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y′′′ = F (x, y, y′, y′′) & ȳ′′′ = F̄ (x̄, ȳ, ȳ′, ȳ′′),

determine if there exists a change of variables, e.g.

x→ x̄ = x̄(x, y)

y → ȳ = ȳ(x, y),

which transforms one equation into the other.

Transformations mixing independent and dependent variables, as above are called
point transformations.
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We will be also interested in this problem for contact transformations of
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y → ȳ = ȳ(x, y, y′)

y′ → ȳ′ = ȳ′(x, y, y′)
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Chern,..., Tanaka,... Bryant, ...

• nowadays: solution is achieved in terms of a Cartan connection with a Cartan
geometry appropriate for a given problem

• motivated by the works of Newman, Fritelli and Kozameh, and my experience
with CR geometry, especially in its Fe�erman aspect, I was aksing if there are
classes of (systems) of ODEs/PDEs considered modulo point/contact
transformations whose di�erential geometry is equivalent to some less exotic
geometries, such as (pseudo)Riemannian?... perhaps conformal

(pseudo)Riemannian?... perhaps special conformal, e.g. Weyl?
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Di�erentialgleichungen�, Dissertation, Greifswald:
? Consider third order ODE: y′′′ = 0, with the solution space R3

parametrized by (a0, a1, a2), and the general solution

y = a0 + 2a1x+ a2x
2.

? Take a neighbouring point (a0, a1, a2) + (da0,da1,da2) in R3,

y + dy = a0 + da0 + 2(a1 + da1)x+ (a2 + da2)x2

? When the graphs of these two solutions are tangent to each other at some

point (x, y(x)) in the xy plane?
? The answer: if and only if the displacement vector (da0,da1,da2) satis�es

da0da2 − (da1)2 = 0.
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? Indeed the tangency of the two graphs at x means that

dy(x) = da0 + 2da1x+ da2x
2 = 0

dy′(x) = 2da1 + 2da2x = 0

simultaneously, and this has a solution for x if and only if
da0da2 − (da1)2 = 0.

? Thus the solution space R3 of the equation y′′′ = 0, with the solutions
parametrized by (a0, a1, a2), is naturally equipped with a conformal

Lorentzian metric
g = da0da2 − (da1)2.

? In this metric two neighbouring solutions are null separated i� they are
tangent at some point.

? What shall one assume about a third order ODE to have a natural
conformal Lorentzian metric on its (3-dimensional) solution space?
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? Condition (W ) is invariant with respect to contact transformations of
variables and contact transformations of the variables result in a conformal
change of the metric.

? Wünschman: There is a one-to-one correspondence between equivalence
classes of 3rd order ODEs satisfying (W ) considered modulo contact
transformations of variables and 3-dimensional Lorentzian conformal
geometries.

? In particular: all contact invariants of such classes of equations are
expressible in terms of the conformal invariants of the associated conformal
Lorentzian metrics.
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? Solved the equivalence problem for third order ODEs considered modulo
point transformation of variables.

? In case when the ODE y′′′ = F (x, y, y′, y′′) satis�es Wünschmann
condition, he constructed a natural principal �ber bundle P → S over its
solution space S, with a certain so(2, 3)-valued Cartan connection ω.

? He showed that the curvature R = dω + ω ∧ ω of ω encodes all the
contact invariants of the ODE.

? Since SO(2, 3) is a conformal group for the 3-dimensional Lorentzian
metrics, ω may be identi�ed with the Cartan normal conformal
connection associated with the conformal class [g].
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• Lie S (1924) �Klassi�kation und Integration von gewohnlichen
Di�erentialgleichungen zwischen x, y, die eine Gruppe von Transformationen
gestatten III� Gesammelte Abhandlungen vol 5 (Leipzig: Teubner):

? Considered second order ODE y′′ = Q(x, y, y′) modulo point transformations
of variables: x→ x̄ = x̄(x, y), y → ȳ = ȳ(x, y).

