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Idea

yn = F (x , y , y1, . . . , yn−1), n ≥ 3.

We admit contact transformations of variables (x , y , . . . , yn)

y = f (x ; c1, . . . , cn).

Space of solutions: Mn parameterized by (ci ).

A point y0 ∈ Mn: a solution y = y0(x).

Vectors tangent at y0: solutions of the linerization around y0.

y(x) = y0(x) + δ(x), δn = ∂yn−1F · δn−1 + . . .+ ∂yF · δ

The linearization is trivializable if it may be transformed into δn(x) = 0.

M.Godlinski (PAS) G2 geometries
Dirac operators and special geometries, 26 September 2009 2

/ 11



Idea

yn = F (x , y , y1, . . . , yn−1), n ≥ 3.

We admit contact transformations of variables (x , y , . . . , yn)

y = f (x ; c1, . . . , cn).

Space of solutions: Mn parameterized by (ci ).

A point y0 ∈ Mn: a solution y = y0(x).

Vectors tangent at y0: solutions of the linerization around y0.

y(x) = y0(x) + δ(x), δn = ∂yn−1F · δn−1 + . . .+ ∂yF · δ

The linearization is trivializable if it may be transformed into δn(x) = 0.

M.Godlinski (PAS) G2 geometries
Dirac operators and special geometries, 26 September 2009 2

/ 11



Idea

yn = F (x , y , y1, . . . , yn−1), n ≥ 3.

We admit contact transformations of variables (x , y , . . . , yn)

y = f (x ; c1, . . . , cn).

Space of solutions: Mn parameterized by (ci ).

A point y0 ∈ Mn: a solution y = y0(x).

Vectors tangent at y0: solutions of the linerization around y0.

y(x) = y0(x) + δ(x), δn = ∂yn−1F · δn−1 + . . .+ ∂yF · δ

The linearization is trivializable if it may be transformed into δn(x) = 0.

M.Godlinski (PAS) G2 geometries
Dirac operators and special geometries, 26 September 2009 2

/ 11



Idea

yn = F (x , y , y1, . . . , yn−1), n ≥ 3.

We admit contact transformations of variables (x , y , . . . , yn)

y = f (x ; c1, . . . , cn).

Space of solutions: Mn parameterized by (ci ).

A point y0 ∈ Mn: a solution y = y0(x).

Vectors tangent at y0: solutions of the linerization around y0.

y(x) = y0(x) + δ(x), δn = ∂yn−1F · δn−1 + . . .+ ∂yF · δ

The linearization is trivializable if it may be transformed into δn(x) = 0.

M.Godlinski (PAS) G2 geometries
Dirac operators and special geometries, 26 September 2009 2

/ 11



Idea

yn = F (x , y , y1, . . . , yn−1), n ≥ 3.

We admit contact transformations of variables (x , y , . . . , yn)

y = f (x ; c1, . . . , cn).

Space of solutions: Mn parameterized by (ci ).

A point y0 ∈ Mn: a solution y = y0(x).

Vectors tangent at y0: solutions of the linerization around y0.

y(x) = y0(x) + δ(x), δn = ∂yn−1F · δn−1 + . . .+ ∂yF · δ

The linearization is trivializable if it may be transformed into δn(x) = 0.

M.Godlinski (PAS) G2 geometries
Dirac operators and special geometries, 26 September 2009 2

/ 11



Idea

What happens to Ty0M
7 if the linearization is trivializable?

Tangent vectors ↔ n − 1st degree polynomials in x

↔ n − 1st degree homogeneous polynomials in t and s, (x = t/s).

On Ty0M
n acts the group of linear transformations of t and s.

V i – i-dimensional irreducible representation of GL(2,R).

Ty0M
n = Sn−1V 2 = V n.
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Idea

Definition

GL(2,R) geometry on Mn is a reduction of the frame bundle F Mn to its
GL(2,R)-subbundle, where GL(2,R) ⊂ GL(n,R) acts irreducibly.

Corollary

An ODE admits a GL(2,R) geometry on its solution space iff the
linearizations around its solutions are all trivial.

Corollary

A 7-dimensional GL(2,R) geometry uniquely defines a conformal split G2

geometry, since
GL(2,R) ⊂ R+ × G̃2 ⊂ CO(3, 4).

