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Quaternionic Contact Structures

Definition
M#+3 -quaternionic contact if we have

I) codimension three distribution H, locally,
H=2_, Kerns, ns € T*M.

i) a 2-sphere bundle of "almost complex structures”
locally generated by Is : H — H, 2 = —1,
Satisfying I1 /2 = —/2/1 = I3,'

lii) a metric tensor g on H, s.t.,
2g9(I1sX,Y) = dns(X,Y),
ag(lsX, IsY) = g(X,Y), X,YeH.
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Quaternionic Contact Structures

@ Given n (and H) there exists at most one triple
of a.c.str. and metric g that are compatible.

@ Rotating n we obtain the same qc-structure.
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The Biquard connection

Theorem (O. Biquard)

Under the above conditions and n > 1, there exists a
unique supplementary distribution V of H in TM and
a linear connection V on M, s.t.,
1. V and H are parallel
2.gandQ =737 (dnjn)? are parallel
3. torsion Tag = VB — VA —[A, B]
satisfies
e VX, YeH, TX,YZ—[X, YllveV
@ vVée V,andvX e H, T x € H and
Te := (X' = Tex) € (sp(n)+sp(1))-
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Reeb vector fields

@ Note: V is generated by the Reeb vector fields

{51 ) 527 53}
Ns(Ek) = Osk, (fstns)“-/ =0
(Es2dnk)iH = —(Ekadns) -

() 5/21



Reeb vector fields

@ Note: V is generated by the Reeb vector fields
{61,82,83}
ns(§k) = Osk,  (§s2dns)y =0

(§s2dni) i = —(Ek20Ns) K-
@ If the dimension of M is seven, n = 1, Reeb
vector fields might not exist.
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Reeb vector fields

@ Note: V is generated by the Reeb vector fields
{€1,&2,83}
ns(&k) = dsk, (fstns)“-/ =0
(§s2dni) i = —(Ek20Ns) K-

@ If the dimension of M is seven, n = 1, Reeb
vector fields might not exist.

@ D. Duchemin showed that if we assume their
existence, then there is a connection as before.
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Reeb vector fields

@ Note: V is generated by the Reeb vector fields

{51 ) 527 53}
Ns(Ek) = Osk, (fstns)“-/ =0

(§s2dni) i = —(Ek20Ns) K-

@ [f the dimension of M is seven, n =1, Reeb
vector fields might not exist.

@ D. Duchemin showed that if we assume their
existence, then there is a connection as before.

@ Henceforth, by a qc structure in dimension 7 we
mean a qc structure satisfying the Reeb
conditions
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@ curvature: R(A,B)C = [V4,Vg]C — V(4 5C;
@ (horizontal) Ricci tensor:
Ric(X,Y) = RicV|y = try{Z — R(Z,X)Y} for
X,YeH
@ scalar curvature: Scal = try Ric.

@ Kahler forms
2wiH = dnin, fawj=0, eV,

6/21



@ Sp(1) {unlt quaternions} c SO(4n),
Ag=qg- 21

@ Sp(n)-quaternionic unitary C SO(4n).

@ Sp(n)Sp(1)-product in SO(4n).

@ Let W cEnd(H). The Sp(n)-invariant parts are
follows

Y = w-H——f— + w+—— + w—+— + w——-i-.
@ The two Sp(n)Sp(1)-invariant components are
given by
l|1[3] = \U+++, \U[_1] /2 e /o

g
Using End(H) = A" the Sp(n)Sp(1)-invariant
components are the projections on the
eigenspacesof T = [ @ h + b® b + Kh® k.
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The Torsion Tensor. T¢ =

U e V.

Tg-symmetric, [;U-skew-symmetric.

Theorem (w/ St. Ivanov, |. Minchev)
Define T® = T2 Il + T2 b+ T2 Iy € W_y;. We have
Ric = (2n+2)T0 - (4n+10)U + Selg
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The Torsion Tensor. T¢ =

UE\U3

Tg-symmetric, [;U-skew-symmetric.

