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Geometrically Ruled Surfaces:

(M,J) = P (E)→ Σg

• E → Σg : holomorphic rank 2 vector bun-

dle.

• Σg compact connected Riemann surface

of genus g with a fixed complex structure

A rank 2 holomorphic vector bundle E → Σg

is polystable if it decomposes as a direct

sum of stable vector bundles (in the sense of

Mumford) so that if the summants are line

bundles their degrees are equal.

By Narasimhan-Seshadri this is equivalent to

E being projectively flat Hermitian.
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So (M,J) = P (E)→ Σg falls into three

different cases:

CASE 1: E → Σg is polystable

CASE 2: E = O ⊕ L → Σg, where L is some

holomorphic line bundle such that deg(L) >

0. (up to biholomorphism. E is not polystable)

CASE 3: E → Σg is indecomposable and not

(poly)stable.
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Extremal Kähler Metrics:

For a particular Kähler class Ω, let MΩ de-

note the set of all Kähler forms in Ω.

Calabi functional is defined by: Φ : MΩ → R

Φ(ω) :=
∫
M
Scal2dµ

where Scal and dµ is the scalar curvature re-

spectively the volume form of the metric cor-

responding to the Kähler form ω ∈ Ω.

Proposition: (Calabi) ω ∈ MΩ is an extremal

point of Φ iff gradScal is a holomorphic real

vector field, that is,

LgradScalJ = 0.

In this case we call g, corresponding to ω, an

extremal Kähler metric. A Kähler metric

with constant scalar curvature (CSC) is in

particular extremal.
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Facts:

• Case 1 above admits CSC Kähler metrics

in each Kähler class

• Case 2 above admits non-CSC extremal

Kähler metrics in each Kähler class for

g = 0,1 and in some, but not all, Kähler

classes for g = 2,3,4, ...

• Case 3 above admits no extremal Kähler

metric
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Now assume that diffeomorphically (M,J) is
just Σg × S2. This is equivalent to deg(E)
being even.

In Case 2, deg(L) = 2m, m ∈ Z+.

Let

ωk1,k2
= k1ωg + k2ω0

be the symplectic 2-form on Σg×S2, where ωg
and ω0 are the standard area measures on Σg

and S2, respectively. Let αk1,k2
∈ H2(M,R)

denote the cohomology class of ωk1,k2
.

Lemma: For any (M,J) = P (O⊕L2m)→ Σg,
deg(L2m) = 2m (Case 2) αk1,k2

is a Kähler

class if and only if k2 > 0 and k1
k2
> m. For

any (M,J) = P (E)→ Σg, from Case 1, αk1,k2

is a Kähler class if and only if k1 > 0 and
k2 > 0.

(This is essentially due to Fujiki)



6

So with each choice of αk1,k2
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comes from Case 2 a family of complex struc-
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So with each choice of αk1,k2
on M = Σg×S2

comes from Case 2 a family of complex struc-

tures J2m, m = 1, ..., dk1
k2
e−1. (J2m might not

be unique, even up to biholomorphism, unless

g = 0,1.)

Moreover each J2m defines a natural Hamil-

tonian S1 action on (M,ωk1,k2
), generated by

K2m.

Ceiling function: dxe = smallest integer ≥ x.
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Sasakian geometry: odd dimensional ver-
sion of Kählerian geometry and special case
of contact structure

Smooth manifold X of dimension 2n+ 1

A Sasakian structure is defined by a quadru-
ple S = (ξ, η,Φ, g) where

η is contact 1-form defining a subbundle (con-
tact bundle) in TM by D = ker η.

