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The Euler–Poisson–Darboux equation

The equation

zxy −
n

x − y
zx +

m

x − y
zy −

p

(x − y)2
z = 0

after a substitution
z = (x − y)αw

takes the form

wxy −
n′

x − y
wx +

m′

x − y
wy −

p′

(x − y)2
w = 0,

where n′ − n = m′ −m = α, p′ = p + (m + n)α+ α(α− 1).



The Euler exact solution

Let m′ = n′ = k are integers and p′ = 0. The equation is reduced
to the form

wxy −
k

x − y
wx +

k

x − y
wy = 0

and after the substitution w = (x − y)−ku we derive

uxy =
k(1− k)

(x − y)2
u.

A general solution of this equation is as follows

u(x , y) = (x − y)k
∂2k−2

∂xk−1∂yk−1

(
f (x) + g(y)

x − y

)
.



The Laplace transformation

ψxy + Aψx + Bψy + Cψ = 0.

Replace ψ by

ψ̃ =

(
∂

∂y
+ A

)
ψ.

The equation on ψ̃ has another coefficients:

A → A− (log h)y ,

B → B,

C → C − Ax + By − (log h)yB,

where
h = AB + Ax − C .

The analogous transformation is obtained after swapping x ↔ y ,
therewith h is replaced by

k = AB + By − C .



The Laplace integration method

Under the first transformation

h → 2h − k − (log h)xy , k → h;

after the transformation

ψ → ψ̃ = f (x , y)ψ

the values of h and k are preserved (the Darboux invariants).
Note that

ψ̃x = −Bψ̃ + hψ,

hence h = 0 implies the integrability.



Exactly solvable operators with a magnetic field

Consider a two-dimensional Schrödinger operator

L = ∂∂̄ + A∂̄ + B∂ + C

with an electric potential V = −h
2 = −1

2(AB + Az̄ − C ) and in a
magnetic field H = 1

2(Bz − Az̄). It is represented as follows

L = (∂̄ + B)(∂ + A) + 2V = (∂ + A)(∂̄ + B) + 2U,

where U = V + H = −k . The Laplace transformation takes the
form

H̃ = H +
1

2
∂∂̄ log V , Ṽ = V + H̃.

By exploiting that Novikov and Veselov constructed integrable on
two energy levels periodic Schrödinger operators with nonvanishing
magnetic flux.



The Darboux transformation I

Given the conjugate coordinates x , y on a surface r(x , y) ⊂ R3, we
have

rxy + arx + bry = 0.

For surfaces in RP3 we have

rxy + arx + bry + cr = 0.

A generic congruence C (2-dimensional family) of lines in RP3 has
two focal surfaces r and r̃ to which every line is tangent. Then the
Laplace transformation

r̃ = ry + ar

defines a mapping from r to r̃ (here we assume that lines from C
are tangent along y -directions) [Darboux].
A general congruence (line, spherical and etc) which relates two
enveloping surfaces is called the Darboux transformation.



The Darboux transformation II

H = − d2

dx2
+ u(x)

— a one-dimensional Schrödinger operator. Every solution ω to

Hω = 0.

defines a factorization of H:

H = A>A, A = − d

dx
+ v , A> =

d

dx
+ v , v =

ω′

ω
.

The Darboux transformation of H consists in swapping A> and A:

H = A>A −→ H̃ = AA> = − d2

dx2
+ ũ(x),

u = v2 + v ′ −→ ũ = v2 − v ′

and it acts on eigenfunctions as follows:

ψ −→ ψ̃ = Aψ.



The harmonic oscillator
Let v = ax , a > 0, then

v ′ = const = a

and
AA> = 2H − a, A>A = 2H + a,

where

H =
1

2

(
− d2

dx2
+ a2x2

)
is the harmonic oscillator operator. It follows from the commutation
relation [A>,A] = 2a that if

Hψ = Eψ,

then

H(Aψ) = (E + a)(Aψ), H(A>ψ) = (E − a)(A>ψ).



Note that

(2E − a)(ψ,ψ) = (AA>ψ,ψ) = (A>ψ,A>ψ) ≥ 0,

which implies
E ≥ a

2
.

The equality is attained on a solution of the equation

A>ψ =

(
d

dx
+ ax

)
ψ = 0,

which is up to a constant multiple equals

ψ1(x) = e−
ax2

2 .

