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(M, g) Riemannian manifold is Einstein if Ric(g) = c · g.

Consider G-invariant metrics on a homogeneous space (M = G/K, g).

Problem: Find G-invariant Einstein metrics on M = G/K and classify

them (if they are not unique).

• c > 0 G/K is compact

• c = 0 G/K is Ricci flat ⇒ flat

• c < 0 G/K is not compact
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• There exist compact homogeneous spaces G/K with no G-invariant

Einstein metric (e.g. SU(4)/SU(2)) (Wang–Ziller 1986)

• (Böhm–Kerr 2006) Classified all compact, simply connected

homogeneous spaces of dimension ≤ 11 admitting a G-invariant Einstein

metric.

• (Nikonorov–Rodionov 2003, 2004) Found all G-invariant Einstein

metrics on compact simply connected homogeneous spaces of dimension

≤ 7 (except SU(2)× SU(2)).

• (Böhm–Wang–Ziller 2004) Variational approach

• (Böhm 2004) Simplicial complexes

• (Graev 2006) Newton Polytopes
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• (A.A.–Nikonorov 2009) Introduced a construction for obtaining

homogeneous Einstein metrics by restricting the isometry group. New

examples of Einstein metrics on real and quaternionic Stiefel manifolds

SO(n)/SO(l), Sp(n)/Sp(l).

Conjecture (Böhm–Wang–Ziller): Let M = G/K, g = k⊕m.

If m = m1 ⊕ · · · ⊕ms, mi irreducible, non equivalent Ad(K)-modules,

then the number of G-invariant Einstein metrics on M is finite.
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M = G/K = G/C(T ) ∼= Ad(G)w, w ∈ g.

G = compact semisimple Lie group

T = a torus in G

Ad : G → Aut(g) (adjoint representation)

e.g. SU(n)/S(U(n1)× · · ·U(ns)), (n =
∑

ni)

SU(n)/S(U(1)× · · ·U(1)) = SU(n)/Tmax

• Flag manifolds admit a finite number of G-invariant complex structures

and for each of those there exists a compatible Kähler-Einstein metric.

• They exhaust all compact simply connected homogeneous manifolds.

• They are classified by the painted Dynking diagrams.

• There is an infinite series for each classical simple Lie group and a finite

number of non isomorphic flag manifolds for each exceptional Lie group.
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s

α1

❝

α2

. . . ❝

αp+1

s ❝ . . . ❝

αℓ−1

> ❝

αℓ

Π\Π0 = Πn = {α1, αp+1 : 2 ≤ p ≤ ℓ− 1}
M = SO(2ℓ+ 1)/(U(1)× U(p)× SO(2(ℓ− p− 1) + 1))
(2 ≤ p ≤ ℓ− 1) .

s

α1
❝

α2
❝

α3
s

α4
❝

α5

❝

α6

❝

α1
s

α2
❝

α3
❝

α4
s

α5

❝

α6

Π\Π0 = {α1, α4} or Π\Π0 = {α2, α5}
Both define the flag manifold E6/(SU(4)× SU(2)× U(1)× U(1)).
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• Wang-Ziller (1986) M = G/Tmax admits the standard metric

gB = − Killing form as Einstein if and only if

G ∈ {SU(n), SO(2n), E6, E7, E8}.

• Kimura (1990) Classification of flag manifolds with

m = m1 ⊕m2 ⊕m3 and Einstein metrics for the classical cases.

• A.A. (1993) Lie theoretic expression for the Ricci tensor and Einstein

metrics for certain flag mfds with m = m1 ⊕m2 ⊕m3 ⊕m4 and for

G2/U(2).

• Sakane (1999) G/Tmax,

G ∈ {SU(2n+ 1), SO(2n+ 1), SO(2n), Sp(n)}.

• Dos Santos-Negreiros (2006) SU(2n)/Tmax, SU(2n+ 1)/Tmax

(n ≥ 6).
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• A.A.-Chrysikos (2011) Classification for m = m1 ⊕m2

• A.A.-Chrysikos (2010) Classification for m = m1 ⊕m2 ⊕m3 ⊕m4

• A.A.-Chrysikos-Sakane (2010, 2011) Completed the description of

invariant Einstein metrics for certain classical cases

• Chrysikos-Anastassiou (2011) Redescovered the invariant Einstein

metrics for flag mfds with 2 and 3 isotropy summands, as singularites at

infinity of a dynamical system via the Ricci flow.

• A.A.-Chrysikos-Sakane (2012) G2/Tmax = G2/U(1)× U(1)

m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 ⊕m6

It admits a unique Kähler-Einstein metric and two non-Kähler Einstein

metrics (up to isometry). This is an example of a flag mfd of an exceptional

Lie group which admits a non-Kähler, not normal homogeneous Einstein

metric.
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When the number of isotropy summands increases then the construction

of the Einstein equation (actually the Ricci tensor) becomes more difficult

and the solutions difficult to be obtained.
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G a compact semisimple Lie group, K a connected closed subgroup.

The Killing form of g is negative definite, so we can define an

Ad(G)-invariant inner product B on g given by B = − Killing form of g.

Let g = k⊕m be a reductive decomposition of g with respect to B so that

[ k, m ] ⊂ m and m ∼= To(G/K).
We assume that m admits a decomposition into mutually non equivalent

irreducible Ad(K)-modules as follows:

m = m1 ⊕ · · · ⊕mq. (1)

Then any G-invariant metric on G/K can be expressed as

〈 , 〉 = x1B|m1 + · · ·+ xqB|mq , (2)

for positive real numbers (x1, . . . , xq) ∈ R
q
+.
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The Ricci tensor r of a G-invariant Riemannian metric on G/K is of the

same form as (2), that is

r = r1x1B|m1 + · · ·+ rqxqB|mq .

