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Manifolds of positive and nonnegative curvature:
Big Questions

I Question: Which manifolds admit a metric of strictly positive
sectional curvature?

I Easier question: Which manifolds admit a metric of
nonnegative sectional curvature?

For Mn, n ≥ 4, we have no classification.
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Obtaining examples

I Quotients: Start with a compact Lie group G with a
biinvariant metric: this has sec ≥ 0.

I We can mod out by a closed subgroup of G on left:

G
↓

G/H

I We can further mod out by another closed subgroup acting on
the right:

G
↓

K\G/H
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Spaces of positive sectional curvature

Homogeneous spaces which admit a homogeneous metric of
positive sectional curvature are classified:

1. rank one symmetric spaces

2. even-dimensional examples, found by Wallach (1972):
W 6 = SU(3)/T 2, W 12 = Sp(3)/(Sp(1))3, and
W 24 = F4/Spin(8).

3. odd-dimensional examples, found by Bérard-Bergery (1976):
the Berger spaces B7 = SO(5)/SO(3) (here SO(3) is
maximal subgroup) and B13 = SU(5)/Sp(2) · S1.

Dimensions: n = 6, 7, 12, 13, and 24, only (as well as compact
rank-one symmetric spaces).
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Spaces of nonnegative sectional curvature

There are many more examples of manifolds with nonnegative
sectional curvature.

All known examples obtained by one of these constructions:

I Take an isometric quotient of a compact Lie group with a
biinvariant metric, or

I Apply a gluing procedure referred to as a Cheeger
deformation, generalized by Grove and Ziller.

A Cheeger deformation is still a quotient, where we mod out
by an isometric group action:
G acts by isometries on M. We have a fibration

M × G → (M × G )/∆G ∼= M.

The action of G (on the product M × G ) is g ? (p, h) = (gp, gh).

On M × G , deform by scaling in the direction of the orbits of
G . Get a submersion metric on the base space M.
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Spaces of nonnegative sectional curvature

A piece of the big question:

I On a given manifold, how large is the set of nonnegatively
curved metrics?

I Schwachhöfer and Tapp investigated a deformation of a
normal homogeneous metric g0 on a compact homogeneous
space G/H.



Space of invariant metrics

I Schwachhöfer and Tapp prove that the family of invariant
metrics is star-shaped with respect to any normal
homogeneous metric.

I Invariant metrics are identified with their corresponding
symmetric matrices, which are parametrized by their inverses.

I Thus the problem of determining all invariant metrics with
nonnegative curvature reduces to determining how long
nonnegative curvature is maintained when deforming along a
linear path (starting at a normal homogeneous metric).



Riemannian submersions of homogeneous spaces

Joint work with Andreas Kollross

I Start with a homogeneous space G/H with H < K < G , where G is

a compact, simply connected Lie group (or G = SO(N)) endowed

with a biinvariant metric g0.

I We have a fibration K/H → G/H → G/K .

 
 

I For parameter t we define a family of metrics on G/H:

gt =

(
1

1− t

)
g0(Xm,Y m) + g0(X s,Y s)

Here t < 1 means that we are enlarging the fiber.
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Fibration metrics

g = k⊕ s (s is the horizontal component)
k = h⊕m (m is the vertical component)

Theorem
(Schwachhöfer-Tapp) (1) The metric gt has nonnegative curvature
for small t > 0 if and only if there exists some C > 0 such that for
all X and Y in p,

|[Xm,Y m]m| ≤ C |[X ,Y ]|. (∗)

(2) In particular, if (K ,H) is a symmetric pair, then gt has
nonnegative curvature for small t > 0, and in fact for all
t ∈ (−∞, 1/4].



What does their theorem tell us?

I Part (1) has an ‘if and only if’: very strong!

I But we don’t know when (∗) holds. In fact, for a given triple
(H,K ,G ) we don’t know how to find the constant C or even
whether any such constant exists.

I Part (2) is the observation that (K ,H) a symmetric pair
means [m,m] ⊂ h ⇒ [m,m]m = 0, so that the inequality (∗)
holds trivially.

I Question: When does (∗) hold, aside from the case that
(K/H) is a symmetric pair?
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A clue

Consider two chains:

SU(2) ⊂ SO(4) ⊂ G2 S̃U(2) ⊂ SO(4) ⊂ G2

Here SU(2) ⊂ SU(3) ⊂ G2, and SU(2), S̃U(2) are not conjugate in
G2. For both, the base is G2/ SO(4); the fibers are isometric to S3.