The basis of eigenfunctions has the form

ψN = AN−1ψ1, N = 1, 2, 3, . . .

with eigenvalues
a

2
+ (N − 1)a.



The Crum method

Consider the problem

−ϕ′′ + uϕ = λϕ, 0 < x < 1,

ϕ(0) = aϕ′(0), ϕ(1) = bϕ′(1),

where u(x) is continuous on [0, 1]. Denote by

λ0 < λ1 < . . .

the spectrum of this problem, and by ϕ0, ϕ1, . . . — the
corresponding eigenfunctions.
Let Wn be the Wronskian of ϕ0, . . . , ϕn−1 and Wns be the
Wronskian of ϕ0, . . . , ϕn−1, ϕs (s ≥ n).



The Crum theorem:

I the problem

−ϕ′′ + unϕ = λϕ, 0 < x < 1, lim
x→0

ϕ(x) = 0, lim
x→1

ϕ(x) = 0,

where un = u − 2 d2

dx2 log Wn has the spectrum

λn < λn+1 < . . .

and a complete family of corresponding eigenfunctions

ϕns =
Wns

Wn
, s ≥ n.

For n ≥ 2 the problem is not regular and

un ∼
n(n − 1)

x2
, x → 0; un ∼

n(n − 1)

(1− x)2
, x → 1.



The Moutard equation
If x and y are the asymptotic coordinates on a surface
r(x , y) ⊂ R3, then

(rx ,nu) = (ry ,nv ) = 0

with n the normal field. This implies

rx = λnx × n, ry = µn× ny .

Put Ψ =
√
λn and derive

Ψxy ×Ψ = 0

which is equivalent to the Moutard equation:

Ψxy = Q(x , y)Ψ, or (∂x∂y − Q)Ψ = 0.

Every (vector-valued) solution to this equation defines a surface
with the asymptotic coordinates x , y and vise versa.



The Moutard transformation
Let H be a two-dimensional potential Schrödinger operator and ω
be a solution of the equation

Hω = (−∆ + u)ω = 0,

where ∆ is the two-dimensional Laplace operator:

∆ =
∂2

∂x2
+

∂2

∂y2
.

The Moutard transformation of H is defined as

H̃ = −∆ + u − 2∆ logω = −∆− u + 2
ω2

x + ω2
y

ω2
.

If ψ satisfies Hψ = 0, then the function θ, defined via the system

(ωθ)x = −ω2

(
ψ

ω

)
y

, (ωθ)y = ω2

(
ψ

ω

)
x

,

satisfies H̃θ = 0.



Remarks:
1) the Moutard transformation describes deformations only of
“eigenfunctions” with zero “eigenvalue”;
2) the action of the Moutard transformation on “eigenfunctions” ψ
is multi-valued and is defined modulo multiples of 1

ω ;
3) if u = u(x) and ω = f (x)eκy , the the Moutard transformation
reduces to the Darboux transformation defined by f .
Introduce the following notation:

Mω(u) = ũ = u − 2∆ logω, Mω(ϕ) = {θ +
C

ω
, C ∈ C}.



The double iteration
Let

H = −∆ + u0

— an operator with potential u0(x , y) and ω1 and ω2 satisfy the
equation

Hω1 = Hω2 = 0.

Let θ1 ∈ Mω1(ω2) и θ2 = −ω1
ω2
θ1 ∈ Mω2(ω1). Then

I The diagram

u0
ω1−→ u1

ω2 ↓ ↓ θ1

u2
θ2−→ u12 = u21

,

where θ1 ∈ Mω1(ω2), θ2 = −ω1
ω2
θ1 ∈ Mω2(ω1), is

commutative, i.e.
u12 = u21 = u.

I For ψ1 = 1
θ1

and ψ2 = 1
θ2

we have

Hψ1 = Hψ2 = 0, where H = −∆ + u.



A remark on the kernel of a two-dimensional rational
Schrödinger operator

If a one-dimensional potential meets the condition∫ ∞

−∞
|u(x)|(1 + |x |) dx <∞,

then there are finitely many eigenvalues and all of the m are
negative (Faddeev, Marchenko).
For n ≥ 5 it is easy by regularizing the Green function G (x) = cn

rn−2

to obtain a positive function ψ which lies in the kernel of the
Schrödinger operator with finite potential

u =
∆ψ

ψ
.

The question do there exist two-dimensional Schrödinger operators
with smooth fast decaying potential and nontrivial kernel was
opened until recently.



