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Concern

surfaces with 1-dimensional Chern holonomy

Key interplay : complex structures ! curvature

Core results on (M4, g, I) Hermitian:

∗ Ricci I-invariant, or lcK =⇒W + degenerate
⇐= if compact

[Apostolov–Gauduchon 97]

∗ Einstein (W + 6≡ 0) =⇒ lcK, ∃ Hamiltonian Killing field
[Derdziński 83, Boyer 86, Nurowski 93, AG 97]

Our work:

Ric ∈ Ω1,1
I ⇐⇒ W + degenerate, yet M4 may still not be lcK

local classification explicit constructions!
(esp. non-compact surfaces)

often arising from Kähler surfaces of Calabi type see
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Plan

scenario: complex structures in dimension 4

what small holonomy means

the classification
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2-forms in R4

Let M4 be a real, oriented, smooth 4-manifold (a ‘surface’) with an
almost Hermitian structure (g, I) (I is an OCS)

I2 = −IdTM , g(I·, I·) = g(·, ·) > 0, ωI = g(I·, ·).

• The bundle of real 2-forms decomposes as

Ω2 = Ω1,1 ⊕ Ω{2,0} = RωI ⊕ Ω1,1
0 ⊕ KM

• Paramount feature
Ω2 = Ω+ ⊕ Ω−

so
Ω+ = RωI ⊕ K M , Ω− = Ω1,1

0

Similarly for curvature: R = s ⊕ Ric 0 ⊕W + ⊕ W− ∈ Sym2(Λ2).
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Orthogonal complex structures

A Kähler surface (M4,g, J) is naturally oriented, say ωJ ∈ Ω−.

Are there ‘interesting’ structures on Ω+ ?
cf. hypercomplex, hypersymplectic, . . .

[Hitchin 90, Salamon 91, Geiges-Gonzalo 95]
[Pontecorvo 97, Kamada 99, Bande-Kotschick 06. . . ]

But what about existence? Well,
if W + is co-closed can define an OCS I such that ωI ∈ Ω+, plus

• I and J commute

• lcK (dθ = 0) (dωI = θ ∧ ωI)

• θ is preserved by I ◦ J

Kähler surfaces with δW + = 0 are called weakly self-dual, and were defined
and classified by [Apostolov–Calderbank–Gauduchon 03]
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Canonical connection

Geometry of any almost Hermitian (M2n,g, I) determined by (θ or )
η = 1

2 (∇I)I ∈ Ω1 ⊗ Ω{2,0}

eg: (g, I) Hermitian ⇐⇒ η ∈ Ω1,1 ⊗ Ω1

Consider

∇ = ∇ + η

metric, Hermitian, with torsion T (X ,Y ) = ηX Y − ηY X
called 2nd canonical Hermitian connection
∇ = ∇Chern when M complex cf. [Gauduchon 97]

Corresponding curvature: R = W− + s
12 IdΩ− + 1

2 Ric 1,1
0 + 1

2 γ ⊗ ωI

γ = ρI + W +ωI + 1
2 d+θ − s

6ωI (essentially, first Chern form)

cf. R/R comparison of [Cleyton-Swann 04]
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“Small” curvature

Holonomy algebra generated by R(X ,Y ) ∈ Ω1,1

Interested in the case: M4 with

hol(∇) ⊂ Ω1,1
0 ⊕ R ⊂ Ω− ⊕ Ω+

of dimension 1 at most:

R = 1
2 γ ⊗ (F0 +αωI)

Three rather different situations:


R ≡ 0
F0 ≡ 0
F0 6= 0
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Chern-flat surfaces

Proposition

(M4,g, I) almost Hermitian with R = 0 =⇒ g flat.

Better: if (σi ) is a ∇-parallel ON basis of Ω+,
ωI = σ1 cosϕ cosψ + σ2 cosϕ sinψ + σ3 sinϕ

where dψ ∧ dϕ = 0 (actually ψ = ψ(ϕ) ).

NB: even not compact

Corollary:
M4 either Hermitian or almost Kähler, R = 0 =⇒ flat Kähler.

Compare to

Mn compact almost Kähler, R = 0 =⇒ flat Kähler [Vezzoni-Di Scala 10]

Mn compact Hermitian, holom. torsion + CHSC =⇒ Kähler or flat
[Balas-Gauduchon 85]

8 / 21



SDE 4-manifolds

If F0 = 0:

Proposition

R = 1
2γ ⊗ ωI ⇐⇒ Ricci-flat and self-dual.

In particular:
g flat =⇒ dim hol(∇) 6 1

compact =⇒ flat Kähler

NB: Self-dual Einstein-Hermitian surfaces classified
[Apostolov–Gauduchon 02]

9 / 21



Example: a symplectic army

(M4,g, I) Hermitian:

R = − 1
4 d(Iθ)⊗ ωI ⇐⇒ ∃ 5 symplectic forms:

ωi ∧ ωj = ± vol(g)

Can always arrange for span{ω1, ω2, ω3} = Ω−, ω4, ω5 ∈ Ω+,

latter 2 not Kähler if g not flat [Armstrong 97]

complete frame by ωI = ω6 ∈ Ω+ (non-closed)

Proposition

(M4,g) non-flat with 5 ON symplectic forms =⇒
there exists a tri-holomorphic Killing field
(M,g) is locally isometric to R+ × Nil 3 with

dt2 + ( 2
3 t)3/2(σ2

1 + σ2
2) + ( 2

3 t)−3/2σ2
3 .

 quotient of KT mfd with diagonal Bianchi metric of class II, chm = 1

Not complete, or (global) symmetry would force flatness [Bielawski 99]
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Kähler-Hermitian surfaces

If F0 6= 0:
parametrise F0 = ωJ using J with orientation opposite to I

Proposition

These statements are equivalent:
hol(∇) is generated by F ∈ Ω1,1 with F0 6= 0;

∇ is not flat and there is a negative Kähler J
such that γ = αρJ (ρJ Ricci form).

