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which transforms one equation into the other.

Transformations mixing independent and dependent variables, as above are called
point transformations.
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geometry appropriate for a given problem

e motivated by the works of Newman, Fritelli and Kozameh, and my experience
with CR geometry, especially in its Fefferman aspect, | was aksing if there are
classes of (systems) of ODEs/PDEs considered modulo point/contact
transformations whose differential geometry is equivalent to some less exotic
geometries, such as (pseudo)Riemannian?... perhaps conformal
(pseudo)Riemannian?... perhaps special conformal, e.g. Weyl?
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o Wiinschmann K, (1905) " Uber Beruhrungsbedingungen bei

Differentialgleichungen’, Dissertation, Greifswald:
x Consider third order ODE: v/ = 0, with the solution space R?

parametrized by (ag, a1, as), and the general solution
Yy = ag+ 201 + &2552.
x Take a neighbouring point (ag, a1, as) + (dag, day, das) in R?,
y +dy = ag + dag + 2(a1 + day)z + (ag + dag)z?
* When the graphs of these two solutions are tangent to each other at some

point (x,y(x)) in the xy plane?
x The answer: if and only if the displacement vector (dag, day, das) satisfies

dCLQdCLQ — (da1)2 = 0.
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simultaneously, and this has a solution for x if and only if
daoda2 — (da1)2 = 0.

x Thus the solution space R? of the equation y’”/ = 0, with the solutions
parametrized by (ag, a1, as), is naturally equipped with a conformal
Lorentzian metric

g = dagdas — (day)?.

* In this metric two neighbouring solutions are null separated itf they are
tangent at some point.
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* Wiinschman: There is a one-to-one correspondence between equivalence
classes of 3rd order ODEs satisfying (W) considered modulo contact
transformations of variables and 3-dimensional Lorentzian conformal
geometries.

* In particular: all contact invariants of such classes of equations are
expressible in terms of the conformal invariants of the associated conformal
Lorentzian metrics.
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"= F(x,y,y",y")" Sci. Rep. Nat. Tsing Hua Univ. 4 97-111:

Solved the equivalence problem for third order ODEs considered modulo
point transformation of variables.

In case when the ODE v = F'(x,y, vy, y") satisfies Wiinschmann
condition, he constructed a natural principal fiber bundle P — S over its
solution space S, with a certain s0(2, 3)-valued Cartan connection w.

He showed that the curvature R = dw + w A w of w encodes all the
contact invariants of the ODE.

Since SO(2, 3) is a conformal group for the 3-dimensional Lorentzian
metrics, w may be identified with the Cartan normal conformal

connection associated with the conformal class |g].
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e Lie S (1924) “Klassifikation und Integration von gewohnlichen
Differentialgleichungen zwischen x, y, die eine Gruppe von Transformationen
gestatten [II" Gesammelte Abhandlungen vol 5 (Leipzig: Teubner):

x Considered second order ODE y"” = Q(x, y,y’) modulo point transformations
of variables: © — = = Z(z,y), y — y = y(z,y).
* He knew that vansishing or not of each of:

w1 = D2Qpp — 4Dpr _ DQPPQP + 4Qpry i 3Qpry + Gny

or
w2 = Qpppp:

where p = y' and D = 0, + pd, + Q0,, is a point invariant property of the

ODE.
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* Solved the equivalence problem for ODEs 4" = Q(x, vy, y’) considered
modulo point transformation of variables, building a principal fiber bundle
P — J over the space parametrized by (z,y,p = ). He also built a Cartan
connection w, with values in the Lie algebra s[(3,R), whose curvature

R =dw+ w A w was: (O - *\

R = 0 0 w1

\0 0 0

€ sl(3,R).

