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1) Scattering theory
Scattering theory seeks to understand large-time asymptotic
behavior of solutions to evolution equations such as the
Schrödinger equation

i
∂u

∂t
= Hu

and the wave equation

∂2u

∂t2
= −∆u.

Solution operators are

e itH , and cos(t
√

∆) or sin(t
√

∆)/
√

∆,

depending in the latter case on initial conditions.
Main features: Open systems, particle may escape to infinity,
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1.1. The time-dependent approach

H separable Hilbert space, H0 and H self-adjoint operators in
H.

H0 free Hamiltonian, H Hamiltonian with interaction

Example. Scattering by a potential V ∈ C∞
c (Rn).

H = L2(Rn), ∆ = d∗d , H0 = ∆, H = ∆ + V .

We say that
u(t) = e−itHϕ

is asymptotically free as t → ±∞, if there exist
ϕ± ∈ H:

lim
t→±∞

‖ e−itHϕ− e−itH0ϕ± ‖= 0.

Equivalent to

lim
t→±∞

‖ e itHe−itH0ϕ± − ϕ ‖= 0.

Werner Müller Scattering theory and stable systols



Problem. Existence of the limit.

Wave operators

Hac and H0,ac absolutely continuous subspaces of H and H0,
respectively.

Pac and P0,ac projections onto Hac and H0,ac, respectively.

Hac and H0,ac absolutely continuous parts of H and H0,
respectively.

Put

W±(H,H0) := s-limt→±∞ e itHe−itH0P0,ac

Problem. Existence and completeness of wave operators.
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• If W±(H,H0) exist and are complete, then

W± : H0,ac
∼= Hac, W±H0,ac = HacW±.

• Absolutely continuous parts of H0 and H are unitarily equivalent.

Birman-Kato invariance principle:
1) Let λ ∈ C− R and k ∈ N such that

(H + λ Id)−k − (H0 + λ Id)−k

is trace class. Then the wave operators exist and are complete.

2) Suppose that H,H0 ≥ 0 and

e−tH − e−tH0

is trace class for all t > 0. Then the wave operators exist and are
complete.
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Scattering operator:

S = W ∗
+ ◦W−.

S unitary operator in H0,ac, commutes with H0,ac.

Let σ0 be the absolutely continuous spectrum of H0, and
{E0(λ)}λ∈σ0 the spectral family of H0,ac.

Then

S =

∫
σ0

S(λ)dE0(λ).

S(λ) “on-shell scattering matrix”.
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1.2. Stationary (time-independent) approach

Example. H = ∆ + V , V ∈ C∞
c (Rn).

The stationary approach is related to the spectral decomposition of
H.
Let ω ∈ Sn−1, λ > 0, x̂ = x/|x |.

e iλ〈ω,x〉, plane wave.

Sommerfeld radiation condition: There exists a unique solution
of

(∆ + V − λ2)ψ = 0

such that

ψ(x ;ω, λ) = e iλ〈ω,x〉 + a(x̂ , ω, λ)|x |−(n−1)/2e−iλ|x |

+ o
(
|x |−(n−1)/2

)
, |x | → ∞.

distorted plane wave.
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• a(θ, ω, λ) scattering amplitude.

• |a(θ, ω, λ)|dθ scattering cross section with respect to angle dθ.

• fundamental quantity, measured in scattering experiments

S(λ) : L2(Sn−1) → L2(Sn−1)

on-shell scattering matrix,

• S(λ)− Id integral operator with kernel

e
π
4
(n−1)i (2π)−

1
2
(n−1)λ(n−1)/2a(θ, ω, λ).
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Time delay operator.

Example. H0 = ∆, H = H + V .

Let Ω ⊂ Rn, φ ∈ L2(Rn).

Quantum mechanics: Probability to find particle with wave
function φ at time t in Ω is given by∫

Ω

∣∣e−itHφ(x)
∣∣2 dx =‖ χΩe−itHφ ‖2 .