ξ is the Reeb vector field of η [η(ξ) = 1 and
ξcdη = 0]

Φ is an endomorphism field which annihilates
ξ and satisfies J = Φ|D is a complex structure
on the contact bundle (dη(J ·, J ·) = dη(·, ·))

g := dη◦(Φ⊗1l)+η⊗η is a Riemannian metric

and ξ is a Killing vector field of g which gen-
erates a one dimensional foliation Fξ of M

whose transverse structure is Kähler.
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tures in a way such that S = (ξ, η,Φ, g) is

extremal if and only if the transverse Kähler

structure is extremal (Boyer, Galicki, Simanca).
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One may define extremal Sasakian struc-

tures in a way such that S = (ξ, η,Φ, g) is

extremal if and only if the transverse Kähler

structure is extremal (Boyer, Galicki, Simanca).

If ξ is regular, the transverse Kähler struc-

ture lives on a smooth manifold.

If ξ is quasi-regular, the transverse Kähler

structure has orbifold singularities.
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Assume now that k2 = 1, k1 = l ∈ Z+ and J

is some complex structure on Σg × S2 which

makes αl,1 a Kähler class (and is compatible

with ωl,1). Then by the Boothby-Wang con-

struction the total space X of the principal

circle bundle over Σg × S2 corresponding to

the cohomology class αl,1 ∈ H2(Σg × S2,Z)

has a natural Sasakian structure

(ξ, η,ΦJ , g)

whose contact form η satisfies dη = π∗ωl,1
where π is the natural bundle projection.
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Assume now that k2 = 1, k1 = l ∈ Z+ and J

is some complex structure on Σg × S2 which
makes αl,1 a Kähler class (and is compatible
with ωl,1). Then by the Boothby-Wang con-
struction the total space X of the principal
circle bundle over Σg × S2 corresponding to
the cohomology class αl,1 ∈ H2(Σg × S2,Z)
has a natural Sasakian structure

(ξ, η,ΦJ , g)

whose contact form η satisfies dη = π∗ωl,1
where π is the natural bundle projection.

From now on we will assume g > 0, since the
g = 0 has been treated by Boyer and Pati as
well as Legendre.

Diffeomorphically the 5 dimensional manifold
is just Σg × S3.

This is seen by viewing (X, ξ, η,ΦJ , g) as aris-
ing from a Wang–Ziller join construction and
using topological arguments and a recent re-
sult by Kreck and Lück.
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When the Kähler class αl,1 on (M,J) admits

extremal Kähler metrics, the Sasaki Struc-

ture (ξ, η,ΦJ , g) is extremal up to a suitable

deformation of the Sasakian structure (η 7→
η + tχ, χ a basic 1-form of the foliation de-

fined by ξ, new contact structure isotopic to

old). It is convention still to call (ξ, η,ΦJ , g)

extremal.
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When the Kähler class αl,1 on (M,J) admits

extremal Kähler metrics, the Sasaki Struc-

ture (ξ, η,ΦJ , g) is extremal up to a suitable

deformation of the Sasakian structure (η 7→
η + tχ, χ a basic 1-form of the foliation de-

fined by ξ, new contact structure isotopic to

old). It is convention still to call (ξ, η,ΦJ , g)

extremal.

For J from Case 1 (and there are many of

those!), there is a constant scalar curvature

(CSC) Kähler metric in each Kähler class of

the Kähler cone on Σg×CP1. It is simply a lo-

cal product of the constant curvature Kähler

metrics on Σg and CP1 respectively.

For J2m, m = 1, ..., k−1 from Case 2, IF there

is an extremal Kähler metric (non-CSC) in

the Kähler class αl,1 THEN it must arise from

a Calabi type construction (joint work with

ACG).
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Skipping all the details, the construction es-

sentially boils down the following game:

For 0 < m < l and r = m
l , any smooth real

function Θ : [−1,1]→ R+ satisfying

(i) Θ(z) > 0, −1 < z < 1,
(ii) Θ(±1) = 0,
(iii) Θ′(±1) = ∓2,

(1)

defines a Kähler metric on (M,J2m) with Kähler

class equal to αl,1.