* Since s((3,R) is naturally included in s[(4,R), and this in turn is isomorphic
to 50(3,3), sl(4,R) = s0(3,3), i.e. a conformal algebra for metrics of
signature (2,2) in four dimensions, we ask the following question:
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e Is it possible to describe the Lie/Cartan point invariants wy, ws, of a second
order ODE v"" = Q(x,y,vy’) in terms of the conformal invariants of a split
signature conformal metric in four dimensions? (PN + Sparling GAJ: (2003)
“Three-dimensional Cauchy-Riemann structures and second-order ordinary

differential equations’ C.Q.Grav. 20 4995-5016)

* Given 2nd order ODE: y"" = Q(x,y,y’) consider a parametrization of the
first jet space J! by (z,y,p = ¥').
x on J' x R consider a metric

g = 2[(dp—Qd:E)d:C—(dy—pdx)(dT—I—%de:E—I—%Qpp(dy—pdx))], (F)

where 7 is a coordinate along R in J! x R.
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Theorem (PN-+Sparling GAJ):

* If ODE 4" = Q(x,y,y’) undergoes a point transformation of variables then
the metric (F") transforms conformally.

* All the point invariants of a point equivalence class of ODEs 4" = Q(x,y, vy’
are expressible in terms of the conformal invariants of the associated
conformal class of metrics (F').

* The metrics (F') are very special among all the split signature metrics on
4-manifolds. Their Weyl tensor C' has algebraic type (N, V) in the
Cartan-Petrov-Penrose classification. Both, the selfdual C™ and the
antiselfdual C'~, parts of C' are expressible in terms of only one component.
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x C™ is proportional to

w1 = DzQpp —4DQpy — DQppQp + 4QpQpy — 3QppQy + 6GQyy,

and C'~ is proportional to
w2 = Qpppp-

x Cartan normal conformal connection associated with any conformal class |¢]
of metrics (F') is reduced to to the Cartan s[(3,R) connection naturally
defined on the Cartan bundle P — J!.
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What's interesting in 2’/ = (y")??

o Hilbert D (1912) “Uber den Begriff der Klasse von Differentialgleichungen”
Mathem. Annalen Bd. 73, 95-108:

* considered equations of the form 2/ = F'(x,y,vy’,y", z) for two real functions

y =y(x) and z = z(x).
x He observed that, the general solution to the equation 2’ = vy’"? can not be
written in an integral free form

r = z(t,w(t), w(t),..wP(t)),
y =y(t,w(t),w (t),..wP(t)),

2= z(t,w(t),w (t),...w" (@)).
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Consider an equation 2" = (y/)?, where y = y(z) and 2z = z(z).
Check, that its general solution may be written in the integral-free form:

y = stw’ (t) — 2w’ (¢)

z = 22w (t) — tw'(t) + w(?),
where w = w(t) is an arbitray sufficiently smooth real function.

G. Monge knew that every equation of the form 2’ = F'(x,y,%/’, z) has this
property.

The situation is quite different for 2’ = F(x,y,y',y"”, z), as it was shown by

Hilbert on the example of 2/ = (y"/)?.
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* solved an equivalence problem for equations
7 = F(xa Y, yla yllv Z) with Fy”y” 7é 0, (H)

considered modulo contact transformation of variables, by constructing a
14-dimensional Cartan bundle P — J over the 5-dimensional space J
parametrized by (x,y,vy’, 4", z). This bundle is equipped with a Cartan
connection whose curvature gives all the local invariants of the
equation. The connection has values in the Lie algebra of the nocompact
form of the exceptional group G5 and is flat iff the equation is equivalent

to the Hilbert's equation 2’ = y/"?;in such case the equation has a

symmetry group Gs.
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* Since G5 naturally seats in SO(3,4), which is a conformal group for
signature (+, 4+, +, —, —) conformal metrics in dimension 5, is it possible
to understand Cartan's invariants in terms of inavraints of some
5-dimensional conformal metrics?

This leads to: The third example
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in J on which the forms (w!, w?, w?) simultaneously vanish.

e Transformation that transforms solutions to solution may mix the forms

(wh, w?,w?) among themselves, thus:
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Theorem

e There are two main branches of nonequivalent equations

2= F(z,y,y",y", 2). They are distinguished by vanishing or not of the
relative invariant F,, ¢ = 4"

o If F,, = 0 then such equations have integral-free solutions.



