact quotient M® = '\ S [Fernandez-Gray].

By Hattori’s Theorem

H2(MB R) = H*(s) = R < [f'], [f*°], [%¢] > .
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Families in dimension six

Consider the completely solvable Lie algebra
5 = s0l(3) ® s0l(3) with structure equations

(0, —f12, f34, O, f‘IS7 f46).

S admits a compact quotient M® = '\ S [Fernandez-Gray].

By Hattori’s Theorem

H2(MB R) = H*(s) = R < [f'], [f*°], [%¢] > .

Jo defined by the (1, 0)-forms
o' = 4ift, =P if°, o8 = +if®.

is almost-Kahler with respect to w = 14 + 25 4+ 36,
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(M8, Jy, w) satisfies the Hard Lefschetz condition [Fernandez,
Munoz] and H3(M®,R) = H}; (M)z.
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(M8, Jy, w) satisfies the Hard Lefschetz condition [Fernandez,
Munoz] and H3(M®,R) = H}; (M)z.

Define the family of almost complex structure

Jp = (I + Lt)Jo(I + Lt)_1

with respect to the basis (', ..., f®), where

o

0
/

-1
0

) e

0 il
i 0

), 612 < 1.
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(M8, Jy, w) satisfies the Hard Lefschetz condition [Fernandez,
Munoz] and H3(M®,R) = H}; (M)z.

Define the family of almost complex structure
Jr = (14 L) do(1 + Lp)™!

with respect to the basis (', ..., f®), where
(0 -1 (o0 2
w () L= (8 1), aeen

Then, J; is a family of w-calibrated almost complex structures.
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= Any J; is C* pure.
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= Any J; is C* pure.

A basis of (1, 0)-forms for J; is

ol = f1 +i((1§§2)
© :f2+’<
Lp?:f:s_i_,-(mzt

Then J; is also C*° full.

1+t f4>
1+t2 f5>

1+ fe)
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= Any J; is C* pure.

A basis of (1, 0)-forms for J; is

ol = f1 +i((1§§2)
© :f2+’<
¢?=f3+i((12t

Then J; is also C*° full.

1+t f4>

1+t2 f5>

+ }jtsz;) .

Jr is actually pure and full, since ¢! A3}, 0?2 A B2, 03 A TGS are

harmonic.
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= Any J; is C* pure.

A basis of (1,0)-forms for J; is

ol = f1 +i((1§f,2)

@t:fz‘*"(

apt—fs—l—l(

Then J; is also C*° full.

1+t f4)
1+t2 f5>

1t26
+ L)

Jr is actually pure and full, since ¢! A3}, 0?2 A B2, 03 A TGS are

harmonic.

The family J; associated to the basis of (1,0)-forms

pl=1"+i(-2tFP+ ), 2= +if°, g =1 +if°

is a family of pure and full w-tamed almost complex structures.

Motivation
Tamed and calibrated
almost complex structures
Symplectic cones

C°° pure and full
almost complex
structures

Calibrated and
4-dimensional case

Example of non C°° pure
almost complex structure
Pure and full almost
complex structures
Main result

Sketch of the proof

Link with Hard Lefschetz
condition

Sketch of the Proof
Integrable case

Examples
Nakamura manifold

References




References

T. Draghici, T.J. Li, W. Zhang, Symplectic forms and
cohomology of almost complex 4-manifolds, preprint arXiv:
0812.3680, to appear in Int. Math. Res. Not..

A. Fino, A. Tomassini, On some cohomological properties of
almost complex manifolds, preprint arXiv: 0807.1800, to
appear in J. of Geom. Anal..

T. J. Li, W. Zhang, Comparing tamed and compatible
symplectic cones and cohomological properties of almost
complex manifolds, preprint arXiv:0708.2520.

Motivation

Tamed and calibrated
almost complex structures

Symplectic cones

C°° pure and full
almost complex
structures

Calibrated and
4-dimensional case

Example of non C°° pure
almost complex structure
Pure and full almost
complex structures
Main result

Sketch of the proof

Link with Hard Lefschetz
condition

Sketch of the Proof
Integrable case

Examples
Nakamura manifold
Families in dimension six




	Motivation
	Tamed and calibrated almost complex structures
	Symplectic cones

	C pure and full almost complex structures
	Calibrated and 4-dimensional case
	Example of non C pure almost complex structure

	Pure and full almost complex structures
	Main result
	Sketch of the proof
	Link with Hard Lefschetz condition
	Sketch of the Proof
	Integrable case

	Examples
	Nakamura manifold
	Families in dimension six

	References