The Ricci compenents ri can be obtained as follows:

Let {eα} be a B-orthonormal basis adapted to the decomposition of m,

i.e. eα ∈ mi for some i, and α < β if i < j.

We put Aγ
αβ = B ([eα, eβ] , eγ) so that [eα, eβ] =

∑

γ

Aγ
αβeγ and set

[
k

ij

]

=
∑

(Aγ
αβ)

2, where the sum is taken over all indices α, β, γ with

eα ∈ mi, eβ ∈ mj , eγ ∈ mk (Wang-Ziller).
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Then the positive numbers

[
k

ij

]

are independent of the B-orthonormal

bases chosen for mi,mj ,mk, and

[
k

ij

]

=

[
k

ji

]

=

[
j

ki

]

.

Let dk = dimmk. Then we have the following:

Proposition 0.1 (Park–Sakane) The components r1, . . . , rq of the Ricci

tensor r of the metric 〈 , 〉 of the form (2) on G/K are given by

rk =
1

2xk
+

1

4dk

∑

j,i

xk
xjxi

[
k

ji

]

− 1

2dk

∑

j,i

xj
xkxi

[
j

ki

]

(k = 1, · · · , q),

(3)

where the sum is taken over i, j = 1, . . . , q.
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Since by assumption the submodules mi,mj in the decomposition (1) are

matualy non equivalent for any i 6= j, it will be r(mi,mj) = 0 whenever

i 6= j.

Thus, the G-invariant Einstein metrics on M = G/K are exactly the

positive real solutions g = (x1, . . . , xq) ∈ R
q
+ of the polynomial system

{r1 = λ, r2 = λ, . . . , rq = λ}, where λ ∈ R+ is the Einstein

constant.
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Flag manifolds of Bℓ with m = m1 ⊕m2. Consider the flag manifolds

M = G/K = SO(2ℓ+ 1)/(U(p)× SO(2(ℓ− p) + 1)) with ℓ ≥ 2,

and 2 ≤ p ≤ ℓ.
This space is defined by the painted Dynkin diagram

❝

α1

. . . ❝

αp−1

s

αp
❝

αp+1

. . . ❝

αℓ−1

>⇐= ❝

αℓ

G-invariant metrics: 〈 , 〉 = x1B|m1 + x2B|m2 .

Ricci components:

r1 =
1

2x1
− x2

2d1x21

[
2

11

]

r2 =
1

2x2
− 1

2d2x2

[
1

21

]

+
x2

4d2x21

[
2

11

]

.
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Only

[
1

21

]

6= 0.

So 〈 , 〉 is Einstein if and only if r1 = r2.

To avoid finding

[
1

21

]

from the definition we use tha fact that

〈 , 〉 = 1 ·B|m1 + 2 ·B|m2

is a Kähler-Einstein metric.

Thus

[
1

21

]

=
d1d2

d1 + 4d2
.

We normalize the equations r1 = r2 by setting x1 = 1 and obtain a

quadratic equation for x2 with solutions x2 = 2 and x2 =
4d2

d1+2d2
.

Thus a non Kähler Einstein metric is

x1 = 2, x2 =
4d2

d1 + 2d2
.
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Let G be a compact semisimple Lie group and K, L two closed

subgroups of G with K ⊂ L. Then there is a natural fibration

L/K → G/K
π→ G/L with fiber L/K.

Let p be the orthogonal complement of l in g with respect to B, and q be

the orthogonal complement of k in l. Then we have the decompositions

g = l⊕ p, l = k⊕ q so

g = k⊕ q⊕ p
︸ ︷︷ ︸

m

.

An AdG(L)-invariant scalar product on p defines a G-invariant metric ǧ
on G/L, and an AdL(K)-invariant scalar product on q defines an

L-invariant metric ĝ on L/K.

The orthogonal direct sum for these scalar products on q⊕ p defines a

G-invariant metric g = ǧ + ĝ on G/K, called submersion metric.
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It is known that the map π is a Riemannian submersion from (G/K, g) to

(G/L, ǧ) with totally geodesic fibers isometric to (L/K, ĝ).

q = vertical subspace of m

p = horizontal subspace of m.

O’Neill had introduced two tensors A, T . Since fibers are totally geodesic

T = 0. Also,

AXY =
1

2
[X, Y ]q for X,Y ∈ p.

Let r, ř be the Ricci tensors of the metrics g, ǧ respectively. Then we have

(e.g. Besse)

r(X,Y ) = ř(X,Y )− 2g(AX , AY ) for X,Y ∈ p.

(Note that there is a corresponding expression r(U, V ) for vertical

vectors, but it does not contribute additional information in our approach.)
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Let

p = p1 ⊕ · · · ⊕ pℓ into non equivalent irreducible Ad(L)− modules,

q = q1 ⊕ · · · ⊕ qs into irreducible Ad(K)− modules.

To compute the values

[
k

ij

]

for G/K, we use information from the

Riemannian submersion π : (G/K, g) → (G/L, ǧ) with totally

geodesic fibers isometric to (L/K, ĝ).

We consider G-invariant metrics on G/K defined by a Riemannian

submersion π : (G/K, g) → (G/L, ǧ) given by

g = y1B|p1 + · · ·+ yℓB|pℓ
︸ ︷︷ ︸

ǧ

+ z1B|q1 + · · ·+ zsB|qs
︸ ︷︷ ︸

ĝ

(4)

for positive real numbers y1, · · · , yℓ, z1, · · · , zs.
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Since K ⊂ L we decompose each irreducible component pj into

irreducible Ad(K)-modules:

pj = mj,1 ⊕ · · · ⊕mj, kj ,

where the Ad(K)-modules mj,t (j = 1, . . . , ℓ, t = 1, . . . , kj) are

mutually non equivalent and are chosen to be (up to reordering)

submodules from the decomposition (2).