Solution for the equivalence problem for egs.
/

7 =F(x,y,v,Y", %)

Theorem

e There are two main branches of nonequivalent equations

2= F(z,y,y",y", 2). They are distinguished by vanishing or not of the
relative invariant F,, ¢ = 4"

o If F,, = 0 then such equations have integral-free solutions.

e There are nonequivalent equations among the equations having F,, # 0. All
these equations are beyond the class of equations with integral-free solutions.
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Given 2/ = F(z,y,y’,y", z) take its corresponding forms
w' =dz — F(z,y,p,¢, 2)dz, w’=dy—pdz, w®=dp— gdz;

and suplement them with w* = dg and w® = dz.



Equations 2’ = F(z,y,y,y", 2) with F . # 0

Given 2/ = F(z,y,y’,y", z) take its corresponding forms
w' =dz — F(z,y,p,¢, 2)dz, w’=dy—pdz, w®=dp— gdz;

and suplement them with w* = dg and w® = dz. Define

0! 0O O !
AR P AT
Bl =1sr sgs so9 O 0 05

4
v S10 S11  S12

4

$13 S14 W
5 5
\9) \815 S16 S17 S18 519) \w}







Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fyn,n # 0
uniquely defines a 14-dimensional manifold P — J and



Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fyn,n # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

(91,92,93,94,95,Ql,ﬂg,93,94,95,96,97,98,99) on it such that



Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fyn,n # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

((91,(92,63,(94,95,Ql,ﬂg,Q3,94,Q5,QG,Q7,QS,QQ) on it such that

dot = 01 A (20 + Q) + 62 A Qs + 63 A 6

do? =0 AN Q3+ 0% A (Q1 +2Q4) + 0% A O

do3 =01 A Qs+ 02 A Qg+ 03 A (Q1 + Qq) + 02 A0
Aot = 01 A Q7 + 203 A Qg+ 0 A Qq + 65 A Qs

d6’5:92/\Q7—%93/\Q5+94/\Qg+95/\ﬁ4.



Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fyn,n # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

(61,92,93,94,95,Ql,ﬂg,93,94,95,96,97,98,99) on it such that

dol = 61 A (297 + Q) + 02 A Qo + 03 A 04
do? = 01 A Qs+ 0% A (Q1 + 2Q4) + 603 A0
do3 =01 A Qs+ 02 A Qg+ 03 A (Q1 + Qq) + 02 A0
Aot = 01 A Q7 + 203 A Qg+ 0 A Qq + 65 A Qs
d6’5:6’2/\Q7—%«93/\Q5+04/\Qg+¢95/\ﬁ4.
We also have formulae for the differentials of the forms 2, p =1,2,...,9.



Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fyn,n # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

(91,92,93,94,95,Ql,ﬂg,93,94,95,96,97,98,99) on it such that

dol = 61 A (297 + Q) + 02 A Qo + 03 A 04
do? = 01 A Qs+ 0% A (Q1 + 2Q4) + 603 A0
do3 =01 A Qs+ 02 A Qg+ 03 A (Q1 + Qq) + 02 A0
Aot = 01 A Q7 + 203 A Qg+ 0 A Qq + 65 A Qs
d95:92/\527—%93/\Q5+94A93+95/\Q4.
We also have formulae for the differentials of the forms 2, p =1,2,...,9.

Together with these expressions the system provides all the local invariants for
the equivalence class of equations satisfying £, # 0.



Theorem

An equivalence class of equations 2" = F(z,y,y’,y", 2) with Fyn,n # 0
uniquely defines a 14-dimensional manifold P — J and a preferred coframe

(91,92,93,94,95,Ql,ﬂg,93,94,95,96,97,98,99) on it such that

dol = 61 A (297 + Q) + 02 A Qo + 03 A 04
do? = 01 A Qs+ 0% A (Q1 + 2Q4) + 603 A0
do3 =01 A Qs+ 02 A Qg+ 03 A (Q1 + Qq) + 02 A0
Aot = 01 A Q7 + 203 A Qg+ 0 A Qq + 65 A Qs
d6’5:6’2/\527—%93/\Q5+94/\§23+95/\Q4.
We also have formulae for the differentials of the forms 2, p =1,2,...,9.