? He knew that vansishing or not of each of:

w1 = D2Qpp − 4DQpy −DQppQp + 4QpQpy − 3QppQy + 6Qyy

or
w2 = Qpppp,

where p = y′ and D = ∂x + p∂y +Q∂p, is a point invariant property of the
ODE.
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? Solved the equivalence problem for ODEs y′′ = Q(x, y, y′) considered
modulo point transformation of variables, building a principal �ber bundle
P → J over the space parametrized by (x, y, p = y′). He also built a Cartan
connection ω, with values in the Lie algebra sl(3,R), whose curvature
R = dω + ω ∧ ω was:

R =


0 w2 ∗

0 0 w1

0 0 0

 ∈ sl(3,R).

? Since sl(3,R) is naturally included in sl(4,R), and this in turn is isomorphic
to so(3, 3), sl(4,R) = so(3, 3), i.e. a conformal algebra for metrics of
signature (2, 2) in four dimensions, we ask the following question:
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• Is it possible to describe the Lie/Cartan point invariants w1, w2, of a second

order ODE y′′ = Q(x, y, y′) in terms of the conformal invariants of a split

signature conformal metric in four dimensions? (PN + Sparling GAJ: (2003)
�Three-dimensional Cauchy-Riemann structures and second-order ordinary
di�erential equations� C.Q.Grav. 20 4995-5016)

? Given 2nd order ODE: y′′ = Q(x, y, y′) consider a parametrization of the
�rst jet space J1 by (x, y, p = y′).

? on J1 × R consider a metric

g = 2[(dp−Qdx)dx−(dy−pdx)(dr+ 2
3Qpdx+ 1

6Qpp(dy−pdx))], (F )

where r is a coordinate along R in J1 × R.
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Theorem (PN+Sparling GAJ):

? If ODE y′′ = Q(x, y, y′) undergoes a point transformation of variables then
the metric (F ) transforms conformally.

? All the point invariants of a point equivalence class of ODEs y′′ = Q(x, y, y′)
are expressible in terms of the conformal invariants of the associated
conformal class of metrics (F ).

? The metrics (F ) are very special among all the split signature metrics on
4-manifolds. Their Weyl tensor C has algebraic type (N,N) in the
Cartan-Petrov-Penrose classi�cation. Both, the selfdual C+ and the
antiselfdual C−, parts of C are expressible in terms of only one component.
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? C+ is proportional to

w1 = D2Qpp − 4DQpy −DQppQp + 4QpQpy − 3QppQy + 6Qyy,

and C− is proportional to
w2 = Qpppp.

? Cartan normal conformal connection associated with any conformal class [g]
of metrics (F ) is reduced to to the Cartan sl(3,R) connection naturally
de�ned on the Cartan bundle P → J1.
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• Hilbert D (1912) �Über den Begri� der Klasse von Di�erentialgleichungen�
Mathem. Annalen Bd. 73, 95-108:

? considered equations of the form z′ = F (x, y, y′, y′′, z) for two real functions
y = y(x) and z = z(x).

? He observed that, the general solution to the equation z′ = y′′2 can not be
written in an integral free form

x = x(t, w(t), w′(t), ....w(k)(t)),

y = y(t, w(t), w′(t), ....w(k)(t)),

z = z(t, w(t), w′(t), ....w(k)(t)).
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Hilbert's example deals with z′ = (y′′)2.
Consider an equation z′ = (y′)2, where y = y(x) and z = z(x).
Check, that its general solution may be written in the integral-free form:

x = 1
2w
′′(t)

y = 1
2tw
′′(t)− 1

2w
′(t)

z = 1
2t

2w′′(t)− tw′(t) + w(t),
where w = w(t) is an arbitray su�ciently smooth real function.
G. Monge knew that every equation of the form z′ = F (x, y, y′, z) has this
property.

