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The Euler—Poisson—Darboux equation

The equation

takes the form

n m' p

xS T oy

Wyy sw =0,

where ' —n=m'—m=a, p=p+(m+n)a+ala—1).



The Euler exact solution

Let m' = n’ = k are integers and p’ = 0. The equation is reduced

to the form

k k
Wy +
X—=Yy X—=Yy

and after the substitution w = (x — y)~*u we derive

wy, =0

k(1 — k)
x—y)2"

A general solution of this equation is as follows

0?k—2 f(x
) = (= V) g (),

Uxy =




The Laplace transformation

yy + Ay + By, + Cop = 0.
Replace 1 by
b= <§i/ + A) .
The equation on 1; has another coefficients:
A— A —(logh)y,
B — B,
C—-C—-A+B,—(logh),B,

where
h=AB+ A, —-C.

The analogous transformation is obtained after swapping x < vy,
therewith h is replaced by

k=AB+B,—C.



The Laplace integration method

Under the first transformation
h—2h—k—(logh)y, k— h;
after the transformation
Y — = f(x,y )

the values of h and k are preserved (the Darboux invariants).
Note that

Uy = —BY + hy,

hence h = 0 implies the integrability.



Exactly solvable operators with a magnetic field

Consider a two-dimensional Schrédinger operator
L=080+Ad+Bd+C

with an electric potential V = g =-3(AB+A; —C) andin a
magnetic field H = (B, — Az). It is represented as follows

L=(0+B)(0+A) +2V =(0+A)0+ B)+2U,

where U = V + H = —k. The Laplace transformation takes the
form

~ 1 - ~ -
H=H+ 0dlogV, V=V1H.

By exploiting that Novikov and Veselov constructed integrable on
two energy levels periodic Schrédinger operators with nonvanishing
magnetic flux.



The Darboux transformation |

Given the conjugate coordinates x, y on a surface r(x, y) C R3, we
have
ry +ar, + br, =0.

For surfaces in RP3 we have
ryy +arx + br, +cr = 0.

A generic congruence C (2-dimensional family) of lines in RP3 has
two focal surfaces r and r to which every line is tangent. Then the
Laplace transformation

r=r,+ar

defines a mapping from r to r (here we assume that lines from C
are tangent along y-directions) [Darboux].

A general congruence (line, spherical and etc) which relates two
enveloping surfaces is called the Darboux transformation.



The Darboux transformation |l

2

d
H= *W‘FU(X)

— a one-dimensional Schrédinger operator. Every solution w to

Hw = 0.
defines a factorization of H:
/
HeaTa A9y a4, ¢
dx dx w

The Darboux transformation of H consists in swapping AT and A:
T T T d>
H=A"A — H=AA :—@—ku(x),

u=v:+v —Ta=v: -V

and it acts on eigenfunctions as follows:

1/}—>’(Z:A1/J



The harmonic oscillator
Let v = ax,a > 0, then

v/ = const = a

and
AAT =2H —a, ATA=2H+a,

1/ d°
H=Z>(-—— + a?
2 ( a2 " >
is the harmonic oscillator operator. It follows from the commutation
relation [AT, A] = 2a that if

where

Hy = Ev,

then

H(AY) = (E +a)(Ay), H(ATY) = (E —a)(AT4).



Note that
(2E — a)(v, ¥) = (AAT ¥, ) = (AT, AT) > 0,
which implies )
E> 5>
The equality is attained on a solution of the equation
ATy = <i{+ax>¢:0,

which is up to a constant multiple equals

Pi(x) =e" 2.
The basis of eigenfunctions has the form

vy = AV, N=1,23,..

with eigenvalues
g + (N —1)a.



The Crum method

Consider the problem
" +up=Ap, 0<x<1,
p(0) = a'(0), (1) = by'(1),
where u(x) is continuous on [0, 1]. Denote by
A< <...

the spectrum of this problem, and by ¢o, ¢1,... — the
corresponding eigenfunctions.

Let W, be the Wronskian of g, ..., p,_1 and W, be the
Wronskian of ¢, ..., ©n—1,9s (s > n).



THE CRUM THEOREM:

» the problem

—" + upp = Ap,0 < x < 1, Iim0 e(x) =0, lim ¢(x) =0,
X—

x—1
2
where u, = u — 2% log W, has the spectrum
An < Apgp1 < ...

and a complete family of corresponding eigenfunctions

WI‘IS

Pns = Wn’ szn.
For n > 2 the problem is not regular and

n(n—1)

x2

n(n—1)
(1—x)2’

Up ~ , x = 0; Up ~ x — 1.



The Moutard equation

If x and y are the asymptotic coordinates on a surface
r(x,y) C R3, then

() = (y,m,) =0
with n the normal field. This implies
rk=An,xn, r,=pnxn,.
Put W = v/\n and derive
V,, x V=0
which is equivalent to the Moutard equation:
V,, = Q(x,y)¥, or (040, — Q)W =0.

Every (vector-valued) solution to this equation defines a surface
with the asymptotic coordinates x, y and vise versa.



The Moutard transformation

Let H be a two-dimensional potential Schrédinger operator and w
be a solution of the equation

Hw = (—A + u)w =0,

where A is the two-dimensional Laplace operator:

92 0?2
A=t —.
Ox?2 + Oy?
The Moutard transformation of H is defined as
wf + w?