Together with these expressions the system provides all the local invariants for

the equivalence class of equations satisfying £, # 0.
We pass to the interpretetion in terms of Cartan connection:



P is a principal fibre bundle over J with the 9-dimensional parabolic subgroup H
of (G5 as its structure group.



P is a principal fibre bundle over J with the 9-dimensional parabolic subgroup H

of (G5 as its structure group.

On this fibre bundle the following matrix of 1-forms:

1 1
2 -Q4 -Qg —$9 —WW 385
o1 Qq Qo %04 — 163
62 Qg Qy %05 0
2 13 2 2 1 5
_ | 20 2.0, 20 0 1y
“ V3 V3 /3o V3
o4 Q- 0 %96 —Qy
5 __2
0 0 Q- 205 93
0 6° — o4 %93 — 92

is a Cartan connection with values in the Lie

algebra

Ql—}—ﬂ4

O]c GQ.




The curvature of this connection R = dw + w A w ‘'measures how much a given
equivalence class of equations is ‘distorted” from the flat Hilbert case
corresponding to F' = ¢?.
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(3,2)-signature conformal metric

e PN (2003) "Differential equations and conformal structures’ J. Geom. Phys
55 19-49:

Given an equivalence class of equation 2’ = F(z,y,vy’, 4", z) consider its
corresponding bundle P with the coframe

(01,0%,603,0% 0°, Q4, Qs, Q3, Qy, s, g, 7, Qg, Qg). Define a bilinear form
!
G = 200> — 20°%6* + §9393
This form is degenerate on P and has signature (3,2,0,0,0,0,0,0,0,0,0).

The 9 degenerate directions generate the vertical space of P.
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Theorem

e The bilinear forms g transforms conformally when Lie transported along any
of the vertical directions.

e It descends to a well defined conformal class |gr| of (3,2)-signature metrics
gr on the 5-dimensional space J on which the equation
2= F(z,y,y",y", 2) is defined.

e The Cartan normal conformal connection associated with the conformal
class [gr]| yields invariant information about the equivalence class of the
equation.

e This s0(4, 3)-valued connection is reduced to a subalgebra go C s0(4,3) and
may be identified with the Cartan go connection w on P.
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Fefferman and Graham define a metric g on Ry x I X M, which encodes the
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where t € Ry, p € I =] — ¢, ¢, P is the Schouten tensor for g, and p; are
symmetric 2-tensors on M, with leading terms of order 27, 2 = 2,3, ..., in the
derivatives of g.
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Fefferman-Graham ambient metrics

Given a conformal class of metrics [g] on M and given a representative g € [g],
Fefferman and Graham define a metric g on Ry x I X M, which encodes the
conformal properties of [g], and which is Ricci flat. It is locally given by:

g = 2d(pt)dt + t° (9 +2pP + p*ua + pps 4 ptpa + )

where t € Ry, p € I =] — ¢, ¢, P is the Schouten tensor for g, and p; are
symmetric 2-tensors on M, with leading terms of order 27, 2 = 2,3, ..., in the
derivatives of g.

If the dimension of M is odd and g is real analytic, g is real analytic in p and is
uniquely determined by the condition Ric(g) = 0. It is then called
Feterman-Graham ambient metric fpr [g]. Sad thing: Ambient metrics are very
hard to be computed if [g] does not contain an Einstein metric in the class.
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PN (2008) Conformal structures with explicit ambient metrics and conformal G2
holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526
(2008):

Theorem There exist equations 2’ = F'(x,y,y,y”, z) for which (1) the

(3, 2)-signature conformal classes [gr| does not contain any Einstein metric gp,
and (2) for which there are representatives gp such that the ambient metric
defined by [gr| truncates at the second order, i.e.

