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Geometrically Ruled Surfaces:

(M,J) = P(E) —» ¥,

o [ — > 4 : holomorphic rank 2 vector bun-
dle.

e > 4, compact connected Riemann surface
of genus g with a fixed complex structure

A rank 2 holomorphic vector bundle £ — >4
is polystable if it decomposes as a direct
sum of stable vector bundles (in the sense of
Mumford) so that if the summants are line
bundles their degrees are equal.

By Narasimhan-Seshadri this is equivalent to
E being projectively flat Hermitian.
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So (M,J) = P(E) — X4 falls into three
different cases:

CASE 1: E — 34 is polystable

CASE 2: E=08 L — 24, where £ is some
holomorphic line bundle such that deg(L) >
0. (up to biholomorphism. FE' is not polystable)

CASE 3. F — >4 is indecomposable and not
(poly)stable.
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Extremal Kahler Metrics:

For a particular Kahler class €2, let M de-
note the set of all Kahler forms in €2.

Calabi functional is defined by: ® : Mo — R

d(w) = /M Scal?dy

where Scal and du is the scalar curvature re-
spectively the volume form of the metric cor-
responding to the Kahler form w € 2.

Proposition: (Calabi) w € Mg is an extremal
point of @ iff grad Scal is a holomorphic real
vector field, that is,

Lg’radScal'] = 0.

In this case we call g, corresponding to w, an
extremal Kahler metric. A Kahler metric
with constant scalar curvature (CSC) is in
particular extremal.
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Facts:

e Case 1 above admits CSC Kahler metrics
in each Kahler class

e Case 2 above admits non-CSC extremal
Kahler metrics in each Kahler class for
g = 0,1 and in some, but not all, Kahler
classes for g = 2,3,4, ...

e Case 3 above admits no extremal Kahler
metric
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Now assume that diffeomorphically (M, J) is
just <, x S2. This is equivalent to deg(FE)
being even.

In Case 2, deg(L) =2m, m € ZT.

Let

wkl,kz — klwg _I_ kQWO

be the symplectic 2-form on X ,x.S2, where wy
and wqo are the standard area measures on 2 4
and S2, respectively. Let oy, r, € H2(M,R)
denote the cohomology class of wy, k.-

Lemma: For any (M,J) = P(06L5,,) — X4,
deg(Loy) = 2m (Case 2) ayi,. kz is a Kahler
class if and only if ko > 0O and > m. For
any (M,J) = P(F) — X4, from Case 1, Oy ko
is a Kahler class if and only if k4 > O and
ko > 0.

(This is essentially due to Fujiki)
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So with each choice of ay, , on M = X4 x S
comes from Case 2 a family of complex struc-
tures Jo,,, m=1, ..., [%1 —1. (Jo,, might not
be unique, even up to biholomorphism, unless
g=20,1.)

Moreover each J,,, defines a natural Hamil-
tonian St action on (M, wy, 1), generated by
Kop,.

Ceiling function: [z| = smallest integer > z.



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure

Smooth manifold X of dimension 2n + 1



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure .

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadru-
ple § = (§,n,P,g) where



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadru-
ple § = (§,n,P,g) where

n is contact 1-form defining a subbundle (con-
tact bundle) in TM by D = kern.



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadru-
ple § = (§,n,P,g) where

n is contact 1-form defining a subbundle (con-
tact bundle) in TM by D = kern.

€ is the Reeb vector field of n [n(§) = 1 and
§ldn = 0]



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure .

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadru-
ple § = (§,n,P,g) where

n is contact 1-form defining a subbundle (con-
tact bundle) in TM by D = kern.

€ is the Reeb vector field of n [n(§) = 1 and
§ldn = 0]

P is an endomorphism field which annihilates
¢ and satisfies J = ®|q is a complex structure
on the contact bundle



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadru-
ple § = (§,n,P,g) where

n is contact 1-form defining a subbundle (con-
tact bundle) in TM by D = kern.