Theorem (w/ St. lvanov, I. Minchev)
Define T® = T2 Il + T2 b+ T2 Iy € W_y;. We have
Ric = (2n+2)T0 - (4n+10)U + Selg

| \

Definition

M is called gc-Einstein if T =0and U =0. M is
called gc-pseudo-Einstein if U = 0.




Theorem (w/ St. Ivanov, |. Minchev)

Let (M*"3 g,Q) be a QC manifold. TFAE
I) The torsion of the Biquard connection is
identically zero, T¢, £ € V.
i) (M*+3 g, Q) is qc-Einstein manifold.
iii) Each Reeb vector field is a qc vector field,
Laon=wl+ O)-n.
Iv) Each Reeb vector field preserves the horizontal
metric and the quaternionic structure
simultaneously, i.e. Log=0and Lql= O,

where
veC®M), OeC®M,so(3)), [=(h,bk, k).
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Vanishing horizontal connection
1-forms

Lemma (w/ St. Ivanov, I. Minchev)

If a gc structure has zero connection one forms
restricted to the horizontal space H then the gc
structure is qc-Einstein.

The connection one forms are
Vii=—0;® Ix+ oy @ I.

It is also useful to note
R(A, B,&;,&) = 2pk(A, B) = (da + a; A aj)(A, B).
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Proposition (w/ St. Ivanov)

Let (M*"+3 . Q) be a (4n+3)- dimensional qc
manifold. Let s = g2, so that a 3-Sasakian
manifold has s = 2. The following equations hold

2wi:dni—l—nj/\ozk—nk/\oq—l—Snj/\T]k;

a2 = [277,-/\(pk/\wj—pj/\wk)—|—dS/\w,-/\77j/\77k}
)

(ijk

where QQ = wq A w1 + wa A wa + w3 A ws.
In particular, the structure equations of a 3-Sasaki
manifold have the form dn; = 2w; + 2n; N\ 1.

()
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Properties of gc-Einstein manifolds

Theorem (w/ St. lvanov, I. Minchev)

If M is qc-Einstein then Scal=const., V is integrable,
andforX € H, s,t=1,2,3 we have py,, =11, =
=201, = —swr,  pil&i &) + Pr(Ek, &) =

07 Rlc(g& X) — pS(X7 gt) = CS(Xa gt) = 0

Here, ps(A, B) = -R(A, B, &4, Is6,), (s(A, B) =
L R(e.,A B, lse,), 7s(A B)=
-R(en, Ise, A, B),  ws = 5dns,.

The Proof uses the Bianchi’s identities.
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Theorem (w/ St. lvanov, I. Minchev)

The divergences of the curvature tensors satisfy the
system Bb = 0, where

—1 6 4n—1 W 0
B = —1 0 n+2 m 0 ’
1 -3 4 0o —1

b = (V*T°, V*U, A, dScal, Ric(¢;, 1;.))",
A= h[&, &) + /2[53751] + h[&1, &)

0 12/ 21



Vanishing tor using the str egs

Using gc-Einstein = Scal=const., [V, V] C V, and

Lemma (w/ St. lvanov)

On a qc manifold of dimension (4n+ 3) > 7 we have
(X Y) =
_1 [dQ(g,,x IY. €a, liea) + A&, X, LY, ea, /ea)]
TO(X, Y) = gy iy | 9E X, kY, €2, fj6a) —

A&, 11X, 1Y €a, )|

we prove
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Theorem (w/ St. lvanov)

Let (M*"+3 1. Q) be a gc manifold, n > 1. The
following conditions are equivalent

a) (M*+3 5, Q) has closed fundamental four form,
dQ =0;

b) (M*+3 g, Q) is qc-Einstein manifold;

c) Each Reeb vector &, field preserves the
horizontal metric and the quaternionic structure
simultaneously, Le,g =0, L,Q C Q.

d) Each Reeb vector field &5 preserves the
fundamental four form, L¢ Q2 = 0.
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The “positive” gc-Einstein case

Proposition (w/ St. Ivanov)

The structure equations characterizing a 3-Sasaki
manifold among all gc structures are
dni = 2wj + 2n; A 1.
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The “positive” gc-Einstein case
Proposition (w/ St. Ivanov)

The structure equations characterizing a 3-Sasaki
manifold among all qc structures are
dni = 2w; + 2n; N\ nk.