Total time: ∫
R
‖ χΩe−itHφ ‖2 dt.

• By definition, e−itHW−φ and e−itH0φ are asymptotically
equivalent as t →∞.
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Time excess due to interaction:∫
Ω

(
‖ χΩe−itHW−φ ‖2 − ‖ χΩe−itH0φ ‖2

)
.

Eisenbud-Wigner time delay operator:

〈φ, T φ〉 = lim
R→∞

∫
R

(
‖ χBR

e−itHW−φ ‖2 − ‖ χBR
e−itH0φ ‖2

)
.

defines closable quadratic form, T self-adjoint, commutes with H0.
Let

T =

∫
σac (H0)

T (λ) dE0(λ).

Eisenbud-Wigner formula: Let S(λ) be the on-shell scattering
matrix. Then

T (λ) = −iS(λ)−1 dS

dλ
(λ).
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Resonances
• In physics a resonance E − iγ is related to a dissipative
metastable state with energy E and decay rate γ.
• Mathematically resonances can be defined as poles of the
meromorphic continuation of the resolvent.
• Resonances describe the longtime behaviour of solutions of the
wave equation.
• In many settings a meromorphic extension of the scattering
matrix exists and resonances can be defined as poles of the
scattering matrix.
• Resonances replace bound states in any system in which particles
have the possibility to escape to infinity.
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2) Geometric scattering theory

• Basic tool to study of continuous spectrum of geometric
differential operators on noncompact manifolds.

Examples: Manifolds with cylindrical ends, wave guides, locally
symmetric spaces Γ\G/K of finite volume, moduli spaces, etc.

• Common feature: Special geometric structure at infinity.

Manifolds with cylindrical ends:

M compact Riemannian manifold with boundary Y ,

gM |(−ε,0]×Y = du2 + gY ,

X = M ∪Y Z , Z = R+ × Y , gZ = du2 + gY .
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X

Z

M

Y

Figure: Elongation X of M.
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• E → X Hermitian vector bundle, E |Z = pr∗Y (EY ), EY → Y .

D : C∞(X ,E ) → C∞(X ,E )

Dirac type operator.

Assumption: D|Z = γ
(

∂
∂u + DY

)
,

γ : E |Y → E |Y bundle isomorphism,

DY : C∞(Y ,E |Y ) → C∞(Y ,E |Y ) symmetric, 1st order,
elliptic, s.th.

γ2 = − Id, γ∗ = −γ, DY γ = −γDY .

Put

D0 = γ

(
∂

∂u
+ DY

)
: C∞

c (R+ × Y ,E ) → L2(R+ × Y ,E ).
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D = D, D0 closure of D0 w.r.t. Atiyah-Patodi-Singer
boundary conditions.

Let J : L2(Z ,E |Z ) ⊂ L2(X ,E ) be the inclusion.

Theorem. For all t > 0,

e−tD2 − Je−tD2
0 , De−tD2 − JD0e

−tD2
0

are trace class operators.
By the Kato-Birman invariance principle, the wave operators

W±(D,D0) = s-limt→±∞ e itDJe−itD0

exist and are complete.
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S(λ), λ ∈ R, on-shell scattering matrix.

Let 0 ≤ µ1 < µ2 < · · · be the nonnegative eigenvalues of DY ,
E(µk) eigenspace of µk .

S(λ) :
⊕

µk≤|λ|

(E(µk)⊕ E(−µk)) →
⊕

µk≤|λ|

(E(µk)⊕ E(−µk)) .

Let Σ → C be the ramified covering associated to the functions√
λ± µk , k ∈ N. Then S(λ) extends to a meromorphic function

on Σ.

Question: What information about X can be extracted from
S(λ)? – inverse scattering theory.