€ is the Reeb vector field of n [n(§) = 1 and
§ldn = 0]

P is an endomorphism field which annihilates

¢ and satisfies J = ®|q is a complex structure
on the contact bundle (dn(J-,J-) = dn(-,-))

g :=dno(P®1U)+n®n is a Riemannian metric



4

Sasakian geometry: odd dimensional ver-
sion of Kahlerian geometry and special case
of contact structure

Smooth manifold X of dimension 2n + 1

A Sasakian structure is defined by a quadru-
ple § = (§,n,P,g) where

n is contact 1-form defining a subbundle (con-
tact bundle) in TM by D = kern.

€ is the Reeb vector field of n [n(§) = 1 and
§ldn = 0]

® is an endomorphism field which annihilates
¢ and satisfies J = ®|p) is a complex structure
on the contact bundle (dn(J-,J-) = dn(-,-))

g :=dno(P®1U)+n®n is a Riemannian metric

and ¢ is a Killing vector field of g which gen-
erates a one dimensional foliation "ff of M
whose transverse structure is Kahler.
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One may define extremal Sasakian struc-
tures in a way such that § = (¢,7,P,9) is
extremal if and only if the transverse Kahler
structure is extremal (Boyer, Galicki, Simanca).

If £ is regular, the transverse Kahler struc-
ture lives on a smooth manifold.

If £ is quasi-regular, the transverse Kahler
structure has orbifold singularities.
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Assume now that ko =1, ky =1€ Z1T and J
is some complex structure on X, x S2 which
makes o; 1 @ Kahler class (and is compatible
with w; 1). Then by the Boothby-Wang con-
struction the total space X of the principal
circle bundle over 2 4 X S2 corresponding to
the cohomology class a1 € H?(Z4 x S2,7)
has a natural Sasakian structure

&n,Ps9)

whose contact form g satisfies dn = 7w 1
where 7 is the natural bundle projection.
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Assume now that ko =1, ky =1 € Z1T and J
is some complex structure on <, x S2 which
makes a1 2 Kahler class (and is compatible
with w; 1). Then by the Boothby-Wang con-
struction the total space X of the principal
circle bundle over X, x S? corresponding to
the cohomology class a;1 € H2(Z4 x S?,7Z)
has a natural Sasakian structure

&n,Ps9)

whose contact form n satisfies dn = 7w 1
where 7 is the natural bundle projection.

From now on we will assume g > 0O, since the
g = 0 has been treated by Boyer and Pati as
well as Legendre.

Diffeomorphically the 5 dimensional manifold
is just =4 x S3.

This is seen by viewing (X,&,n,®j,g) as aris-
ing from a Wang—Ziller join construction and
using topological arguments and a recent re-
sult by Kreck and Luck.
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When the Kahler class o1 on (M, J) admits
extremal Kahler metrics, the Sasaki Struc-
ture (&,n,P,9) is extremal up to a suitable
deformation of the Sasakian structure (n —
n 4+ tx, x a basic 1-form of the foliation de-
fined by &, new contact structure isotopic to
old). It is convention still to call ({,n,®,9)
extremal.
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When the Kahler class ;1 on (M, J) admits
extremal Kahler metrics, the Sasaki Struc-
ture (&,n, P ,g) is extremal up to a suitable
deformation of the Sasakian structure (n —
n + tx, x a basic 1-form of the foliation de-
fined by &, new contact structure isotopic to
old). It is convention still to call (&£,n,®7,9)
extremal.

For J from Case 1 (and there are many of
those!), there is a constant scalar curvature
(CSC) Kahler metric in each Kahler class of
the K&hler cone on X, xCP!. It is simply a lo-
cal product of the constant curvature Kahler
metrics on X, and CP! respectively.

For Jo,,, m=1,....,k—1 from Case 2, IF there
is an extremal Kahler metric (non-CSC) in
the Kahler class oy 1 THEN it must arise from
a Calabi type construction (joint work with
ACQG).
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Skipping all the details, the construction es-
sentially boils down the following game:

For 0 <m <l and r = 7, any smooth real
function © : [-1,1] — RT satisfying

(1)) ©(G) >0, —-1<j3<1,
(1) ©(+£1) =0, (1)
(1i1) ©'(£1) = F2,

defines a Kahler metric on (M, J»,,,) with Kahler

class equal to oy 1.