The situation is quite di�erent for z′ = F (x, y, y′, y′′, z), as it was shown by
Hilbert on the example of z′ = (y′′)2.
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? solved an equivalence problem for equations

z′ = F (x, y, y′, y′′, z) with Fy′′y′′ 6= 0, (H)

considered modulo contact transformation of variables, by constructing a
14-dimensional Cartan bundle P → J over the 5-dimensional space J
parametrized by (x, y, y′, y′′, z).This bundle is equipped with a Cartan
connection whose curvature gives all the local invariants of the
equation.The connection has values in the Lie algebra of the nocompact
form of the exceptional group G2 and is �at i� the equation is equivalent
to the Hilbert's equation z′ = y′′2;in such case the equation has a
symmetry group G2.
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55 19-49:

? Since G2 naturally seats in SO(3, 4), which is a conformal group for
signature (+,+,+,−,−) conformal metrics in dimension 5, is it possible
to understand Cartan's invariants in terms of inavraints of some
5-dimensional conformal metrics?

This leads to: The third example
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are (locally) equivalent i� there exists a (local) di�eomorphism
φ : (x, y, p, q, z)→ (x̄, ȳ, p̄, q̄, z̄) such that

φ∗

ω̄1

ω̄2

ω̄2

 =

α β γ
δ ε λ
κ µ ν

ω1

ω2

ω3


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z′ = F (x, y, y′, y′′, z)

Theorem

• There are two main branches of nonequivalent equations
z′ = F (x, y, y′, y′′, z). They are distinguished by vanishing or not of the
relative invariant Fqq, q = y′′.

• If Fqq ≡ 0 then such equations have integral-free solutions.

• There are nonequivalent equations among the equations having Fqq 6= 0. All
these equations are beyond the class of equations with integral-free solutions.
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and suplement them with ω4 = dq and ω5 = dx. De�ne
θ1

θ2

θ3

θ4

θ5

 =


s1 s2 s3 0 0
s4 s5 s6 0 0
s7 s8 s9 0 0
s10 s11 s12 s13 s14

s15 s16 s17 s18 s19



ω1

ω2

ω3

ω4

ω5

 .
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uniquely de�nes a 14-dimensional manifold P → J and a preferred coframe
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On this �bre bundle the following matrix of 1-forms:

ω =

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

−Ω1 − Ω4 −Ω8 −Ω9 − 1√
3

Ω7
1
3Ω5

1
3Ω6 0

θ1 Ω1 Ω2
1√
3
θ4 −1

3θ
3 0 1

3Ω6

θ2 Ω3 Ω4
1√
3
θ5 0 −1

3θ
3 −1

3Ω5

2√
3
θ3 2√

3
Ω5

2√
3

Ω6 0 1√
3
θ5 − 1√

3
θ4 − 1√

3
Ω7

θ4 Ω7 0 2√
3

Ω6 −Ω4 Ω2 Ω9

θ5 0 Ω7 − 2√
3

Ω5 Ω3 −Ω1 −Ω8

0 θ5 −θ4 2√
3
θ3 −θ2 θ1 Ω1 + Ω4

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

,

is a Cartan connection with values in the Lie algebra of G2.



The curvature of this connection R = dω + ω ∧ ω `measures' how much a given
equivalence class of equations is `distorted' from the �at Hilbert case
corresponding to F = q2.
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(θ1, θ2, θ3, θ4, θ5,Ω1,Ω2,Ω3,Ω4,Ω5,Ω6,Ω7,Ω8,Ω9). De�ne a bilinear form

g̃ = 2θ1θ5 − 2θ2θ4 +
4
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This form is degenerate on P and has signature (3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0).

The 9 degenerate directions generate the vertical space of P .
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• The bilinear forms g̃ transforms conformally when Lie transported along any
of the vertical directions.

• It descends to a well de�ned conformal class [gF ] of (3, 2)-signature metrics
gF on the 5-dimensional space J on which the equation
z′ = F (x, y, y′, y′′, z) is de�ned.

• The Cartan normal conformal connection associated with the conformal

class [gF ] yields invariant information about the equivalence class of the
equation.

• This so(4, 3)-valued connection is reduced to a subalgebra g2 ⊂ so(4, 3) and
may be identi�ed with the Cartan g2 connection ω on P .
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Corollary

Conformal holonomy of metrics [gF ] is included in the exceptional group G2(2).