Then the submersion metric (4) can be written as

g = y1

k1∑

t=1

B|m1,t + · · ·+ yℓ

kℓ∑

t=1

B|mℓ,t
+ z1B|q1 + · · ·+ zsB|qs (5)

and this is a special case of the G-invariant metric (2).
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Lemma 0.2 Let dj,t = dimmj,t. The components r(j, t)
(j = 1, . . . , ℓ, t = 1, . . . , kj) of the Ricci tensor r for the metric (5) on

G/K are given by

r(j, t) = řj −
1

2dj, t

s∑

i=1

∑

j′, t′

zi
yjyj′

[
i

(j, t) (j′, t′)

]

, (6)

where řj are the components of Ricci tensor ř for the metric ǧ on G/L.

Notice that when metric (4) is viewed as a metric (2) then the horizontal

part of r(j, t) equals to řj (j = 1, . . . , ℓ), i.e. it is independent of t.
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Let M = G/K be a flag manifold with five isotropy summands

m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5.

It follows that [m1,m2] = m3, [m2,m2] = m4, [m2,m3] = m5 and

[m1,m4] = m5.

Thus the non zero structure constant are
[
3

12

]

,

[
4

22

]

,

[
5

23

]

,

[
5

14

]

.

A G-invariant metric g on G/K is given by

g = x1B|m1 + x2B|m2 + x3B|m3 + x4B|m4 + x5B|m5 (7)

where xj (j = 1, . . . , 5) are positive numbers.

Put di = dimmi for i = 1, · · · , 5.
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Then the components ri (i = 1, . . . , 5) of the Ricci tensor for a
G-invariant Riemannian metric (7) on G/K are given as follows:

r1 =
1

2x1

+
1

2d1

[

3

12

]





x1

x2x3

−
x2

x1x3

−
x3

x1x2



 +
1

2d1

[

5

14

]





x1

x4x5

−
x5

x1x4

−
x4

x1x5



,

r2 =
1

2x2

+
1

2d2

[

3

12

]





x2

x1x3

−
x1

x2x3

−
x3

x1x2



 −
1

2d2

[

4

22

]

x4

x2
2

+
1

2d2

[

5

23

]





x2

x3x5

−
x5

x2x3

−
x

r3 =
1

2x3

+
1

2d3

[

3

12

]





x3

x1x2

−
x2

x1x3

−
x1

x2x3



 +
1

2d3

[

5

23

]





x3

x2x5

−
x5

x2x3

−
x2

x3x5



,

r4 =
1

2x4

+
1

2d4

[

5

14

]





x4

x1x5

−
x5

x1x4

−
x1

x4x5



 +
1

4d4

[

4

22

]



 −
2

x4

+
x4

x2
2



,

r5 =
1

2x5

+
1

2d5

[

5

23

]





x5

x2x3

−
x2

x3x5

−
x3

x2x5



 +
1

2d5

[

5

14

]





x5

x1x4

−
x1

x4x5

−
x4

x1x5



.

(8)
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Let k be the subalgebra of g corresponding to the Lie subgroup K. We

consider a subspace l = k⊕m1 of g. Then l is a subalgebra of g and we

have a natural fibration π : G/K → G/L with fiber L/K.

We decompose p = p1 ⊕ p2 and q = q1, where

p1 = m2 ⊕m3 ≡ m1,1 ⊕m1,2, p2 = m4 ⊕m5 ≡ m2,1 ⊕m2,2 and

q1 = m1.

That is

m = q⊕ p = q1 ⊕ (p1 + p2) =

m1 ⊕ (m2 ⊕m3 +m4 ⊕m5) ≡

m1 ⊕ (m1,1 ⊕m1,2 +m2,1 ⊕m2,2)

(9)
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m2

p
m3

m4

m5

m1

x2

x3

x4

x5

x1

y1

y2

z1

y1

y2

r(1,1) = ř1 − . . .

r(1,2) = ř1 − . . .

r(2,1) = ř2 − . . .

r(2,2) = ř2 − . . .

q

p1

p2

m

m = q⊕ p = q1 ⊕ (p1 + p2) = m1 ⊕ (m2 ⊕m3 +m4 ⊕m5)

≡ m1 ⊕ (m1,1 ⊕m1,2 +m2,1 ⊕m2,2)
(10)

Then r(1,1) = r2, r(1,2) = r3, r(2,1) = r4, r(2,2) = r5
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We consider a G-invariant metric on G/K defined by a Riemannian

submersion π : (G/K, g) → (G/L, ǧ) given by

g = y1B|p1 + y2B|p2 + z1B|q1 (11)

and the metric ǧ on G/L

ǧ = y1B|p1 + y2B|p2

for positive real numbers y1, y2, z1.

Note that, when we write the metric (11) as in the form (7), we have

g = y1B|m2 + y1B|m3 + y2B|m4 + y2B|m5 + z1B|m1 . (12)
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From (8) we obtain the components ri of the Ricci tensor for the metric

(12) on G/K as follows:

r3 =
1

2y1
− 1

2d3

[
3

12

]
z1
y12

− 1

2d3

[
5

23

]
y2
y12

,

r4 =
1

2y2
− 1

2d4

[
5

14

]
z1
y22

+
1

4d4

[
4

22

](
y2
y12

− 2

y2

)

.