Example. S(0) : ker(DY ) → ker(DY ) satisfies

S(0)2 = Id, S(0)γ = −γS(0).
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Let EY = E+
Y ⊕ E−Y be the decomposition of EY → Y into the ±1

eigenspaces of γ. Let D±
Y be the restriction of DY to C∞(Y ,E±Y ).

Then
D±

Y : C∞(Y ,E±Y ) → C∞(Y ,E∓Y ).

Then
S(0) : ker(D+

Y ) ∼= ker(D−
Y ).

Cobordism invariance of the index for Dirac type operators:

Ind(D+
Y ) = 0.
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3) Harmonic forms and scattering length
From now on we restrict attention to

d + d∗ : Λ∗(X ) → Λ∗(X ).

Let ω ∈ Λp(R+ × Y ). Then

ω = φ+ du ∧ ψ,

where φ ∈ C∞(R+,Λp(Y )) and ψ ∈ C∞(R+,Λp−1(Y )).

S(0) preserves this decomposition.

0 ≤ µ1 < µ2 < · · · eigenvalues of ∆Y ,p

Then for λ ≥ 0:

Sp(λ) :
⊕
µk≤λ

E(µk) →
⊕
µk≤λ

E(µk).
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Let µ > 0 be the first positive eigenvalue of ∆Y ,p. Then

Sp(λ) : Hp(Y ) → Hp(Y )

is analytic in λ ∈ B(0, µ).

Generalized eigenforms: Let φ ∈ Hp(Y ). For |λ| < µ there is a
unique E (φ, λ) ∈ Λp(X ) which is a solution of

∆pE (φ, λ) = λ2E (φ, λ),

such that on R+ × Y we have

E (φ, λ, (u, y)) = e−iλuφ(y) + e iλu(Sp(λ)φ)(y) + R(φ, λ, (u, y))

with R(φ, λ) ∈ L2.

Analog of Sommerfeld radiation condition.
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Relation with cohomology

Let φ ∈ Hp(Y ) and assume that Sp(0)φ = φ. Then

E (φ, 0)|Z = 2φ+ ψ, ψ ∈ L2.

1
2E (φ, 0) extended harmonic form on X (in the sense of
A-P-S) with limiting value φ.

X = M ∪Y Z , M compact manifold with boundary Y .

Thoerem. The +1-eigenspace of S(0) on Hp(Y ,R) coincides
with Im(Hp(M,R) → Hp(Y ,R)).
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Let

Hp
ext(X ) = {ψ ∈ Λp(X ) : ∆pψ = 0, ∃φ1 ∈ Hp(Y ), φ2 ∈ Hp−1(Y )

ψ|Z = φ1 + du ∧ φ2 + θ, θ ∈ L2Λp(Z )}.

φ1 and φ2 are uniquely determined by ψ.

Put ψt = φ1 and ψn = φ2.

Hp
ext,abs(X ) := {ψ ∈ Hp

ext(X ) | ψn = 0},
Hp

ext,rel(X ) := {ψ ∈ Hp
ext(X ) | ψt = 0}.

Let ψ ∈ Hp
ext(X ). Since ψ is harmonic, it follows that

(ψ − ψt − du ∧ ψn)(u, y) � e−cu, (u, y) ∈ Z .

Applying Green’s formula to Ma = M ∪Y ([0, a]× Y ), we get

0 = 〈∆ψ,ψ〉Ma =‖ dψ ‖2
Ma

+ ‖ δψ ‖2
Ma

+O(e−ca),
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which implies that

dψ = 0, δψ = 0 for all ψ ∈ Hp
ext(X ).

Thus we get a canonical map

R : Hp
ext,abs(X ) → Hp(X ,R).

Let ψ ∈ Hp
ext,rel(X ). Then dψ = 0,

ψ|Z = du ∧ ψn + dθ,

and θ is exponentially decaying.

χ cut-off function, support on the cylinder Z equal to 1
outside a compact set.
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Define

Rc : Hp
ext,rel(X ) → Hp

c (X ,R), ψ 7→ [ψ − d(χ(uψn + θ))].