Either implies R = ρJ

2 ⊗ (ωJ + αωI).

Call this a Kähler-Hermitian surface (M4,g,J, I)

To study a KH surface need to understand features of (‘vertical’ and
‘horizontal’) distributions see

V := Ker(IJ − Id), H := V⊥ =⇒ TM4 = V ⊕H
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Example

Hermitian line bundle over a Riemann surface [Calabi 82]

C× ↪→ (L,h) −→ (Σ,gΣ, IΣ, ωΣ)

TL× = H⊕ V
For some map f of r = norm of fibres V,

ωΣ + dJVd f (r) is Kähler on M4 = L×

Morally: J = IΣ ⊕ JV Kähler

(M4,g, J) is a Kähler surface of Calabi type if

I|V := −J, I|H := J

satisfies θ ∈ H and dθ = 0 I = IΣ ⊕−JV lcK

Standard local form c/o [ACG 03]

some compact instances: M4 T 2
−→ T 2, F1 = P(OP1 ⊕OP1 (−1))−→P1 . . .

back to concern
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Dichotomy

(M4,g, J, I) Kähler-Hermitian, with hol(∇) = 〈αωI + ωJ〉

Proposition (the KH balance)
1 If α 6= ±1

W + degenerate (⇐⇒ Ric ∈ Ω1,1
I )

compact =⇒ Calabi type (I lcK)
2 If α = ±1 (V flat)

T 2 ↪→ M → Σ

W + degenerate ⇐⇒ I lcK

compact =⇒ I Kähler (M local product)

Flippin’ sign corresponds to reversing I on H,V
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Normalisation

(M4,g, J, I) is said normal if
(d log |θ|)V = V (|θ|) θ

for some smooth V : R+ → R
ä Kähler of Calabi type =⇒ normal
ä W + degenerate =⇒ normal
(apparently-obnoxious technical property that solves a lot of problems)

Proposition

A Kähler-Hermitian (M4,g, J, I) is, locally, either

a torus bundle, or
a deformed Calabi-type structure (g0, J0, I0) see , or
‘normalisable’ with

V = −1
4

(
1 +

2s+

|θ|2

)
and V of CSC s+
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Local structure

Normality sets up the construction

Kähler-Hermitian! deformed Calabi-type

Theorem (gist)

A non-degenerate, normal (M4,g, J, I) is locally obtained from
1 a Hermitian line bundle L −→ (Σ,gΣ, JΣ, ωΣ) with c1(L) = −[ωΣ]

2 a constant s+ ∈ R

3 ξ ∈ Ω0,1(Σ,Lm) giving a Calabi-type structure (g0, J0, I0)

∂IΣξ = 0 and (1− s+

2m |ξ|
2)ωΣ calibrates JΣ
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Remarks

• JΣ, ξ are lifted horizontally, IΣ important only to choose ξ and fix ωΣ.

• JΣ = IΣ, ξ = 0 yields Calabi-type surface (g0, J0, I0).

• Symp(Σ, ωΣ) acts onM (‘rough’ space of data) by connections
preserving lifts to L

•When (M4,g, J, I) is not lcK nor ASD:

• Goldberg-Sachs ensures [g] has no Einstein metric
• JΣ = IΣ =⇒ (dθ)+ = 0 and Ric has double eigenvalue s+ (!)
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Correspondence

Theorem

(M4,g, J, I) with hol(∇) = 〈αωI + ωJ〉, α 6= ±1, are locally in 1-1
correspondence with

when s+ = 0: (Σ,gΣ, IΣ) with sΣ = 2αm
1−α and ξ ∈ H0,1(Σ,Lm)

when α = − 1
3 :

local solutions u(x , y) ∈ R2 to

∆u = m
2 (e−u + s+

2m e2u)

Tzitzéica equation

 Chimaera?
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Ashes to ashes ?

The Tzitzéica equation has to do with

• Abelian vortex eqns

• hyperbolic affine spheres

• SL(3,R) ADSYM eqns

• minimal Lagrangian surfaces in CH2

• SL cones in C3

(Phoenix rising from its ashes)
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appendix: holomorphic distributions

A distribution D on an almost complex surface (M4, I) is holomorphic
if

ID = D and (LD I)TM ⊆ D

(so I integrable =⇒ D is locally spanned by T 1,0
I M)

Proposition
1 (M4,g, J, I) KH surface =⇒ V = Ker(IJ − Id) totally geodesic,

both I- and J-holomorphic.

2 (M4,g, J) Kähler with a holomorphic D , define the OCS
I|D = −J, I|D⊥ = J.

Then D is I-holo,
θ ∈ D ,
I integrable ⇐⇒ D tot. geodesic (superminimal)

cf. [Wood 92] KH surfs
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appendix: deforming Calabi

Given a Hermitian line bundle L→ (Σ,gΣ) over a Riemann surface,
there is (g0, J0) Kähler on TL× = V ⊕H [Calabi 82]

ä Reverse orientation on fibres V  get OCS (g0, I0)

Let w : Σ→ D be holomorphic, and T ∈ End TL× such that

T|V =

(
Re w Im w
Im w −Re w

)
, T|H = 0.

ä Deform (g0, J0, I0) (vertically, and canonically):

Jw = (1− T )J0(1− T )−1

Iw = (1− T )I0(1− T )−1

gw (·, ·) = g0
(
(1 + T )(1− T )−1·, ·

)
Note back

ωJw = ωJ0 , ωIw = ωI0
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