S3 −→ G2/SU(2) S3 −→ G2/S̃U(2)
↓ ↓

G2/ SO(4) G2/ SO(4).

Condition (∗) holds for the first chain and cannot hold for the
second chain.
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Some results: Rank(G)=Rank(G/K)

In this class, the Satake diagram of G/K is the same as the
Dynkin diagram of G , but with uniform multiplicity one. That is, s
contains a maximal abelian subalgebra of g.

Theorem (1)

Assume (G ,K ) is a symmetric pair such that rk(G/K ) = rk(G )
and let g = k⊕s be the corresponding Cartan decomposition. Let
t ⊂ s be a maximal abelian subalgebra of g. [Choose a root space

decomposition as above and assume there is a subset S+ ⊂ R+ such that

the Lie algebra h is spanned by Xα, α ∈ S+.] Then the triple
(H,K ,G ) satisfies condition (∗) if and only if (K ,H) is a
symmetric pair.



More about the rank(G/K) = rank(G) case

I In fact, the case above exactly corresponds to the existence of
a closed symmetric subalgebra l ⊂ g, such that h = l ∩ k and
rk(l) = rk(g).

I While condition (∗) fails for the triples H ( K ( G where
(K ,H) is not a symmetric pair, it must hold for the triples
H ( L ( G , since (L,H) is a symmetric pair.

I Thus the total space G/H has a direction in which
nonnegative curvature can be extended, but only by deforming
in the direction of fibers L/H over base G/L, not by
deforming in the direction of fibers K/H over base G/K .



A corollary of examples

The following chains (H,K ,G ) of compact Lie groups do not fulfill
condition (∗):

1. SO(n1)× SO(n2)× SO(n3) ⊂ SO(n) ⊂ SU(n), ni ≥ 1,
n1 + n2 + n3 = n.

2. [SO(n1 + 1)× SO(n2)× SO(n3)]× [SO(n1)× SO(n2)× SO(n3)] ⊂
SO(n + 1)× SO(n) ⊂ SO(2n + 1), ni ≥ 1, n1 + n2 + n3 = n.

3. U(n1)× U(n2)× U(n3) ⊂ U(n) ⊂ Sp(n), ni ≥ 1, n1 + n2 + n3 = n

4. [SO(n1)× SO(n2)× SO(n3)]× [SO(n1)× SO(n2)× SO(n3)] ⊂
SO(n)× SO(n) ⊂ SO(2n), where ni ≥ 1, n1 + n2 + n3 = n.

5. SO(3) · SO(3) · SO(3) ⊂ Sp(4) ⊂ E6.

6. SO(3) · SO(6) ⊂ SU(8)/{±1} ⊂ E7.

7. SO(3) · Sp(4) ⊂ SO′(16) ⊂ E8.

8. SO(3) · SO(3) ⊂ Sp(3) · Sp(1) ⊂ F4.



Some results: Rank(H)=Rank(K)=Rank(G)

Theorem (2)

Let G be a simple compact Lie group and let H ( K ( G be
closed subgroups. If rk(H) = rk(K ) = rk(G ) then either (K ,H) is
a symmetric pair or there exist elements X ,Y ∈ p such that
[X ,Y ] = 0 and [Xm,Y m]m 6= 0.



A simple observation: Extending beyond equal ranks

Lemma
Let H ( K ( G be a chain of compact groups for which there
exists a pair of vectors X ,Y ∈ p such that [X ,Y ] = 0 but
[Xm,Y m]m 6= 0. Let G ⊆ G ′ and H ′ ( H each be closed
subgroups. Then condition (∗) fails for the chain H ′ < K < G ′.
The same pair of commuting vectors X ,Y ∈ p is also a pair of
commuting vectors in p′, with [Xm′

,Y m′
]m

′ 6= 0.



Regular subgroups

Theorem (3)
Let G be a compact Lie group. Let H ( K ( G be connected compact
Lie groups such that H, K are regular subgroups of G . If the triple
(H,K ,G ) satisfies condition (∗) then for each simple ideal gi of g one of
the following is true.

1. gi ∩ k = gi , i.e. the simple ideal gi is contained in k.