This map is well defined and independent of the choice of χ.
There are maps

F̂ : Hp(Y ) → Hp
ext,abs(X ), φ 7→ 1

2
E (φ, 0),

Ĝ : Hp(Y ) → Hp
ext,rel(X ), φ 7→ I

2
dE ′(φ, 0).

Lemma. S ′(0) is invertible on H∗(Y ).

Put

∂̃ = Ĝ ◦
(

i

2
S ′(0)

)−1

.
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Then
∂̃ : Hp(Y ) → Hp+1

ext,rel(X )

corresponds to the boundary operator

∂ : Hp(Y ,R) → Hp+1
c (X ,R).

There is a long exact sequence

· · · → Hp
ext,rel(X ) → Hp

ext,abs(X ) → Hp(Y ) → Hp+1
ext,rel(X ) → · · ·

which is equivalent to

· · · → Hp
c (X ,R) → Hp(X ,R) → Hp(Y ,R) → Hp+1

c (X ,R) → · · ·
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4) Stable norm and comass norm
Federer, Gromov

V n-dimensional Euclidean vector space

For ω ∈ ΛpV ∗ define the comass norm by

‖ω‖∞ = sup{ω(e1, . . . , ep) | ek ∈ V , ‖ek‖ = 1} (1)

Since the norms are equivalent there is a constant C such that

‖ω‖2 ≤ C‖ω‖2
∞. (2)

C (n, p) the optimal such constant.

C (n, 0) = C (n, 1) = 1, C (n, p) ≤
(n
p

)
.
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• B a compact manifold with boundary ∂B, ω ∈ Λp(B). Define
comass by

‖ω‖∞ = sup{ωx(e1, . . . , ep) | x ∈ B, ei ∈ TxB, g(ei , ei ) = 1}
= sup{‖ωx‖∞ | x ∈ B}.

Get norm on Hp(B, ∂B,R) by

‖φ‖∞ = inf{‖ω‖∞ | φ = [ω], ω ∈ Λp(B, ∂B), dω = 0}.

For z ∈ Hp(B, ∂B,R) the stable norm ‖z‖st is defined as

‖z‖st = inf{
∑

i

|αi |Vol(ci ) | z =
∑

i

αi [ci ], αi ∈ R},

where the infimum is taken over all Lipschitz continuous simplices
ci .
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Geometric measure theory: Federer, Gromov

‖z‖st = sup{|φ(z)| | φ ∈ Hp(B, ∂B,R), ‖φ‖∞ ≤ 1}.

5) Scattering length:

Tp(0) = −iSp(0)−1

(
d

ds
Sp

)
(0).

Put

Vol∗(M) = Vol(M) +
1
√
µ

Vol(Y ),

where µ is the samllest postive eigenvalue of ∆Y .
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Theorem

Let 0 ≤ p ≤ n. For every φ ∈ Hp(Y ) in the −1-eigenspace of
Sp(0) we have

1

2
C (n, p + 1)−1Vol∗(M)−1‖[M] ∩ ∂φ‖2

st

≤ 〈φ,T (0)−1φ〉 ≤ 1

2
C (n, p + 1)Vol(M)‖∂φ‖2

∞.

Example. Y has two components Y1 and Y2, p = 0.
There is a canonical basis in H0(Y ,R) s.th.

T0(0) =

(
t1 0
0 t2

)
,

so that

t1 = 2
Vol(M)

Vol(Y )
, C2 ≤ t2 ≤ C1,
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where

C1 = 2Vol∗(M)
Vol(Y1)Vol(Y2)

‖ι∗([Y1])‖2
st(Vol(Y1) + Vol(Y2))

,

C2 = 2Vol(M)−1 dist(Y1,Y2)
2Vol(Y1)Vol(Y2)

Vol(Y1) + Vol(Y2)
.

and ι is the inclusion of Y into M.
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