Writing F'(3) = ©(3)(1+17r3), the correspond-
ing metric is extremal exactly when F'(3) is a

polynomial of degree at most 4 and F"(—-1/r) =

27“(%). This, as well as the endpoint condi-
tions of ([1]), is satisfied precisely when F(3)

IS given by



where

F(3)

(1 —32)h()

4(3 —r2) ’

12
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(1 —32)h()

F(3) = 233 _12)

where

h(z) = (12 —8r2 4 2r3(129))
+ 4r(3 —r);

+ 2r2(2 - r(559)3%.
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(1 -32hG)
F(Zﬁ) - 4(3 L 7"2) 9
where
h(z) = (12 —8r2 4 2r3(129))

+ 4r(3 —r);

1—
+ 2r?(2 —r(59));5°.
CSC solutions would correspond to h(3) be-

ing a linear function and this is clearly never
possible.
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_ 52
F(;) = (2(33_)72()5)7 (2)

where

h(z) = (12 —8r2 4 2r3(129))
+ 4r(3 —r);

1—
+ 2r?(2 —r(59));5°.
CSC solutions would correspond to h(3) be-

ing a linear function and this is clearly never
possible.

Conversely, ©(3) = F(3)/(1 + r3) with F(3)
defined by ([2))satisfies conditions (ii) and (iii)
in (1)) and thus we have an extremal Kahler
metric precisely when ©(3) also satisfies (i).
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It is now a calculus exercise to check that

Proposition

1. For any choice of genus g = 1,2,...,19,
any choice of | = 2,3, ..., and any choice
of complex structures J,,, withm =1, ..., [—
10@G)=F(G)/(1+4+r;) with F(3) defined

by (2) satisfies (i).
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Proposition

1. For any choice of genus g = 1,2,...,19,
any choice of | = 2,3, ..., and any choice
of complex structures J,,, withm =1, ..., [—
10@G)=F(G)/(1+4+r;) with F(3) defined

by (2) satisfies (i).

2. For any choice of genus g = 20,21, ...
there exists a l; € {2,3,4...} such that
for any choice of | = l4,lg + 1,..., and
any choice of complex structure Jo,,, with
m=1,..,1—10((G) =F(G)/(1+r3) with
F(3) defined by (2)satisfies (i).
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Proposition

1. For any choice of genus ¢ = 1,2,...,19,
any choice of [ = 2,3,..., and any choice
of complex structures Jo,,, withm =1, ...,[—
10@G)=FG)/(1+4+r;) with F(3) defined

by (2) satisfies (i).

2. For any choice of genus g = 20,21, ...
there exists a l; € {2,3,4...} such that
for any choice of | = lg,lg + 1,..., and
any choice of complex structure Jo,,, with
m=1,..,.1—1 () =F(G)/(1+r3) with
F(3) defined by (2)satisfies (i).

3. For any choice of genus g = 20,21, ...
there exist at least one pair (I,m) with
1<m<Il—1suchthat ©(G) = F((G)/(1+
r3) with F'(3) defined by (2)) does not sat-

isfy (i).
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Corollary

For any genus g > 1, X, x S3 has regular
Sasakian Structures with CSC as well as reg-
ular extremal non-CSC Sasakian Structures.
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What about the non-trivial S3-bundle over
47
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Let W(p.q) be the standard area measure on
CIP(p,q)'

By the Boothby-Wang construction the total
space X of the St orbibundle over Z;xCP(, .
corresponding to the cohomology class o 1 =
lwg+w(p q) (is smooth and) has natural Sasakian

structures
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whose contact form n satisfies dn = 7w 1
where 7 is the natural bundle projection.
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Let W(p.q) be the standard area measure on
CIP(p,q)'

By the Boothby-Wang construction the total
space X of the St orbibundle over Z;xCP(, .
corresponding to the cohomology class o 1 =
lwg+w(p q) (is smooth and) has natural Sasakian
structures

& n,Ps9)

whose contact form n satisfies dn = 7w 1
where 7 is the natural bundle projection.