Proof.

Recall, 2w; = dn;i + n; A\ ak — nk A o + Snj A 1k
For a 3-Sasakian manifold we have

s =2,dni(§, &) = 2, as = —2ns. Conversely, the
Kahler forms F; = t3(w; + 1; A 1x) + tdt A n; on the
cone N = M x R" are closed and therefore

gy = t3(g + 2221 ns ® ns) + dt @ dt is hyper Kahler

e S e T




Main thrm for "positive” Einstein gc

Theorem (w/ St. lvanov, I. Minchev)

Suppose Scal > 0. The next conditions are
equivalent:
) (M*+3.g,Q) is gc-Einstein manifold.
ii) M is locally 3-Sasakian: locally there exists a
matrix W € €*(M : SO(3)), s.t., (2V -1, Q) is
3-Sasakian;
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Proof of the main theorem

characterizing 3-Sasaki

Proof in the case n > 1 using the fundamental
4-form. The original proof works when n =1 as well.

dQY =0 = Mis qc-Einstein = Scal = const and
[V, V] C V. The qc structure 1y = 10242, hag
normalized qc scalar curvature ' =2 and dQ' =0
provided Scal # 0.

Drop the ’ hereafter.
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Claim: The Riemannian cone N = M x R,
gn = t3(g + Z§:1 ns @ ns) + dt ® dt is hyper-Kahler.
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Claim: The Riemannian cone N = M x R™,
gn = t3(g + Z§:1 ns @ ns) + dt ® dt is hyper-Kahler.
@ Fi = t3(wi+nj Ank) + tdt Am,
F=FRANF+FHANFR+FRBAF.
@ dF; = tdt/n (2w,'+217j/\77k — dn,') + tzd(w,’—f—nj/\nk).

Thus (M, V - n) is locally a 3-Sasakian manifold.
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Claim: The Riemannian cone N = M x R™,
gn = t3(g + Z§:1 ns @ ns) + dt ® dt is hyper-Kahler.
@ Fi = t3(wi+nj Ank) + tdt Am,
F=FRANF+FHANFR+FRBAF.
e dF; = l’dt/\(2w/—|—277j/\?7k—dn/)—l—tzd(wi—f—nj/\nk).
@ dF = t*dQ 28 Z(ijk) dt/\(p/+2w,')/\77j/\77k = 0.

Thus (M, V - n) is locally a 3-Sasakian manifold.
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Claim: The Riemannian cone N = M x R™,
gn = t3(g + Z§:1 ns @ ns) + dt ® dt is hyper-Kahler.
@ Fi = t3(wi+nj Ank) + tdt Am,
F=FANF+FANF+ F3AFs.
@ dF; = tdt/n (2wj—|—277j/\?7k — dn,') + tzd(w,’—f—nj/\nk).
@ dF = t*dQ -2 Z(ijk) dt A (pi+2w)) AnjAnk = 0.
@ N is quaternionic Kahler manifold if n > 1.

Thus (M, V - n) is locally a 3-Sasakian manifold.
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Claim: The Riemannian cone N = M x R™,

gn = t3(g + Z§:1 ns @ ns) + dt ® dt is hyper-Kahler.
@ Fi = t3(wi+nj Ank) + tdt Am,

F=FRANF+FHANFR+FRBAF.

o dF; = tdt A (2wj+2m; Ak — dn;) + t2d(wi+nj An)-
@ dF = t*dQ -2 Z(ijk) dt A (pi+2w)) AnjAnk = 0.
@ N is quaternionic Kahler manifold if n > 1.
@ N is Einstein and (warped metric) is Ricci flat.