We put d̃1 = dim p1 and d̃2 = dim p2. Then d̃1 = d2 + d3 and

d̃2 = d4 + d5.
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By using the earlier very simple example m = m1 ⊕m2 the components

ř1, ř2 of the Ricci tensor ř of a G-invariant metric ǧ = y1B|p1 + y2B|p2
are given by







ř1 =
1

2y1
− y2

2 d̃1 y12

[[
2

11

]]

ř2 =
1

2y2
− 1

2 d̃2 y2

[[
2

11

]]

+
y2

4 d̃2 y12

[[
2

11

]]

,

(13)

where

[[
2

11

]]

=
d̃1d̃2

d̃1 + 4d̃2
.

Note that, in the notation of Lemma 0.2, we have that r(1,1) = r2,

r(1,2) = r3, r(2,1) = r4 and r(2,2) = r5.
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From Lemma 0.2 we see that the horizontal part of r(1,2)(= r3) equals to

ř1 and the horizontal part of r(2,1)(= r4) equals to ř2, and thus we get

1

2y1
−

[
5

23

]
1

2d3

y2
y21

=
1

2y1
− y2

2d̃1y21

[[
2

11

]]

,

1

2y2
+

[
4

22

]
1

4d4
(
y2
y21

− 2

y2
) =

1

2y2
− 1

2d̃2y2

[[
2

11

]]

.

Therefore,

[
5

23

]

= d3
1

d̃1

[[
2

11

]]

=
d3(d4 + d5)

(d2 + d3) + 4(d4 + d5)
,

[
4

22

]

= d4
1

d̃2

[[
2

11

]]

=
d4(d2 + d3)

(d2 + d3) + 4(d4 + d5)
.
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The two other triplets

[
3

12

]

,

[
5

14

]

will be computed later on by taking into account the existence of

Kähler-Einstein metric.
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We remark that if we are going to study Einstein metrics on flag manifolds

with six or more summands, then we need to apply the above method to

two fibrations.

So the problem now is the following:

Classify all flag manifolds with five isotropy summands, use the above

method to construct the Einstein equation and then study its solutions.
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Let G be a compact connected simple Lie group with Lie algebra g, and

let h a maximal abelian subalgebra of g with dimC hC = l = rkG.

There is a root space decomposition gC = hC +
∑

α∈∆ gCα .

Let Π = {α1, . . . , αl} be a system of simple roots ∆. We denote by

{Λ1, . . . ,Λl} the fundamental weights of gC corresponding to Π, that is
2(Λi, αj)

(αj , αj)
= δij for any 1 ≤ i, j ≤ l.

Let Π0 be a subset of Π and set Πm = Π\Π0 = {αi1
, . . . , αir

}, where

1 ≤ i1 < · · · < ir ≤ l. We put

∆0 = ∆ ∩ {Π0}Z = {β ∈ ∆ : β =
∑

αi∈Π0
kiαi, ki ∈ Z}, where

{Π0}Z denotes the set of roots generated by Π0 with integer coefficients

(this is a the subspace of h0). Then ∆0 is a root subsystem of ∆.

Definition 0.3 The roots of the set ∆m = ∆\∆0 are called

complemetary roots.
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Definition 0.4 Let Γ(Π) be the Dynkin diagram of Π. By painting black in

Γ(Π) the simple roots αi ∈ Πm = Π\Π0 we obtain the painted Dynkin

diagram Γ(Πm) of M .

Example

s
α1

>❝
α2

G2(α2)

❝
α1

>s
α2

G2(α1)

s
α1

>s
α2

G2/T

These correspond to the flag manifolds

G2/U(2) with m = m1 ⊕m2,

G2/U(2) with m = m1 ⊕m2 ⊕m3, and

G2/(U(1)× U(1)) with m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 ⊕m6.
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Let

t = z ∩ h0 =
{

H ∈ h0 : (H, Π0) = 0
}

, (h0 =
√
−1h).

We consider the restriction map κ : h∗0 → t∗, α 7→ α|t and set

∆t = κ(∆), κ(∆0) = 0.

Definition 0.5 The elements of ∆t are called t-roots.

Let mC = To(G/K)C be the complexification of m. Then it is

mC =
∑

α∈∆m
gCα .

Proposition 0.6 (Alexkseevsky-Perelomov) There exists a 1-1

correspondence between t-roots ξ and irreducible submodules mξ of the

AdG(K)-module mC given by

∆t ∋ ξ 7→ mξ =
∑

{α∈∆m:κ(α)=ξ}

gCα.
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If we denote by ∆+
t the set of all positive t-roots (this is the restricton of

the root system ∆+ under the map κ), then

m =
∑

ξ∈∆+
t

(mξ +m−ξ)
τ =

∑

ξi∈∆
+
t
={ξ1,...,ξq}

mi (14)

as AdG(K)-modules. Also,

dimRmi = 2 · |{α ∈ ∆+
m : κ(α) = ξi}|,

G-invariant Riemannian metrics g on G/K can be expressed as

g =
∑

ξ∈∆+
t

xξB|(mξ+m−ξ)
τ =

q
∑

i=1

xξiB|(mξi
+m−ξi)

τ (15)

for positive real numbers xξ , xξi . Thus G-invariant Riemannian metrics

on M = G/K are parametrized by q real positive parameters.
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In computing the Ricci tensor for a generalized flag manifold M = G/K
by using Riemannian submersions we will also use the well known fact

that M admits a finite number of G-invariant Kähler–Einstein metrics.

Let δm =
1

2

∑

α∈∆+
m

α ∈
√
−1h (Koszul form).

Then 2δm = kαi1
Λαi1

+ · · ·+ kαir
Λαir

, where kα =
2(2δm, α)

(α, α)
for

α ∈ Π \Π0.