gr = 2dtd(pt) + t° (gF + 20P + ,02u2).
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PN (2008) Conformal structures with explicit ambient metrics and conformal G2
holonomy, IMA Volumes in Mathematics and its Applications, 144 515-526
(2008):

Theorem There exist equations 2’ = F'(x,y,y,y”, z) for which (1) the

(3, 2)-signature conformal classes [gr| does not contain any Einstein metric gp,
and (2) for which there are representatives gp such that the ambient metric
defined by [gr| truncates at the second order, i.e.

gr = 2dtd(pt) 4 t° (gF +2pP + pQuz).
An example of such equation is given by
F=(y")?+ 519 +s2(4)° + 83(4)° + s4(y)* + 85(y)° + s6(v")°,
where s4 + 5s5y" + 15s6(y")? # 0.

For such F' one can compute §g explicitely (but the explicit formula is not very
enlightening).
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Let
F — (y//)Q 4+ Sly/ 4+ 32(3/)2 + Sg(y/)B 4 84(y/)4 + 85(y/)5 4 36(y/)6,

with at least one of s4, s5, or sg non zero, and let [gp| be the conformal class
defined by the metric g as on the previous slide. Then the holonomy of the
ambient metric for [gr| is equal to Ga(ay C SO(4,3).



Theorem (Th. Leistner + PN)

L et
F — (y//)Q 4+ Sly/ 4+ 82(@/)2 + Sg(y/)B 4 84(y/)4 + 35(y/)5 4 36(y/)6,
with at least one of s4, s5, or sg non zero, and let [gp| be the conformal class

defined by the metric g as on the previous slide. Then the holonomy of the
ambient metric for [gr| is equal to Ga(ay C SO(4,3).

In particular this metric is Ricci flat and admits a covariantly constant spinor.
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e A 5-dimensional Riemannian manifold M?® equipped with a metric g and a
tensor field Y such that :

) Tij = Tiijny,s (symmetry)
i) Ceae = @1 (trace-free)
1)) 9 e 30 A A s A= AL pi AL oty = sl A= GG == s

is called an irreducible SO(3) structure in dimension five.

e An irreducible SO(3) structure (M?®, g, T) is called nearly integrable if Y is
a Killing tensor tor g:

LC
Vx YT(X,X,X)=0, VX¢&TM.
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e Nearly integrable SO(3) structures have a property that their Levi-Civita
LC
connection T' wniquely decomposes onto

LC
r="=+ 3T,

where T is an s0(3)-valued 1-form on M? and T is a 3-form on M°®.

e We interpret T" as an s0(3)-valued metric connection on M® and T as its
totally skew symmetric torsion.

e Thus, nearly integrable SO(3) structures provide low-dimensional examples
of Riemannian geometries which can be described in terms of a unique metric
connection (I') with totally skew symmetric torsion (T').

e This sort of geometries are studied extensively by the string theorists.



e \We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)



e \We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)

e We do not know if nonhomogeneous examples exist.



e \We have examples of such geometries. All our examples admit transitive
symmetry group (which may be of dimension 8, 6 and 5)

e We do not know if nonhomogeneous examples exist.

e Perhaps these structures are so rigid that they must be homogeneous.
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Does T with properties (i)-(ii) exists in other
signatures of the metric?
e Coefficients a; of a 4th order polynomial
wy(z,y) = aox* + da1x3y + 6a22%y? + daszy’ + aqy?
form a carier space for the 5-dimensional irreducible representation of the
GL(2,R) group; this is induced on R® by the defining action of GL(2,R)
on (z,y) € R?

e A polynomial I, in variables a;, is called an algebraic invariant of w4(x,y) if
it changes according to

I —1I=(detb)? I, be GL(2,R)

under the action of this 5-dimensional representation on a;s.



e The lowest order invariants of wy(x,y) are:

= Sag — 4a1a3 + apay

3 2 2
Is = a5 — 2aia2a3 4 apaz — apaza4 + ajay.