Wünschmann, Cartan, Chern, Bryant, Eastwood, Doubrov, Dunajski,
Nurowski, Tod, MG,...
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Jet space J6

Graph of a function x 7→ (x , f (x)) in the xy -space

lifts to x 7→ (x , f (x), f ′(x), . . . , f (6)(x)).

J6 – the space where the lifted curves live.

(x , y , y1, y2, . . . , y6) – local coordinates in J 6, dim J6 = 8.

Geometry of J6 – contact distribution C spanned by all lifted curves. C
has rank 2 and it is totally non-integrable

Contact transformations ≡ transformations preserving C.
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J6 and space of solutions

Fix a 7th order ODE y7 = F (x , y , y1, . . . , y6).

Family of its solutions lift to a congruence in J6

The lifts: x 7→ (x , f (x), f ′(x), . . . , f (6)(x))

One solution through any point in J6.

Contact geometry of 7th order ODEs

J6 equipped with

i) the contact distribution C,

ii) the congruence of solutions (in C).

J6 is a line bundle over the solution space M7
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Main trick

→

P
↓
J6

Ω is a gl(2,R)⊕. R7-valued Cartan connection. Why? It is a deformation
of the trivial case y7 = 0, where P = GL(2,R) n R7, J6 is a homogeneous

space and Ω is the Maurer-Cartan 1-form, dΩ + Ω∧Ω = 0

In general K := dΩ + Ω∧Ω 6= 0 contains invariants.

Construction of Ω: Linear conditions on K , Tanaka-Morimoto theory
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Main trick

GL(2,R) → P, Ω
↓

M7

How to construct GL(2,R) geometry?

R∗uΩ = ad u−1Ω, u ∈ GL(2,R) ⇐⇒ A∗yK = 0, A ∈ gl(2,R).

Ω = Γ︸︷︷︸
gl(2,R)

+ θ︸︷︷︸
R7

dθi + Γi
j∧ θ

j = 1
2T i

klθ
k∧ θl ,

dΓi
j + Γi

k∧ Γk
j = 1

2R i
jklθ

k∧ θl .
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Torsion

Λ2(V 7)⊗ V 7 = Λ3V 7 ⊕ S (2,1)V 7.

Λ3V 7 = V 1 ⊕ V 5 ⊕ V 7 ⊕ V 9 ⊕ V 13.

S (2,1)V 7 = V 3 ⊕ 2 V 5 ⊕ 2V 7 ⊕ 2V 9 ⊕ 2V 11 ⊕ V 13 ⊕ V 15 ⊕ V 17.

T = T (1) + T (3) + T (5).

T (5) lies ’askew’. May we get ’more antisymmetric’ torsion?

This is a unique connection with torsion without blue components.
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Towards G̃2 geometries

dφ = λ ∗ φ+ 3
4τ4∧φ+ ∗τ3,

d ∗ φ = τ4 ∧ ∗ φ− τ2∧φ.

X1 = V 1, λ ∼ T (1).

X2 = V 3 ⊕ V 11, τ2 ∼ T (3).

X3 = V 5 ⊕ V 9 ⊕ V 13, τ3 ∼ T (5).

X4 = V 7, τ4 = 4
7TrΓ.
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Fernandez-Gray classes, torsion and contact invariants.

T (5) = 0 ⇔ no X3 ⇔ F66 = 0,

T (3) = 0 ⇔ no X2 ⇔ 21DF66 + 14F65 + 15F6F66 = 0,

T (1) = 0 ⇔ no X1 ⇔ ...

The same for
dτ4 = dτ (3)

4 + dτ (7)
4 + dτ (11)

4 .

In particular

dτ (11)
4 = 0 ⇔ F666 = 0.
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Only three conformal geometries of class X1 + X2 + X4.

1. Holonomy G̃2 – the flat case of y7 = 0.

2. Class X1 + X4 which contains the nearly-paralel geometry of
SO(3, 2)/SO(2, 1)

y7 = 7
y6y4

y3
+

49

10

y2
5

y3
− 28

y5y
2
4

y2
3

+
35

2

y4
4

y3
3

.

3. Class X2 + X4 which contains an almost parallel geometry with at
least 8 symmetries.

y7 =
21

5

y6y5

y4
− 84

25

y3
5

y2
4

.
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1. Holonomy G̃2 – the flat case of y7 = 0.

2. Class X1 + X4 which contains the nearly-paralel geometry of
SO(3, 2)/SO(2, 1)
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3. Class X2 + X4 which contains an almost parallel geometry with at
least 8 symmetries.
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