Thus (M, V - n) is locally a 3-Sasakian manifold.
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Claim: The Riemannian cone N = M x R™,

gn = t3(g + Z§:1 ns @ ns) + dt ® dt is hyper-Kahler.
@ Fi = t3(wi+nj Ank) + tdt Am,

F=FANF+FANF+ F3AFs.

@ dF; = tdt/n (2w,' —|—277j NNk — dn,') + tzd(w,' +1); /\77/()-
@ dF = t*dQ -2 Z(ijk) dt A (pi+2w)) AnjAnk = 0.
@ N is quaternionic Kahler manifold if n > 1.
@ N is Einstein and (warped metric) is Ricci flat.

°

N is locally hyper-Kahler. Locally, there exists a
SO(3)-matrix W with smooth entries, possibly
depending on t, such that the triple of two forms
(Fy, Fo, F3) =V - (F, Fy, F3)! are closed.

Thus (M, V - n) is locally a 3-Sasakian manifold.
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Zero torsion examples

@ For some constant 7 the following structure
equations hold dn; = 2w; + 271; A 1, for any
cyclic permutation (i, j, k) of (1,2, 3).
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Zero torsion examples

@ For some constant 7 the following structure
equations hold dn; = 2w; + 271; A 1, for any
cyclic permutation (/,/, k) of (1,2, 3).

@ Examples of such qc manifolds are:

(i) the quaternionic Heisenberg group, where
T =0;

(il) any 3-Sasakian manifold, where 7 = 1;
(iii) the zero torsion qc-flat group G_1/4
described next, where 7 = —1/4.
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Zero torsion examples

@ For some constant 7 the following structure
equations hold dn; = 2w; + 271; A 1, for any
cyclic permutation (/,/, k) of (1,2, 3).

@ Examples of such qc manifolds are:

(i) the quaternionic Heisenberg group, where
T =0;

(il) any 3-Sasakian manifold, where = = 1;
(iii) the zero torsion qc-flat group G_1/4
described next, where 7 = —1/4.

@ For 7 <0 (7 > 0), the qc homothety n; — —277n;
(ni — 7n;) brings the gc-structure G_1/4 (a
3-Sasakain structure) to one satisfying the
above structure equations.
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Example of a "negative” gc-Einstein

This is the only Lie group s.t. dn; = 2w; + 27n; A 7k,
T # 0, for some (necessarily) negative constant 7.
Consider the Lie algebra g_1/4

de' =0, de?=—e'?—2e% - 1e% 4 1%
de® = —6'3 4 2624 1 1?7 _ 16

de® = 2¢'? + 2634 — 1657
ded = 2e'3 +2e*2 4 €%, de’ =2e' +26?° — [e°®
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Example of a "negative” gc-Einstein

This is the only Lie group s.t. dn; = 2w; + 27n; A 7k,
T # 0, for some (necessarily) negative constant 7.
Consider the Lie algebra g_1/4

de' =0, de?=—e'?—2e% - 1e% 4 1%

deS — _e13 + 2624 + %627 _ %345

de4 — _e14 . 2323 . %926 + %935

de® = 2¢'? + 2634 — 1657

ded = 2e'3 +2e*2 4 €%, de’ =2e' +26?° — [e°®
H = span{e',...,e*}, ny =€, m = e nz = ¢e’,
wi=e2%+e% w=eB+e*? wy=e"+ e
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&1 = es, & = 66, &3 = €7 are the Reeb vector fields;
hence, the Biquard connection exists.
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&1 = es, & = 66, &3 = €7 are the Reeb vector fields;
hence, the Biquard connection exists.

Theorem (w/ L. de Andres, M. Fernandez,

St. lvanov, J. Santisteban and L. Ugarte)

Let (G_1/4,71,Q) be the simply connected Lie group
with Lie algebra g_1,4 equipped with the left invariant
qc structure (n, Q) defined above. Then
a) G_1,4 Is qc-Einstein and the normalized qc
scalar curvature is a negative constant, S = —%.
b) The gc conformal curvature is zero, W9 = 0,
i.e., (G_1,4,7n,Q) is locally gc conformally flat.
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