A two-dimensional Schrödinger operator with nontrivial
kernel (T.–Tsarev)

Let

ω1 = x + 2(x2 − y2) + xy , ω2 = x + y +
3

2
(x2 − y2) + 5xy .

Then the double iteration of the Moutard transformation gives the
potential

u∗ = − 5120(1 + 8x + 2y + 17x2 + 17y2)

(160 + (4 + 16x + 4y)(x2 + y2) + 17(x2 + y2)2)2

and the eigenfunctions with E = 0:

ψ1 =
x + 2x2 + xy − 2y2

160 + (4 + 16x + 4y)(x2 + y2) + 17(x2 + y2)2

ψ2 =
2x + 2y + 3x2+ 10xy − 3y2

160 + (4 + 16x + 4y)(x2 + y2) + 17(x2 + y2)2
.



u∗, ψ1, ψ2 are smooth rational functions.
u∗ decays as r−6 as r →∞.
ψ1 and ψ2 decay as r−2 as r →∞

Fig. 1. The potential u∗.



Some problems

1. There are examples of potentials u ∼ O(r−8) and
eigenfunctions ψ1, ψ2 ∼ O(r−3) as r →∞. We think that for
any N > 0 by using this construction one may construct
smooth rational potentials u and their eigenfunctions ψ1 and
ψ2 which decay faster than 1

rN .
2. It looks that by using a k-th iteration it is possible to

construct operators H with dim Ker H ≥ k .
3. The potential u is nonpositive and H = −∆ + u∗ has to have

negative discrete eigenvalues. How looks the discrete spectrum
of H and other Schrödinger operators with two-dimensional
rational solitons as potentials?



The Novikov–Veselov equation

The Novikov–Veselov (NV) equation:

Ut = ∂3U + ∂̄3U + 3∂(UV ) + 3∂̄(V̄ U) = 0, ∂̄V = ∂U.

The one-dimensional reduction U = U(x),U = V = V̄ leads to the
Korteweg–de Vries equation Ut = 1

4Uxxx + 6UUx .
The NV equation is the compatibility condition for the system

Hψ = (∂∂̄ + U)ψ = 0,

∂tψ = −Aψ = (∂3 + ∂̄3 + 3V ∂ + 3V̄ ∂̄)ψ
(1)

and is represented by a “Manakov triple” of the form
Ht = [H,A] + BH. Equations represented by such triples preserve
the “spectrum on the zero energy level” deforming “eigenfunctions”
via

(∂t + A)ψ = 0.



The extended Moutard transformation

The system (1) is invariant under the transformation

ϕ→ θ =
i

ω

∫
(ϕ∂ω − ω∂ϕ)dz − (ϕ∂̄ω − ω∂̄ϕ)dz̄+

+[ϕ∂3ω − ω∂3ϕ+ ω∂̄3ϕ− ϕ∂̄3ω + 2(∂2ϕ∂ω − ∂ϕ∂2ω)−

−2(∂̄2ϕ∂̄ω − ∂̄ϕ∂̄2ω) + 3V (ϕ∂ω − ω∂ϕ) + 3V̄ (ω∂̄ϕ− ϕ∂̄ω)]dt,

U → U + 2∂∂̄ logω, V → V + 2∂2 logω.

Therefore if two holomorphic in z functions p1(z , t) and p2(z , t)
satisfy the equation

∂p

∂t
=
∂3p

∂z3
,

then the double iteration of the extended Moutard transformation
defined by them and applied to U = 0 gives a solution of the
Novikov–Veselov equation.



Blowing up solution of the Novikov–Veselov equation
(T.–Tsarev)

Apply this construction to a pair of polynomials pk = pk(z , 0):

p1 = i z2, p2 = z2 + (1 + i)z

and obtain a solution
U =

H1

H2
,

where

H1 = −12
(
12t(2(x2 + y2) + x + y) + x5 − 3x4y + 2x4 − 2x3y2−

−4x3y−2x2y3−60x2−3xy4−4xy3−30x+y5+2y4−60y2−30y
)
,

H2 = (3x4 + 4x3 + 6x2y2 + 3y4 + 4y3 + 30− 12t)2.

It decays as r−3, is nonsingular for 0 ≤ t < T∗ = 29
12 and is singular

for t ≥ T∗ = 29
12 .



Fig. 2. The potential U as t → 29
12 .



Fig. 3. The potential U at t = 29
12 near (−1, 0).