Proposition 0.7 The G-invariant metric g2δm on G/K corresponding to

2δm is a Kähler-Einstein metric which is given by

g2δm =
∑

ξ∈∆+
t

(2δm, ξ)B|(mξ+m−ξ)
τ
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Case of E6: (Type A)
Recall that the highest root α̃ of E6 is given by

α̃ = α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6. There are two pairs (Π,Π0)
of Type A, which determine flag manifolds with five isotropy summands,

namely the choices Π\Π0 = {α1, α4} and Π\Π0 = {α2, α5}. They

correspond to the painted Dynkin diagrams

s

α1
❝

α2
❝

α3
s

α4
❝

α5

❝

α6

❝

α1
s

α2
❝

α3
❝

α4
s

α5

❝

α6

which both define the flag manifold E6/SU(4)× SU(2)× U(1)2.

However, there is an outer automorphism of E6 which makes these

painted Dynkin diagrams equivalent (e.g. Bordeman et al). Thus we will

not distinguish these two pairs (Π,Π0) and we will work with the first one.
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Let n be the B-orthogonal complement of the isotropy subalgebra k in e6.

The root system of the semisimple part of the isotropy subgroup K is

given by ∆+
0 = {α2, α3, α5, α6, α2+α3, α3+α6, α2+α3+α6}, thus

∆+
n =







α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6 α1 + α2 + α3 + α4 + α6

α1 + 2α2 + 3α3 + 2α4 + α5 + α6 α1 + α2 + α3 + α6

α1 + 2α2 + 2α3 + 2α4 + α5 + α6 α1 + α2 + α3 + α4 + α5

α1 + 2α2 + 2α3 + α4 + α5 + α6 α1 + α2 + α3 + α4

α1 + 2α2 + 2α3 + α4 + α6 α3 + α4 + α5

α1 + α2 + 2α3 + 2α4 + α5 + α6 α3 + α4 + α6

α1 + α2 + 2α3 + α4 + α5 + α6 α3 + α4

α1 + α2 + 2α3 + α4 + α6 α4 + α5

α1 + α2 + α3 + α4 + α5 + α6 α4

α1 α3 + α4 + α5 + α6

(16)

Let α =
∑6

k=1 ckαk ∈ ∆+
n . Since Πn = {α1, α4}, it follows that that

κ(α) = c1α1 + c4α4, where the numbers c1, c4 are such that

0 ≤ c1, c4 ≤ 2.
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So, by using (16), we easily conclude that the positive t-roots are given by

∆(n)+t = {α1, α4, α1 + α4, 2α4, α1 + 2α4}, and thus

n = n1 ⊕ n2 ⊕ n3 ⊕ n4 ⊕ n5.

Also, we easily conclude that

dimR n1 = 2 · |{α ∈ ∆+
n : κ(α) = α1}| = 2 · 4 = 8,

dimR n2 = 2 · |{α ∈ ∆+
n : κ(α) = α4}| = 2 · 12 = 24,

dimR n3 = 2 · |{α ∈ ∆+
n : κ(α) = α1 + α4}| = 2 · 8 = 16,

dimR n4 = 2 · |{α ∈ ∆+
n : κ(α) = 2α4}| = 2 · 1 = 2,

dimR n5 = 2 · |{α ∈ ∆+
n : κ(α) = α1 + 2α4}| = 2 · 4 = 8.







(17)
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Case of E6: (Type B)
The flag manifold E6/SU(4)× SU(2)× U(1)2 is also defined by two

pairs (Π,Π0) of Type B, given by Π\Π0 = {α4, α6} and

Π\Π0 = {α2, α6}. They correspond to the painted Dynkin diagrams

❝

α1
❝

α2
❝

α3
s

α4
❝

α5

s

α6

❝

α1
s

α2
❝

α3
❝

α4
❝

α5

s

α6

Note that there is also an outer automorphism of E6 which makes these

painted Dynkin diagrams equivalent, and thus we can work with the first

pair (Π,Π0) only. By similar method we obtain that the positive t-roots are

∆(m)+t = {α6, α4, α6 + α4, α6 + 2α4, 2α6 + 2α4} and thus we

obtain the decomposition m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5. where the

dimensions of the submodules mi are given as follows:
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dimRm1 = 2 · |{α ∈ ∆+
m : κ(α) = α6}| = 2 · 4 = 8,

dimRm2 = 2 · |{α ∈ ∆+
m : κ(α) = α4}| = 2 · 8 = 16,

dimRm3 = 2 · |{α ∈ ∆+
m : κ(α) = α6 + α4}| = 2 · 12 = 24,

dimRm4 = 2 · |{α ∈ ∆+
m : κ(α) = α6 + 2α4}| = 2 · 4 = 8,

dimRm5 = 2 · |{α ∈ ∆+
m : κ(α) = 2α6 + 2α4}| = 2 · 1 = 2.







(18)

However We can show that these flag manifolds G/K of Type A and B

are isometric as real manifolds, by an isometry arising from the action of

the Weyl group of G.

Thus we study only flag manifolds of Type A.
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Let Π\Π0 = Πn = {α1, α4}. It is 2δn = 5Λα1 + 7Λα4 , Thus the Kähler

Einstein metric g2δm on G/K is given by

g2δn = 5B|n1 + 7B|n2 + 12B|n3 + 14B|n4 + 19B|n5 .

Also, here G = E6, K = U(1)× U(1)× SU(2)× SU(4),
L = U(5)× SU(2) and we have

d1 = 8, d2 = 24, d3 = 16, d4 = 2, d5 = 8.

Thus by applying the expressions found earlier we obtain that

[
5

23

]

= 2,

[
4

22

]

= 1.
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Since the Kähler Einstein metric g2δm on G/K is given as above, we

substitute the values x1 = 5, x2 = 7, x3 = 12, x4 = 14, x5 = 19 into

(8).