If [gF ] includes and Einstein metric then this holonomy is a proper subgroup of
G2(2).

Questions:

• are there conformal classes [gF ] which do not include Einstein metric?

• given F can one explicitely calculate the Fe�erman-Graham ambient metric ĝ
for the conformal class [gF ]?

• how the conformal holonomy of [gF ] is related to the (pseudo)Riemannian
holonomy of ĝ?
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Given a conformal class of metrics [g] on M and given a representative g ∈ [g],
Fe�erman and Graham de�ne a metric ĝ on R+ × I ×M , which encodes the
conformal properties of [g], and which is Ricci �at. It is locally given by:

ĝ = 2d(ρt)dt+ t2
(
g + 2ρP + ρ2µ2 + ρ3µ3 + ρ4µ4 + ...

)
where t ∈ R+, ρ ∈ I =]− ε, ε[, P is the Schouten tensor for g, and µi are
symmetric 2-tensors on M , with leading terms of order 2i, i = 2, 3, . . . , in the
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conformal properties of [g], and which is Ricci �at. It is locally given by:
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uniquely determined by the condition Ric(ĝ) ≡ 0. It is then called
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Fe�erman and Graham de�ne a metric ĝ on R+ × I ×M , which encodes the
conformal properties of [g], and which is Ricci �at. It is locally given by:

ĝ = 2d(ρt)dt+ t2
(
g + 2ρP + ρ2µ2 + ρ3µ3 + ρ4µ4 + ...

)
where t ∈ R+, ρ ∈ I =]− ε, ε[, P is the Schouten tensor for g, and µi are
symmetric 2-tensors on M , with leading terms of order 2i, i = 2, 3, . . . , in the
derivatives of g.

If the dimension of M is odd and g is real analytic, ĝ is real analytic in ρ and is
uniquely determined by the condition Ric(ĝ) ≡ 0. It is then called
Feferman-Graham ambient metric fpr [g]. Sad thing: Ambient metrics are very
hard to be computed if [g] does not contain an Einstein metric in the class.
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(2008):

Theorem There exist equations z′ = F (x, y, y′, y′′, z) for which (1) the
(3, 2)-signature conformal classes [gF ] does not contain any Einstein metric gF ,
and (2) for which there are representatives gF such that the ambient metric
de�ned by [gF ] truncates at the second order, i.e.

ĝF = 2dtd(ρt) + t2
(
gF + 2ρP + ρ2µ2

)
.

An example of such equation is given by
F = (y′′)2 + s1y

′ + s2(y′)2 + s3(y′)3 + s4(y′)4 + s5(y′)5 + s6(y′)6,
where s4 + 5s5y

′ + 15s6(y′)2 6= 0.

For such F one can compute ĝF explicitely (but the explicit formula is not very
enlightening).
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Let

F = (y′′)2 + s1y
′ + s2(y′)2 + s3(y′)3 + s4(y′)4 + s5(y′)5 + s6(y′)6,

with at least one of s4, s5, or s6 non zero, and let [gF ] be the conformal class
de�ned by the metric gF as on the previous slide. Then the holonomy of the
ambient metric for [gF ] is equal to G2(2) ⊂ SO(4, 3).

In particular this metric is Ricci �at and admits a covariantly constant spinor.
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iii) ΥjkiΥlmi + ΥljiΥkmi + ΥkliΥjmi = gjkglm + gljgkm + gklgjm,

is called an irreducible SO(3) structure in dimension �ve.

• An irreducible SO(3) structure (M5, g,Υ) is called nearly integrable if Υ is
a Killing tensor for g:

LC

∇X Υ(X,X,X) = 0, ∀X ∈ TM5.
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Γ = Γ + 1
2T,

where Γ is an so(3)-valued 1-form on M5 and T is a 3-form on M5.

• We interpret Γ as an so(3)-valued metric connection on M5 and T as its
totally skew symmetric torsion.