e The lowest order invariants of wy(x,y) are:

= Sag — 4a1a3 + apay
2 — 3 9 2 2
3 = Qg a1a20a3 + apaz — GpA204 + G704.

o Defining T;;x and g;; via
Tijkaiajak — 3\/3]3
gijaia; = Io,

one can check that the so defined g;; and T, satisty the desidered
relations i)-iii).
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e A simoultaneous stabilizer of T and ¢ is

SL(2,R) C SO(3,2) C GL(5,R).

e Since the notion of an ivariant is conformal, it is reasonable to consider a
conformal geometry in R® associated with a class of pairs [(g, Y)] such that:

*x gis a (3,2) signature metric; T is a rank three totally symmetric tensor

*x g7, =0,
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Now the metric g;; has signature (2, 3).

A simoultaneous stabilizer of T and g is

SL(2,R) C SO(3,2) C GL(5,R).

Since the notion of an ivariant is conformal, it is reasonable to consider a
conformal geometry in R® associated with a class of pairs [(g, Y)] such that:

*x gis a (3,2) signature metric; T is a rank three totally symmetric tensor

* ngijk — 07

* 9T jka Yimb + Lija Lhmb + Tria X jmp) = GikGim + 915 Gkm + GriGim.
x (9,T) ~ (¢,Y) & ¢ =ePg, T =eT.

The stabilizer of the conformal class [(g, T)] is the irreducible GL(2,R) in

dimension five.
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Irreducible GL(2,R) geometry in dimension 5

A 5-dimensional manifold M?® equipped with a class of triples [(g, T, A)] such
that:

e gisa (3,2) signature metric; T is a rank three totally symmetric traceless
tensor field: A is a 1-form on M?°

o ¢°°(ViraYimb + YiiaYhmb + LriaXimb) = GikGim + GiiGkm + Griim,

e (9,7,A)~ (¢, Y, A) & (g’ =e?0g, T =e3%Y, A= A— 2d¢>,

is called an jrreducible GL(2,R) structure in dimension five.
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Nearly integrable GL(2,R) structures in dimension 5

e Given (M?°,[(g, Y, A)]) and forgetting about Y we have a Wey/ geometry

%%
[(g, A)] on M®. This defines a unique Weyl connection ¥/ which is
torsionless and satisfies

117
Vx g+ A(X)g =0.

e An irreducible GL(2, R) structure (M?®,[(g, T, A)]) is called nearly

%%
integrable iff tensor T is a conformal Killing tensor for V:

%%
Vx T(X, X, X)+ 1AX)Y(X,X,X)=0, VXeTM.
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Characteristic connection

Every nearly integrable GL(2,R) structure in dimension five uniquely defines
a gl(2,R)-valued connection, called characteristic connection, which has

totally skew symmetric torsion.

e This connection is partially characterized by:

3
Vxg+ A(X)g =0, VXT+§A(X)T:O.

e To achieve the uniqueness one requires the that torsion 1" of V, considered as
an element of ®3 T*M?, seats in a 10-dimensional subspace /\BT*M5.



1%
e In terms of the connection 1-forms of the Weyl connection T", and the
characteristic connection I', we have

44
=T S50

%%
where T € ¢0(3,2) ® T*M>, T € gl(2,R) ® T*M® and T € \*T*M5.



1%
e In terms of the connection 1-forms of the Weyl connection T", and the
characteristic connection I', we have

44
=T S50

%%
where T € ¢0(3,2) ® T*M>, T € gl(2,R) ® T*M® and T € \*T*M5.

e The converse is also true: if an irreducible GL(2,R) structure in dimension
five admits a connection V satisfying

3
Vxg+AX)g=0,  VxT+ZAX)T =0,

and having totally skew symmetric torsion 1" € /\3T*]\45 then it is nearly
integrable.
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Classification of torsion

e Group GL(2,R) acts reducibly on the 10-dimensional space of 3-forms
A°RS.

e The GL(2,R) irreducible components are:
3
A R® = N3 ® N7
and have respective dimensions three (/\5) and seven (/\-).