Consider the components r2, r3, r4 and r5 of the Ricci tensor for these

values.

Then, from r2 − r3 = 0 and r4 − r5 = 0, we obtain that

[
3

12

]

= 2,

[
5

14

]

=
1

3
.
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Flag manifolds G/K of a simple Lie group G whose isotropy

representation decomposes into a sum of five irreducible summands can

be obtained by the following possible Dynkin diagrams:

(a) Paint black one simple root of Dynkin mark 5, that is

Π\Π0 = {αp : Mrk(αp) = 5}.

This case corresponds only to the flag manifold

E8/(U(1)× SU(4)× SU(5)).
It was studied by Chrysikos-Sakane in a recent work in which they

classified all flag manifolds M with b2(M) = 1.

This space admits five non-Kähler Einstein metrics and a unique

Kähler-Einstein metric.
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(b) Paint black two simple roots, one of Dynkin mark 1 and one of Dynkin

mark 2, that is

Π\Π0 = {αi, αj : Mrk(αi) = 1, Mrk(αj) = 2}. Type A

(c) Paint black two simple roots, both of Dynkin mark 2, that is

Π\Π0 = {αi, αj : Mrk(αi) = Mrk(αj) = 2}. Type B

For both cases b2(M) = 2.

It can be shown that

Type A ⇒ m = m1 ⊕m2 ⊕m3 ⊕m4, or

m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5.

Type B ⇒ m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5, or

m = m1 ⊕m2 ⊕m3 ⊕m4 ⊕m5 ⊕m6.
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The following table gives the pairs (Π,Π0) of Type A and B, which

determine flag manifolds G/K with m = m1 ⊕ · · · ⊕m5.

G Classical Bℓ = SO(2ℓ + 1) Dℓ = SO(2ℓ)

Type A Π\Π0 = {α1, αp+1 : 2 ≤ p ≤ ℓ − 1} Π\Π0 = {α1, αp+1 : 2 ≤ p ≤ ℓ − 3}
Type B Π\Π0 = {αp, αp+1 : 2 ≤ p ≤ ℓ − 1} Π\Π0 = {αp, αp+1 : 2 ≤ p ≤ ℓ − 3}

G Exceptional E6 E7

Type A Π\Π0 = {α1, α4} Π\Π0 = {α1, α7}
Type A Π\Π0 = {α2, α5}
Type B Π\Π0 = {α4, α6} Π\Π0 = {α6, α7}
Type B Π\Π0 = {α2, α6}
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Since corresponding flag manifolds of Types A and B are isometric, it

suffices to study only the following non isometric flag manifolds:

Generalized flag manifolds with five isotropy summands and b2(M) = 2

M = G/K classical M = G/K exceptional

SO(2ℓ + 1)/U(1) × U(p) × SO(2(ℓ − p − 1) + 1) E6/SU(4) × SU(2) × U(1)2

SO(2ℓ)/U(1) × U(p) × SO(2(ℓ − p − 1)) E7/SU(6) × U(1)2
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MAIN THEOREM. (1) Let M1 = G1/K1 be one of the flag manifolds

E6/(SU(4)× SU(2)× U(1)× U(1)) or E7/(U(1)× U(6)).
Then M1 admits exactly seven G1-invariant Einstein metrics up to

isometry.

There are two Kähler-Einstein metrics and five non Kähler metrics (up to

scalar).

(2) Let M2 = G2/K2 be one of the flag manifolds

SO(2ℓ+ 1)/(U(1)× U(p)× SO(2(ℓ− p− 1) + 1)) or

SO(2ℓ)/(U(1)× U(p)× SO(2(ℓ− p− 1))).
Then M2 admits at least two G2-invariant non Kähler-Einstein metrics up

to isometry.



Solutions of algebraic systems of
equations

The problem

Review of selected
research

Generalized flag
manifolds

Ricci tensor of a
compact homogeneous
space

Riemannian
submersions

Classification of flag
manifolds with five
isotropy summands

The classification of flag
manifolds with five
isotropy summands

Solutions of algebraic
systems of equations

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

55 / 66



The problem

Review of selected
research

Generalized flag
manifolds

Ricci tensor of a
compact homogeneous
space

Riemannian
submersions

Classification of flag
manifolds with five
isotropy summands

The classification of flag
manifolds with five
isotropy summands

Solutions of algebraic
systems of equations

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

56 / 66

For flag manifolds with five isotropy summands the Einstein equation

reduces to an algebraic system of four equations with four unknowns.

These systems are difficult to be solved, especially in the cases where the

coefficents depend on parameters (this happens for the flag manifolds of a

classical Lie group). In this cases we only prove existence of a certain

number of solutions.

For flag manifolds of an exceptional Lie group it is possible to obtain

numerical solutions, however there is one case

(E8/U(1)× SU(2)× SU(3)× SU(5) with six isotropy summands and

b2(M) = 1) where we can not obtain solutions (even numerical!).

To obtain numerical solutions or prove existence of solution for parametric

systems of equations we use methods of Gröbner bases.
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Consider M = E6/SU(4)× SU(2)× U(1)2.
The components ri (i = 1, · · · , 5) of the Ricci tensor for a G-invariant
Riemannian metric (7) on G/K are given as follows:

r1 =
1

2x1

+
1

8

( x1

x2x3

− x2

x1x3

− x3

x1x2

)

+
1

48

( x1

x4x5

− x5

x1x4

− x4

x1x5

)

,

r2 =
1

2x2

+
1

24

( x2

x1x3

− x1

x2x3

− x3

x1x2

)

− 1

48

x4

x2
2
+

1

24

( x2

x3x5

− x5

x2x3

−

r3 =
1

2x3

+
1

16

( x3

x1x2

− x2

x1x3

− x1

x2x3

)

+
1

16

( x3

x2x5

− x5

x2x3

− x2

x3x5

)

,

r4 =
1

2x4

+
1

12

( x4

x1x5

− x5

x1x4

− x1

x4x5

)

+
1

8

(

− 2

x4

+
x4

x2
2

)

,

r5 =
1

2x5

+
1

8

( x5

x2x3

− x2

x3x5

− x3

x2x5

)

+
1

48

( x5

x1x4

− x1

x4x5

− x4

x1x5

)

.