• Thus, nearly integrable SO(3) structures provide low-dimensional examples

of Riemannian geometries which can be described in terms of a unique metric

connection (Γ) with totally skew symmetric torsion (T ).

• This sort of geometries are studied extensively by the string theorists.
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• We do not know if nonhomogeneous examples exist.

• Perhaps these structures are so rigid that they must be homogeneous.
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signatures of the metric?

• Coe�cients ai of a 4th order polynomial

w4(x, y) = a0x
4 + 4a1x

3y + 6a2x
2y2 + 4a3xy

3 + a4y
4

form a carier space for the 5-dimensional irreducible representation of the
GL(2,R) group; this is induced on R5 by the de�ning action of GL(2,R)
on (x, y) ∈ R2.
• A polynomial I , in variables ai, is called an algebraic invariant of w4(x, y) if

it changes according to

I → I ′ = (det b)p I, b ∈ GL(2,R)

under the action of this 5-dimensional representation on ais.
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• The lowest order invariants of w4(x, y) are:

I2 = 3a2
2 − 4a1a3 + a0a4

I3 = a3
2 − 2a1a2a3 + a0a

2
3 − a0a2a4 + a2

1a4.

• De�ning Υijk and gij via

Υijkaiajak = 3
√

3I3

gijaiaj = I2,

one can check that the so de�ned gij and Υijk satisfy the desidered
relations i)-iii).
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• Now the metric gij has signature (2, 3).

• A simoultaneous stabilizer of Υ and g is
SL(2,R) ⊂ SO(3, 2) ⊂ GL(5,R).

• Since the notion of an ivariant is conformal, it is reasonable to consider a
conformal geometry in R5 associated with a class of pairs [(g,Υ)] such that:

? g is a (3, 2) signature metric; Υ is a rank three totally symmetric tensor
? gijΥijk = 0,
? gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,
? (g,Υ) ∼ (g′,Υ′) ⇔ g′ = e2φg, Υ′ = e3φΥ.

• The stabilizer of the conformal class [(g,Υ)] is the irreducible GL(2,R) in
dimension �ve.
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Irreducible GL(2,R) geometry in dimension 5

A 5-dimensional manifold M5 equipped with a class of triples [(g,Υ, A)] such
that:

• g is a (3, 2) signature metric; Υ is a rank three totally symmetric traceless
tensor �eld; A is a 1-form on M5

• gab(ΥjkaΥlmb + ΥljaΥkmb + ΥklaΥjmb) = gjkglm + gljgkm + gklgjm,

• (g,Υ, A) ∼ (g′,Υ′, A′) ⇔
(
g′ = e2φg, Υ′ = e3φΥ, A′ = A− 2dφ

)
,

is called an irreducible GL(2,R) structure in dimension �ve.
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Nearly integrable GL(2,R) structures in dimension 5

• Given (M5, [(g,Υ, A)]) and forgetting about Υ we have a Weyl geometry

[(g,A)] on M5. This de�nes a unique Weyl connection
W

∇ which is
torsionless and satis�es

W

∇X g +A(X)g = 0.

• An irreducible GL(2,R) structure (M5, [(g,Υ, A)]) is called nearly

integrable i� tensor Υ is a conformal Killing tensor for
W

∇:

W

∇X Υ(X,X,X) + 1
2A(X)Υ(X,X,X) = 0, ∀X ∈ TM5.
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• Every nearly integrable GL(2,R) structure in dimension �ve uniquely de�nes
a gl(2,R)-valued connection, called characteristic connection, which has
totally skew symmetric torsion.

• This connection is partially characterized by:

∇Xg +A(X)g = 0, ∇XΥ +
3
2
A(X)Υ = 0.

• To achieve the uniqueness one requires the that torsion T of ∇, considered as
an element of

⊗3 T∗M5, seats in a 10-dimensional subspace
∧3T∗M5.
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• In terms of the connection 1-forms of the Weyl connection
W

Γ , and the
characteristic connection Γ, we have

W

Γ= Γ + 1
2T,

where
W

Γ∈ co(3, 2)⊗ T∗M5, Γ ∈ gl(2,R)⊗ T∗M5 and T ∈
∧3T∗M5.