e Can we produce examples of the nearly integrable GL(2,R) geometries in
dimension five? Can we produce examples with ‘pure’ torsion in A5 or /-7
Can we produce nonhomogeneous examples?
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A well known fact

e Ordinary differential equation 3®) = 0 has GL(2,R) x, R® as its group of
contact symmetries. Here p : GL(2,R) — GL(5,R) is the 5-dimensional
irreducible representation of GL(2,R).

e This, in particular, means that y(®) = 0 may be described in terms of a flat
gl(2, R)-valued connection on the principal fibre bundle
GL(2,R) — P — M?” over the solution space M® of the ODE. As a
consequence the solution space M? is equipped with a nearly integrable
GL(2,R) structure whose characteristic connection is flat and has no torsion.

e \What about more complicated 5th order ODEs?
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e Consider a 5th order ODE y®) = F(z,y,v,v", vy, y™®) modulo contact
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o let D=0, + y’ay + y”c‘?y/ + y<3)8y// -+ y(4)8y(3) + F@y(4).
e Suppose that the equation satsifies three, contact invariant conditions:
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T heorem

e Consider a 5th order ODE y®) = F(z,y,v,v", vy, y™®) modulo contact
transformation of the variables.

o Let D =0, +y'0y+y"0y +yPdy +y o ) + FO, ).
e Suppose that the equation satsifies three, contact invariant conditions:
50D*F, — 75D F3 + 50F, — 60F,DF, + 30F3F, + 8F; =0
375D F3 — 1000DF; 4 350D F7 + 1250F; — 650F3DFy + 200F; —

150y DF; + 2005, Fy — 140F2DF, + 130F3F2 + 14F} = 0
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1250D?Fy — 6250DF; + 1750DF3DFy — 2750F, DF,—
875 F3 Dy + 1250F» F5 — 500F,DFs + 700(DFy)* Fy+
1250F, Fy — 1050F3 FyDFy + 350F 3 Fy — 350F; D3+

550 F; — 280F; DFy + 210F3F; + 28F + 18750F, = 0,

e Then the 5-dimensional solution space of the equation is naturally equipped
with a nearly integrable GL(2,R) structure.

e Every nearly integrable GL(2, R) structure obtained in this way has torsion
of its characteristic connection of the ‘pure’ type T € ;.

e \We call the three conditions on F' the \Wiinschmann-like conditions.



Examples of F' satisfying the Wiinschmann-like
conditions

The three differential equations

(5) (5y(3)3(5 — 27cy"?) N my”y(?’)y(‘”)
=C
¢l 9(1 4 Cy//2)2 1+ cy”2 2

with ¢ = +1,0, —1, represent the only three contact nonequivalent classes of
Wiinschmann-like ODEs having the corresponding nearly integrable GL(2, R)
structures (M?, [g, T, A]) with the characteristic connection with vanishing
torsion.



In all three cases the holonomy of the Weyl connection VIZ of structures
(M?®,[g,Y, A]) is reduced to the GL(2,R). For all the three cases the Maxwell
2-torm dA = 0. The corresponding Weyl structure is flat for c = 0. If ¢ = £1,
then in the conformal class [g| there is an Einstein metric of positive (¢ = +1)
or negative (¢ = —1) Ricci scalar. In case ¢ = 1 the manifold M? can be
identified with the homogeneous space SU(1,2)/SL(2,R) with an Einstein g
descending from the Killing form on SU(1, 2). Similarly in ¢ = —1 case the
manifold M?® can be identified with the homogeneous space
SL(3,R)/SL(2,R) with an Einstein g descending from the Killing form on
SL(3,R). In both cases with ¢ # 0 the metric g is not conformally flat.
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4ys3 3Y3

The corresponding structures have 7-dimensional symmetry group.

5(8y3 — 12y2y3y4 + 3y1y3)
6(2y1ys — 3y3) 7

oy
3Y3
represent four nonequivalent nearly integrable GL(2,R) structures
corresponding to the different signs in the second expression and to the different
signs of the denominator in the first expression. These structures have
6-dimensional symmety group.