Writing F (z) = Θ(z)(1 + rz), the correspond-

ing metric is extremal exactly when F (z) is a

polynomial of degree at most 4 and F ′′(−1/r) =

2r(1−g
m ). This, as well as the endpoint condi-

tions of (1), is satisfied precisely when F (z)

is given by
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F (z) =
(1− z2)h(z)

4(3− r2)
,

where
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F (z) =
(1− z2)h(z)

4(3− r2)
, (2)

where

h(z) = (12− 8r2 + 2r3(1−g
m ))

+ 4r(3− r2)z

+ 2r2(2− r(1−g
m ))z2.

CSC solutions would correspond to h(z) be-

ing a linear function and this is clearly never

possible.

Conversely, Θ(z) = F (z)/(1 + rz) with F (z)

defined by (2)satisfies conditions (ii) and (iii)

in (1) and thus we have an extremal Kähler

metric precisely when Θ(z) also satisfies (i).
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It is now a calculus exercise to check that

Proposition

1. For any choice of genus g = 1,2, ...,19,

any choice of l = 2,3, ..., and any choice

of complex structures J2m with m = 1, ..., l−
1 Θ(z) = F (z)/(1 + rz) with F (z) defined

by (2) satisfies (i).
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Proposition

1. For any choice of genus g = 1,2, ...,19,
any choice of l = 2,3, ..., and any choice
of complex structures J2m with m = 1, ..., l−
1 Θ(z) = F (z)/(1 + rz) with F (z) defined
by (2) satisfies (i).

2. For any choice of genus g = 20,21, ...
there exists a lg ∈ {2,3,4...} such that
for any choice of l = lg, lg + 1, ..., and
any choice of complex structure J2m with
m = 1, ..., l − 1 Θ(z) = F (z)/(1 + rz) with
F (z) defined by (2)satisfies (i).

3. For any choice of genus g = 20,21, ...
there exist at least one pair (l,m) with
1 ≤ m ≤ l−1 such that Θ(z) = F (z)/(1 +
rz) with F (z) defined by (2) does not sat-
isfy (i).
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Corollary

For any genus g ≥ 1, Σg × S3 has regular

Sasakian Structures with CSC as well as reg-

ular extremal non-CSC Sasakian Structures.
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Corollary

For any genus g ≥ 1, Σg × S3 has regular

Sasakian Structures with CSC as well as reg-

ular extremal non-CSC Sasakian Structures.

What about the non-trivial S3-bundle over

Σg?
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Let ω(p,q) be the standard area measure on

CP(p,q).

By the Boothby-Wang construction the total

space X of the S1 orbibundle over Σg×CP(p,q)
corresponding to the cohomology class αl,1 =

lωg+ω(p,q) (is smooth and) has natural Sasakian

structures

(ξ, η,ΦJ , g)

whose contact form η satisfies dη = π∗ωl,1
where π is the natural bundle projection.
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Let ω(p,q) be the standard area measure on

CP(p,q).

By the Boothby-Wang construction the total

space X of the S1 orbibundle over Σg×CP(p,q)
corresponding to the cohomology class αl,1 =

lωg+ω(p,q) (is smooth and) has natural Sasakian

structures

(ξ, η,ΦJ , g)

whose contact form η satisfies dη = π∗ωl,1
where π is the natural bundle projection.

Diffeomorphically the 5 dimensional manifold

is Σg×S3 if l(p+q) is even and the non-trivial

S3-bundle over Σg if l(p+ q) is odd.
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Take the regular ray in the Sasaki cone. The

quotient Kähler manifold (Bp,q, ω, J) of that

is a Case 2 with degree of L equal to some

n > 0.

Proposition (Boyer, T-F): n = l(q − p)

Suppose l(q− p) is odd, so n is odd (and the

Sasaki manifold is the non-trivial S3-bundle

over Σg).