H=-A+u—20logw=—A—u+2-"57,
w

If 4 satisfies Hy = 0, then the function 6, defined via the system

() = —? (f) @), = (L) .

satisfies HO = 0.



REMARKS:

1) the Moutard transformation describes deformations only of
“eigenfunctions” with zero “eigenvalue’”;

2) the action of the Moutard transformation on “eigenfunctions” ¢
is multi-valued and is defined modulo multiples of %;

3) if u= u(x) and w = f(x)e"”, the the Moutard transformation
reduces to the Darboux transformation defined by f.

Introduce the following notation:

My(u) =1 =u—2Alogw, Mw(go):{0+g, C e C}.



The double iteration

Let

H=-A+ 7))
— an operator with potential ug(x,y) and w; and w, satisfy the
equation

Hwi, = Hws = 0.
Let 01 € My, (w2) n 6, = —%91 € M,,(w1). Then
» The diagram
w1
b — uy
wr | A

02
up —— Uiz = U21
where (91 S Mwl(w2), 92 = —% 91 S sz(wl), is
commutative, i.e.
U]_2 - u2]_ = Uu.

» For ¢ = 9% and ¢ = 9—12 we have

Hiyy = Hipp =0, where H=—A + u.



A remark on the kernel of a two-dimensional rational
Schrodinger operator

If a one-dimensional potential meets the condition
o0
/ ()L + [x]) dx < oo,
—0o0

then there are finitely many eigenvalues and all of the m are
negative (Faddeev, Marchenko).
For n > 5 it is easy by regularizing the Green function G(x) = —==

— yn—2
to obtain a positive function 1 which lies in the kernel of the
Schrédinger operator with finite potential

_Ay
-

The question do there exist two-dimensional Schrédinger operators
with smooth fast decaying potential and nontrivial kernel was
opened until recently.

u



A two-dimensional Schrodinger operator with nontrivial
kernel (T.—Tsarev)

Let
2 2 3.0 2
w1 =X +20 =y ) Fxy, wr=x Ay 4o (x = yT) + 5y
Then the double iteration of the Moutard transformation gives the
potential
. 5120(1 + 8x + 2y + 17x2 + 17y?)

(160 + (4 + 16x + 4y)(x2 + y2) 4+ 17(x? + y?)?)?
and the eigenfunctions with £ = 0:

X 4 2x% 4+ xy — 2y?

1= 160+ (4 + 16x +4y)(x* + y?) + 17(x* + y?)?

B 2x + 2y + 3x%+ 10xy — 3y?
160 + (4 + 16x + 4y)(x2 + y2) + 17(x2 + y?2)?’

P2



u*,11,1o are smooth rational functions.

u* decays as r~% as r — oco.

1 and 1, decay as r=2 as r — oo

Fig. 1. The potential vu*.



Some problems

1. There are examples of potentials u ~ O(r~8) and
eigenfunctions 11,1 ~ O(r=3) as r — co. We think that for
any N > 0 by using this construction one may construct
smooth rational potentials v and their eigenfunctions 1; and

1> which decay faster than rl,\,.

2. It looks that by using a k-th iteration it is possible to
construct operators H with dimKer H > k.

3. The potential v is nonpositive and H = —A + u* has to have
negative discrete eigenvalues. How looks the discrete spectrum
of H and other Schrédinger operators with two-dimensional
rational solitons as potentials?



The Novikov—Veselov equation

The Novikov—Veselov (NV) equation:
Us = U+ d*U +30(UV) +30(VU) =0, dV =aU.

The one-dimensional reduction U = U(x), U = V = V leads to the
Korteweg—de Vries equation U; = %UXXX + 6UUL.
The NV equation is the compatibility condition for the system

Hy = (90 + U)y = 0,

B s A3 - - (1)
O = —Ap = (8 + &> +3VO + 3V

and is represented by a “Manakov triple” of the form

H; = [H, A] + BH. Equations represented by such triples preserve
the “spectrum on the zero energy level” deforming “eigenfunctions”
via



The extended Moutard transformation

The system (1) is invariant under the transformation
p—0= i /(gp@w — wdP)dz — (pOw — wdp)dz+

+[pdPw — wdPp + wdPp — PPPw + 2(8?POw — Hpd*w)—
—2(8%pdw — Dpd?w) + 3V (pdw — wdg) + 3V (wdp — pdw)]dt,
U— U+23dlogw, V — V +20°logw.

Therefore if two holomorphic in z functions p1(z, t) and pa(z, t)
satisfy the equation

op 3p

at 923
then the double iteration of the extended Moutard transformation
defined by them and applied to U = 0 gives a solution of the
Novikov—Veselov equation.



Blowing up solution of the Novikov—Veselov equation
(T.—Tsarev)
Apply this construction to a pair of polynomials px = px(z,0):

pp=iz%, p=z22+1+i)z

and obtain a solution

where

H = —12(121’(2(X2 +y2) Fx+y)+ x> = 3xty 4+ 2x* — 2x3y2—

—4x3y —2x2y3 —60x% —3xy* —4xy3 —30x+y° +2y* —60y2 — 30y> ,

Hy = (3x* + 4x3 + 6x2y? + 3y* + 4y 4+ 30 — 12t)°.

It decays as r—3, is nonsingular for 0 < t < T, = % and is singular

for t > T*:%.



Fig. 2. The potential U as t — 3.



Fig. 3. The potential U at t = 23 near (—1,0).
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