Diffeomorphically the 5 dimensional manifold
is >4 x S3 if I(p+q) is even and the non-trivial
S3-bundle over X, if I(p + ¢) is odd.



Take the regular ray in the Sasaki cone.

16



16

Take the regular ray in the Sasaki cone. The
quotient Kahler manifold (Bpq,w,J) of that
iIs a Case 2 with degree of £ equal to some
n > 0.



16

Take the regular ray in the Sasaki cone. The
quotient Kahler manifold (Bpq,w,J) of that
iIs a Case 2 with degree of £ equal to some
n > 0.

Proposition (Boyer, T-F): n = 1(q — p)



16

Take the regular ray in the Sasaki cone. The
quotient Kahler manifold (Bpq,w,J) of that
iIs a Case 2 with degree of £ equal to some
n > 0.

Proposition (Boyer, T-F): n = 1(q — p)

Suppose (g —p) is odd, so n is odd (and the
Sasaki manifold is the non-trivial S3-bundle
over >g).



16

Take the regular ray in the Sasaki cone. The
quotient Kahler manifold (Bpq,w,J) of that
iIs a Case 2 with degree of £ equal to some
n > 0.

Proposition (Boyer, T-F): n = 1(q — p)

Suppose (g —p) is odd, so n is odd (and the
Sasaki manifold is the non-trivial S3-bundle
over >g).

Remark: The Kahler class [w] as well as n
should be completely determined by (g,1,p, q)
(work in progress)
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If g = 1 we know that every single Kahler
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What about the quasi-regular CSC Sasakian
Structures?
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Changing the rules in the Calabi Con-
struction

If we allow for orbifold singularities along the
zero and infinity sections of P(O @ L) — X4
we may tinker a bit with (1)):

(7)) ©(G) >0, —-1<3<1,

(1) ©(x1) =0,

(ii1) ©'(-1)=2/p and ©O'(1) = —2/%, )
3

where p and q are positive co-prime integers.
Then the extremal solution ©(3) is

(1 —32)h()
(1 +73)(4pq(3 — r?))

where
h(3) = q(6 —3r—4r24+13) 4+ p(6 + 3r — 412 — 3)
+ 28 —72)(g(r — 1) +p(1 +17));
+ (@B +2r —r%) —q(3 - 2r —19));°
+ 2pgr3(1-9)(1 - 52),
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Conversely, such ©(3) satisfies conditions (ii)
and (iii) in (3)) and thus we have an extremal
Kahler metric precisely when ©(3) also sat-
isfies (i). Further, a CSC metric arise when-
ever degh < 1.
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For example when



e g=1 m/l=1/2, p=7, and ¢ = 15
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g:]_,m/l:l/Q,p:7, and ¢ = 15

g=1 m/l=1/3, p=>5, and ¢ =8

g>2, m=g—-1,1=(p+1)(g—1),
q=p-—+ 2, and p is any odd positive inte-
ger.

g>2andeven, m=g—1,1=3(g—1),
p=>5 and g = 16.
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g=1 m/l=1/2, p=7, and ¢ = 15

g=1 m/l=1/3, p=5, and ¢ =8

g>2, m=g—-1,1=(p+1)(g—1),
q=p-—+ 2, and p is any odd positive inte-
ger.

g>2andeven, m=g—1,1=3(g—1),
p=>5 and g = 16.

g > 3 and odd, m = gp(g — 2), | = pg?,

p=3g—2, and ¢q = 2g(g — 1).
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The orbifolds (M, J>,,,) above are complex
CP(p, g)-orbibundles over X, arising by intro-
ducing orbifold singularities along the zero
and infinity sections of the ruled surfaces.
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The orbifolds (M, J>,,,) above are complex
CP(p, g)-orbibundles over X, arising by intro-
ducing orbifold singularities along the zero
and infinity sections of the ruled surfaces.

They should arise as quotients of quasi-regular
vector fields in the Sasaki cones of the above
constructions...technical details to follow...
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DANKESCHON!!!

THANKS FOR A GREAT WORKSHOP!!I