Remark: The Kähler class [ω] as well as n

should be completely determined by (g, l, p, q)

(work in progress)
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If g = 1 we know that every single Kähler

class on the quotient admits an non-CSC ex-

tremal Kähler metric so
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If g = 1 we know that every single Kähler

class on the quotient admits an non-CSC ex-

tremal Kähler metric so

Proposition (Boyer, T-F):

The non-trivial S3-bundle over T2 has a reg-

ular extremal non-CSC Sasakian Structure.

We would like to/expect to replace this with

“For any genus g ≥ 1, the non-trivial S3-

bundle over Σg has a regular extremal non-

CSC Sasakian Structure.”
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What about the quasi-regular CSC Sasakian

Structures?
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Changing the rules in the Calabi Con-
struction

If we allow for orbifold singularities along the
zero and infinity sections of P (O ⊕ L) → Σg

we may tinker a bit with (1):

(i) Θ(z) > 0, −1 < z < 1,
(ii) Θ(±1) = 0,
(iii) Θ′(−1) = 2/p and Θ′(1) = −2/q,

(3)
where p and q are positive co-prime integers.
Then the extremal solution Θ(z) is

(1− z2)h(z)

(1 + rz)(4pq(3− r2))

where

h(z) = q(6− 3r − 4r2 + r3) + p(6 + 3r − 4r2 − r3)

+ 2(3− r2)(q(r − 1) + p(1 + r))z

+ r(p(3 + 2r − r2)− q(3− 2r − r2))z2

+ 2pqr3(1−g
m )(1− z2),
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Conversely, such Θ(z) satisfies conditions (ii)

and (iii) in (3) and thus we have an extremal

Kähler metric precisely when Θ(z) also sat-

isfies (i). Further, a CSC metric arise when-

ever degh ≤ 1.
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Conversely, such Θ(z) satisfies conditions (ii)

and (iii) in (1) and thus we have an extremal

Kähler metric precisely when Θ(z) also sat-

isfies (i). Further, a CSC metric arise when-

ever degh ≤ 1. And this is now quite pos-

sible!

For example when
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• g = 1, m/l = 1/2, p = 7, and q = 15
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• g = 1, m/l = 1/2, p = 7, and q = 15

• g = 1, m/l = 1/3, p = 5, and q = 8
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• g = 1, m/l = 1/2, p = 7, and q = 15

• g = 1, m/l = 1/3, p = 5, and q = 8

• g ≥ 2, m = g − 1, l = (p+ 1)(g − 1),

q = p+ 2, and p is any odd positive inte-

ger.
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• g = 1, m/l = 1/2, p = 7, and q = 15

• g = 1, m/l = 1/3, p = 5, and q = 8

• g ≥ 2, m = g − 1, l = (p+ 1)(g − 1),

q = p+ 2, and p is any odd positive inte-

ger.

• g ≥ 2 and even, m = g − 1, l = 3(g − 1),

p = 5 and q = 16.
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• g = 1, m/l = 1/2, p = 7, and q = 15

• g = 1, m/l = 1/3, p = 5, and q = 8

• g ≥ 2, m = g − 1, l = (p+ 1)(g − 1),

q = p+ 2, and p is any odd positive inte-

ger.

• g ≥ 2 and even, m = g − 1, l = 3(g − 1),

p = 5 and q = 16.

• g ≥ 3 and odd, m = gp(g − 2), l = pg2,

p = 3g − 2, and q = 2g(g − 1).
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The orbifolds (M,J2m) above are complex

CP(p, q)-orbibundles over Σg arising by intro-

ducing orbifold singularities along the zero

and infinity sections of the ruled surfaces.
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vector fields in the Sasaki cones of the above

constructions...technical details to follow...
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The orbifolds (M,J2m) above are complex

CP(p, q)-orbibundles over Σg arising by intro-

ducing orbifold singularities along the zero

and infinity sections of the ruled surfaces.

They should arise as quotients of quasi-regular

vector fields in the Sasaki cones of the above

constructions...technical details to follow...

DANKESCHÖN!!!

THANKS FOR A GREAT WORKSHOP!!!