F =




1
J— X
I(yi + y2)?

(5w (8 + 3yiy2 + 9yivs — 9y — 4ylys + 12y102ys + 4y3 — ya (Yl + v2)) +

45y4(y5 + y2) (2y192 + y3) — 47 — 18y{y2 — 54yrys — 90y5ys + 270y1y5+

15y9y3 + 45y1yays — 40593 y5ys + 45y5y3 + 60y3iy3 — 180y1y2y3 — 4Oy§),

where

w?® = yo + 3yTye + 9yiys — 9ys — 4y5ys + 12y192y3 + 45 — 3yiys — 3y2ya.

This again has 6-dimensional symmetry group.
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Nonhomogeneous example

An ansatz

vi
F= (5)"° q( %),
Y3
reduces Wiinschmann-like conditions to a single ODE

d*q
dz2

dg

dq
2 _95¢ =0
p q =0,

— 542%/3(=2)2 + 302'/3(6q — 52/3) i

902%/3(3q — 422/3)

in which z = =%
LR



Nonhomogeneous example

An ansatz

Vi
F= (5)"° q( %),
Y3
reduces Wiinschmann-like conditions to a single ODE

4/3 2/3 d*q 4/3
902%°(3q — 42 )p — 5427°(
2

dg

dq
2 _95¢ =0
p q =0,

2 1/3(a,  =.2/3
30 §) 5
)? +3024/%(6g — 522/°%) =

in which z = y—i.

3
This equation may be solved explicitely giving example of ODEs having its nearly
integrable structure being nonhomogeneous.
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What about other orders of ODEs?

e If a 3rd order ODE """ = F(x,y,,y") satisfies the Wiinschmann condition

9D*F, — 18F,DF, — 27TDF) + AFS — 18F1 Fy + 54F, = 0,

e a:c + ylay + yQayl + F8y2,

then it defines a Lorentzian conformal structure on the 3-dimensional space of
its solutions.

e This conformal structure in dimension three is related to the quadratic
GL(2,R) invariant A = agas — a? of wa(x,y) = agx? + 2a1xy + asy®.



o If a 4th order ODE y = F(z,y,v',y",y"") satisfies the Wiinschmann-like
conditions
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o If a 4th order ODE y = F(z,y,v',y",y"") satisfies the Wiinschmann-like
conditions

4D*F3 — 8DF, + 8F; — 6DF3F3 + 4F,F5 + F3 =0,

160D Fy — 640DF, + 144(DF3)* — 352D F3Fy + 144F5 —
80D FyF3 + 160F F3 — T2DF3Fy + 88Fy F5 + 9F5 + 16000F, = 0,
D = 0, + y10y + Y20y, + Y30y, + FOy,,

then it defines an irreducible GL(2,R) structure on the 4-dimensional space
M*? of its solutions.



e This GL(2,R) structure in dimension four may be understood in terms of a
conformal Weyl-like structure associated with the quartic GL(2,R) invariant

2 2 3 3 2 2
Iy = —3aja5 + 4pa5 + 4ajasz — 6agaiazas + agas,

of
ws(z,y) = apr® + 3a12%y + 3aszy® + asy’

and a certain 1-form A on M*.
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conformal geometries [(T1, Yo, ..., Ti, A)] of GL(2, R)-invariant symmetric
conformal tensors T, and a certain 1-form A given up to a gradient.



e In order n we have (n — 2)-Wiinschmann-like conditions on F', which
guarantee that the solutions space has an irreducible GL(2, R) structure in
dimension n.

e These GL(2,R) structures can be understood in terms of a certain Weyl-like
conformal geometries [(T1, Yo, ..., Ti, A)] of GL(2, R)-invariant symmetric
conformal tensors T, and a certain 1-form A given up to a gradient.

e |t seems that rich GL(2,R) geometries, with lots of examples, are possible in
orders 3 < n <5 only!