(19)
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We consider the system of equations:

r1 = r5, r2 = r3, r3 = r4, r4 = r5. (20)

From r1 − r5 = 0, we see that

(x1−x5)
(
x1x2x3 + 3x1x4x5 + 3x2

2x4 − 12x2x3x4 + x2x3x5 + 3x3
2x4

)
=

(21)

Case of x5 = x1. We obtain four non isometric Einstein metrics (non

Kähler) (Not presented here).

Case of x5 6= x1. We normalize our equations by setting x1 = 1. We

see that the system of polynomial equations (20) reduces to the following

system of polynomial equations:
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We normalize our equations by setting x1 = 1. We see that the system of
polynomial equations (20) reduces to the following system of polynomial
equations:

p1 = −8x2
3x4x5 − 2x2

3x4 − x2
2x3x4

2 + 24x2
2x3x4x5 − x2

2x3x5
2 + x2

2

+2x2x3
2x4 − 24x2x3x4x5 + 2x2x4x5

2 + 8x2x4x5 + x3x4
2x5 = 0,

p2 = 5x2
3x5 + 5x2

3 − 24x2
2x5 − 5x2x3

2x5 − 5x2x3
2 + 24x2x3x5 + x2x5

p3 = −3x2
3x4x5 − 3x2

3x4 − 4x2
2x3x4

2 + 4x2
2x3x5

2 − 12x2
2x3x5 + 4x2

+3x2x3
2x4x5 + 3x2x3

2x4 − 3x2x4x5
2 − 3x2x4x5 − 6x3x4

2x5 = 0,
p4 = 3x2

2x4 − 12x2x3x4 + x2x3x5 + x2x3 + 3x3
2x4 + 3x4x5 = 0.

(22)

To find non zero solutions of equations (22), we consider a polynomial

ring R2 = Q[y, x2, x3, x4, x5] and an ideal I2 generated by

{p1, p2, p3, p4, yx2x3x4x5 − 1}.
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We take a lexicographic order > with y > x2 > x5 > x3 > x4 for a

monomial ordering on R2. Then a Gröbner basis for the ideal I2 contains

a polynomial

(5x4 − 22)(5x4 − 14)(17x4 − 22)(19x4 − 14)q1,

where

q1 = 25684944948354308203125x4
24 − 312330714783423219879187500x4

23

−14789576030598686784365775000x4
22 + 169312435225853499159893370000x4

21

+1668319000494283065686208840000x4
20 − 8641784992792389994443258331200x4

19

−10861158787935440551542665216640x4
18 + 87429206357937887857587009061632x4

17

−32949087665531461793795791137024x4
16 − 302754123930816030608716028461056x4

15

+377294987073145336781487843082240x4
14 + 229461889322385205525089296121856x4

13

−745488535262100375331097397100544x4
12 + 464674752074856427879419685109760x4

11

+120588308696762557788249740279808x4
10 − 332437403867399257596854179725312x4

9

+206232698781395558570755696361472x4
8 − 60625111325239908567111130152960x4

7

+5786387485742898687693985677312x4
6 + 1618103684685636757652930297856x4

5

−597859726821790689492624998400x4
4 + 84059799581674625557541683200x4

3

−2979131989754489205686272000x4
2 − 1842910805533143334912000000x4

+333622121893933875200000000.
(23)
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For the case when (5x4 − 22)(5x4 − 14)(17x4 − 22)(19x4 − 14) = 0,
we consider ideals I3, I4, I5, I6 of the polynomial ring
R2 = Q[y, x2, x3, x4, x5] generated by

{p1, p2, p3, p4, y, x2x3x4x5 − 1, 5x4 − 22}, {p1, p2, p3, p4, y, x2x3x4x5 − 1, 5x4 − 14},

{p1, p2, p3, p4, y, x2x3x4x5 − 1, 17x4 − 22}, {p1, p2, p3, p4, y, x2x3x4x5 − 1, 17x4 − 14}

respectively.
We take a lexicographic order > with y > x2 > x5 > x3 > x4 for a
monomial ordering on R2. Then Gröbner bases for the ideals I3, I4, I5,
I6 contain polynomials

{5x4 − 22, 5x3 − 6, 5x5 − 17, 5x2 − 11}, {5x4 − 14, 5x3 − 12, 5x5 − 19, 5x2 − 7},

{17x4 − 22, 17x3 − 6, 17x5 − 5, 17x2 − 11}, {19x4 − 14, 19x3 − 12, 19x5 − 5, 19x2 − 7}.

respectively. Thus we obtain the following solutions of equations (22):
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1) x1 = 1, x2 =
11

5
, x3 =

6

5
, x4 =

22

5
, x5 =

17

5
, 2) x1 = 1, x2 =

7

5
, x3 =

12

5
, x4 =

14

5
, x5 =

19

5

3) x1 = 1, x2 =
11

17
, x3 =

6

17
, x4 =

22

17
, x5 =

5

17
, 4) x1 = 1, x2 =

7

19
, x3 =

12

19
, x4 =

14

19
, x5 =

19
(24)
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We normalize these solutions as follows:

1) x1 = 5, x2 = 11, x3 = 6, x4 = 22, x5 = 17, 2) x1 = 5, x2 = 7, x3 = 12, x4 = 14, x5 = 19,

3) x1 = 17, x2 = 11, x3 = 6, x4 = 22, x5 = 5, 4) x1 = 19, x2 = 7, x3 = 12, x4 = 14, x5 = 5.

and we get Kähler Einstein metrics for these values of xi’s. Note that the

metrics corresponding to the cases 1) and 3) are isometric and the cases

2) and 4) are isometric.
For the case when q1 = 0 and
(5x4 − 22)(5x4 − 14)(17x4 − 22)(19x4 − 14) 6= 0, we consider a
ideal I7 of the polynomial ring R2 = Q[y, x2, x3, x4, x5] generated by

{p1, p2, p3, p4, y(5x4−22)(5x4−14)(17x4−22)(19x4−14)x2x3x4x5−1}.

We take the same lexicographic order > with y > x2 > x5 > x3 > x4
for a monomial ordering on R2. Then a Gröbner basis for the ideal I7
contains the polynomial q1 and polynomials of the form

b2x2 + v2(x4), b3x3 + v3(x4), b5x5 + v5(x4) (25)
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where b2, b3, b5 are positive integers and v2(x4), v3(x4), v5(x4) are

polynomials of degree 23 with integer coefficients.

By solving the equation q1 = 0 for x4 numerically, we obtain exactly 6

positive solutions, 8 negative solutions and 10 non-real solutions. The 6

positive solutions are approximately given by

1) x4 ≈ 1.157018562397866, 2) x4 ≈ 2.075646788197390, 3) x4 ≈ 2.145057741729789,

4) x4 ≈ 2.163849575049888, 5) x4 ≈ 12.97930323340096, 6) x4 ≈ 12207.19468694106.

We substitute the values for x4 into the equations
b2x2 + v2(x4) = 0, b3x3 + v3(x4) = 0, b5x5 + v5(x4) = 0. Then we
obtain the following values approximately:

1) x4 ≈ 1.15702, x2 ≈ 0.641194, x3 ≈ 0.566074, x5 ≈ 0.557426,

2) x4 ≈ 2.07565, x2 ≈ 1.15028, x3 ≈ 1.01551, x5 ≈ 1.79396,

3) x4 ≈ 2.14506, x2 ≈ 8.87367, x3 ≈ 33.3409, x5 ≈ −1.12628,

4) x4 ≈ 2.16385, x2 ≈ 27.3523, x3 ≈ 7.26471, x5 ≈ −1.16127,

5) x4 ≈ 12.9793, x2 ≈ 1.3699, x3 ≈ 5.42602, x5 ≈ −1.49194,

6) x4 ≈ 12207.2, x2 ≈ 18.0447, x3 ≈ 1.46532, x5 ≈ −221.833.



Case of E6

The problem

Review of selected
research

Generalized flag
manifolds

Ricci tensor of a
compact homogeneous
space

Riemannian
submersions

Classification of flag
manifolds with five
isotropy summands

The classification of flag
manifolds with five
isotropy summands

Solutions of algebraic
systems of equations

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

65 / 66

Thus we see that only cases 1) and 2) correspond to Einstein metrics. We
substitute these values for {x1, x2, x3, x4, x5} into (19) and get

1) r1 = r2 = r3 = r4 = r5 ≈ 0.31855, 2) r1 = r2 = r3 = r4 = r5 ≈ 0.571467. (26)

Thus we obtain two Einstein metrics with Einstein constant 1:

1) x1 ≈ 0.31855, x2 ≈ 0.366421, x3 ≈ 0.323492, x4 ≈ 0.661198, x5 ≈ 0.571467,
2) x1 ≈ 0.571467, x2 ≈ 0.366421, x3 ≈ 0.323492, x4 ≈ 0.661198, x5 ≈ 0.31855.

(27)

Now we see that these two metrics are isometric.



Case of E6

The problem

Review of selected
research

Generalized flag
manifolds

Ricci tensor of a
compact homogeneous
space

Riemannian
submersions

Classification of flag
manifolds with five
isotropy summands

The classification of flag
manifolds with five
isotropy summands

Solutions of algebraic
systems of equations

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

Case of E6

66 / 66

Theorem 0.8 The flag manifold E6/(SU(4)× SU(2)×U(1)×U(1))
admits exactly seven E6-invariant Einstein metrics up to isometry. There
are two Kähler-Einstein metrics (up to scalar) given by

{x1 = 5, x2 = 7, x3 = 12, x4 = 14, x5 = 19}, {x1 = 5, x2 = 11, x3 = 6, x4 = 22, x5 = 17}.

The other five are non-Kähler. These metrics are given approximately by

{x1 ≈ 0.571467, x2 ≈ 0.366421, x3 ≈ 0.323492, x4 ≈ 0.661198, x5 ≈ 0.31855}, (28)

{x1 ≈ 0.49572094, x2 ≈ 0.39385688, x3 ≈ 0.30158949, x4 ≈ 0.093299706, x5 ≈ 0.49572094},(29)

{x1 ≈ 0.29495775, x2 ≈ 0.40303263, x3 ≈ 0.48143674, x4 ≈ 0.10093004, x5 ≈ 0.29495775},(30)

{x1 ≈ 0.47024404, x2 ≈ 0.35268279, x3 ≈ 0.31380214, x4 ≈ 0.62760315, x5 ≈ 0.47024404},(31)

{x1 ≈ 0.26465483, x2 ≈ 0.42092053, x3 ≈ 0.43231982, x4 ≈ 0.42390247, x5 ≈ 0.26465483}.(32)
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