• The converse is also true: if an irreducible GL(2,R) structure in dimension
�ve admits a connection ∇ satisfying

∇Xg +A(X)g = 0, ∇XΥ +
3
2
A(X)Υ = 0,

and having totally skew symmetric torsion T ∈
∧3T∗M5 then it is nearly

integrable.
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• Group GL(2,R) acts reducibly on the 10-dimensional space of 3-forms∧3R5.

• The GL(2,R) irreducible components are:

∧3R5 =
∧

3 ⊕
∧

7

and have respective dimensions three (
∧

3) and seven (
∧

7).

• Can we produce examples of the nearly integrable GL(2,R) geometries in
dimension �ve? Can we produce examples with `pure' torsion in

∧
3 or

∧
7?

Can we produce nonhomogeneous examples?
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• Ordinary di�erential equation y(5) = 0 has GL(2,R)×ρ R5 as its group of
contact symmetries. Here ρ : GL(2,R)→ GL(5,R) is the 5-dimensional
irreducible representation of GL(2,R).

• This, in particular, means that y(5) = 0 may be described in terms of a �at

gl(2,R)-valued connection on the principal �bre bundle
GL(2,R)→ P →M5 over the solution space M5 of the ODE. As a
consequence the solution space M5 is equipped with a nearly integrable
GL(2,R) structure whose characteristic connection is �at and has no torsion.

• What about more complicated 5th order ODEs?
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4 = 0

375D2F3 − 1000DF2 + 350DF 2
4 + 1250F1 − 650F3DF4 + 200F 2

3−

150F4DF3 + 200F2F4 − 140F 2
4DF4 + 130F3F

2
4 + 14F 4

4 = 0
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4DF4 + 210F3F
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• Then the 5-dimensional solution space of the equation is naturally equipped
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• We call the three conditions on F the Wünschmann-like conditions.



Examples of F satisfying the Wünschmann-like

conditions

The three di�erential equations

y(5) = c
(5y(3)3(5− 27cy′′2)

9(1 + cy′′2)2
+ 10

y′′y(3)y(4)

1 + cy′′2

)
,

with c = +1, 0,−1, represent the only three contact nonequivalent classes of
Wünschmann-like ODEs having the corresponding nearly integrable GL(2,R)
structures (M5, [g,Υ, A]) with the characteristic connection with vanishing
torsion.



In all three cases the holonomy of the Weyl connection
W

Γ of structures
(M5, [g,Υ, A]) is reduced to the GL(2,R). For all the three cases the Maxwell
2-form dA ≡ 0. The corresponding Weyl structure is �at for c = 0. If c = ±1,
then in the conformal class [g] there is an Einstein metric of positive (c = +1)
or negative (c = −1) Ricci scalar. In case c = 1 the manifold M5 can be
identi�ed with the homogeneous space SU(1, 2)/SL(2,R) with an Einstein g
descending from the Killing form on SU(1, 2). Similarly in c = −1 case the
manifold M5 can be identi�ed with the homogeneous space
SL(3,R)/SL(2,R) with an Einstein g descending from the Killing form on
SL(3,R). In both cases with c 6= 0 the metric g is not conformally �at.



F =
5y2

4

4y3
, F =

5y2
4

3y3
.

The corresponding structures have 7-dimensional symmetry group.



F =
5y2

4

4y3
, F =

5y2
4

3y3
.

The corresponding structures have 7-dimensional symmetry group.

F =
5(8y3

3 − 12y2y3y4 + 3y1y
2
4)

6(2y1y3 − 3y2
2)

,

F =
5y2

4

3y3
± y5/3

3 ,

represent four nonequivalent nearly integrable GL(2,R) structures
corresponding to the di�erent signs in the second expression and to the di�erent
signs of the denominator in the �rst expression. These structures have
6-dimensional symmety group.



F =
1

9(y2
1 + y2)2

×(
5w
(
y6

1 + 3y4
1y2 + 9y2

1y
2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y4(y2
1 + y2)

)
+

45y4(y2
1 + y2)(2y1y2 + y3)− 4y9

1 − 18y7
1y2 − 54y5

1y
2
2 − 90y3

1y
3
2 + 270y1y

4
2+

15y6
1y3 + 45y4

1y2y3 − 405y2
1y

2
2y3 + 45y3

2y3 + 60y3
1y

2
3 − 180y1y2y

2
3 − 40y3

3

)
,

where

w2 = y6
1 + 3y4

1y2 + 9y2
1y

2
2 − 9y3

2 − 4y3
1y3 + 12y1y2y3 + 4y2

3 − 3y2
1y4− 3y2y4.

This again has 6-dimensional symmetry group.
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y4
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)
,

reduces Wünschmann-like conditions to a single ODE

90z4/3(3q − 4z2/3)
d2q

dz2
− 54z4/3(

dq
dz

)2 + 30z1/3(6q − 5z2/3)
dq
dz
− 25q = 0,

in which z = y3
4

y4
3
.



Nonhomogeneous example

An ansatz

F = (y3)5/3 q
(y3

4

y4
3

)
,

reduces Wünschmann-like conditions to a single ODE

90z4/3(3q − 4z2/3)
d2q

dz2
− 54z4/3(

dq
dz

)2 + 30z1/3(6q − 5z2/3)
dq
dz
− 25q = 0,

in which z = y3
4

y4
3
.

This equation may be solved explicitely giving example of ODEs having its nearly
integrable structure being nonhomogeneous.
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What about other orders of ODEs?

• If a 3rd order ODE y′′′ = F (x, y, y′, y′′) satis�es the Wünschmann condition

9D2F2 − 18F2DF2 − 27DF1 + 4F 3
2 − 18F1F2 + 54Fy = 0,

D = ∂x + y1∂y + y2∂y1 + F∂y2,

then it de�nes a Lorentzian conformal structure on the 3-dimensional space of
its solutions.

• This conformal structure in dimension three is related to the quadratic
GL(2,R) invariant ∆ = a0a2 − a2

1 of w2(x, y) = a0x
2 + 2a1xy + a2y

2.
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• If a 4th order ODE y(4) = F (x, y, y′, y′′, y′′′) satis�es the Wünschmann-like
conditions

4D2F3 − 8DF2 + 8F1 − 6DF3F3 + 4F2F3 + F 3
3 = 0,

160D2F2 − 640DF1 + 144(DF3)2 − 352DF3F2 + 144F 2
2−

80DF2F3 + 160F1F3 − 72DF3F
2
3 + 88F2F

2
3 + 9F 4

3 + 16000Fy = 0,

D = ∂x + y1∂y + y2∂y1 + y3∂y2 + F∂y3,

then it de�nes an irreducible GL(2,R) structure on the 4-dimensional space
M4 of its solutions.



• This GL(2,R) structure in dimension four may be understood in terms of a
conformal Weyl-like structure associated with the quartic GL(2,R) invariant

I4 = −3a2
1a

2
2 + 40a

3
2 + 4a3

1a3 − 6a0a1a2a3 + a2
0a

2
3,

of
w3(x, y) = a0x

3 + 3a1x
2y + 3a2xy

2 + a3y
3

and a certain 1-form A on M4.
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conformal tensors Υµ and a certain 1-form A given up to a gradient.



• In order n we have (n− 2)-Wünschmann-like conditions on F , which
guarantee that the solutions space has an irreducible GL(2,R) structure in
dimension n.

• These GL(2,R) structures can be understood in terms of a certain Weyl-like
conformal geometries [(Υ1,Υ2, ...,Υk, A)] of GL(2,R)-invariant symmetric
conformal tensors Υµ and a certain 1-form A given up to a gradient.

• It seems that rich GL(2,R) geometries, with lots of examples, are possible in
orders 3 ≤ n ≤ 5 only !