2. gi ∩ k 6= gi and (gi ∩ k, gi ∩ h) is a symmetric pair, possibly such
that gi ∩ k is contained in h.

3. gi ∼= so(2n + 1), gi ∩ k ∼= so(2n) and gi ∩ h ∼= su(n).

4. gi ∼= sp(n) where all but one simple ideal of gi ∩ k is contained in h
and the one simple ideal not contained in h is isomorphic to sp(1).

5. gi ∼= Lie(G2), gi ∩ k ∼= so(4) and gi ∩ h ∼= su(2) such that gi ∩ h is
contained in a subalgebra su(3) ⊂ gi .



Remark

For items (1), (2) (3) and (5) above, we know that condition (∗)
holds for the chains (h ∩ gi , k ∩ gi , gi ).

If condition (∗) holds also for each chain of regular subgroups
(H,K ,G ) = (Sp(n),Sp(1)n,Sp(1)n−1) with n ≥ 2, then the
previous theorem can be improved to “if and only if”.



G simple, low-dimensional

Theorem (4)

Let G be a simple compact Lie group of dimension at most 15.
Then the homogeneous space G/H with fibration metric gt
corresponding to a chain (H,K ,G ) of nested compact Lie groups
admits nonnegative sectional curvature for small t > 0 if and only
if one of the following holds:

(i) (K ,H) is a symmetric pair, or more generally, [m,m]m = 0;

(ii) the chain (H,K ,G ) is one of (SU(2),SO(4), SO(5)) or
(SU(2), SO(4),G2) where in the second case the subgroup
SU(2) is such that SU(2) ⊂ SU(3) ⊂ G2.



Can we answer our Question?

Aside from the case that (K ,H) is a symmetric pair, when does
(∗) hold?

We can find chains H < K < G with (K ,H) not symmetric, and
(∗) satisfied. Schwachhöfer and Tapp give these examples:

I SU(2) ⊂ SO(4) ⊂ G2, where SU(2) is contained in
SU(3) ⊂ G2,

I G2 ⊂ Spin(7) ⊂ Spin(p + 8), where p ∈ {0, 1}, and

I SU(3) ⊂ SO(6) ⊂ SO(7).

The third example is one of a family:

SO(2n)/SU(n) −→ SO(2n + 1)/SU(n)
↓

SO(2n + 1)/SO(2n)

(We prove for all n ≥ 2.)
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(∗) satisfied. Schwachhöfer and Tapp give these examples:

I SU(2) ⊂ SO(4) ⊂ G2, where SU(2) is contained in
SU(3) ⊂ G2,

I G2 ⊂ Spin(7) ⊂ Spin(p + 8), where p ∈ {0, 1}, and

I SU(3) ⊂ SO(6) ⊂ SO(7).

The third example is one of a family:

SO(2n)/SU(n) −→ SO(2n + 1)/SU(n)
↓

SO(2n + 1)/SO(2n)

(We prove for all n ≥ 2.)



Can we answer our Question?

Aside from the case that (K ,H) is a symmetric pair, when does
(∗) hold?
We can find chains H < K < G with (K ,H) not symmetric, and
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Open Questions

Example: H = (Sp(1))3 ⊂ K = (Sp(1))4 ⊂ G = Sp(4).
On the Lie algebra level,

h = (sp(1))3⊕ Id ⊂ k = (sp(1))4 ⊂ g = sp(4).

Let s denote the complement to k in g; let m denote the
complement to h in k; i.e., k⊕s = sp(4) and h⊕m = (sp(1))4.
Write p = m⊕s. Note that m ∼= sp(1) is itself a subalgebra, so that
[m,m] = m.

Does there exist a pair of vectors X and Y in p such that
[Xm,Y m]m 6= 0 yet [X ,Y ] = 0?

X =


0 x12 x13 x14
−x̄12 0 x23 x24
−x̄13 −x̄23 0 x34
−x̄14 −x̄24 −x̄34 x44

 Y =


0 y12 y13 y14
−ȳ12 0 y23 y24
−ȳ13 −ȳ23 0 y34
−ȳ14 −ȳ24 −ȳ34 y44


are elements of p where x12, . . . , x34 and y12, . . . , y34 parametrize the

s-component, while x44, y44 parametrize the m-component.



Non-regular subgroups

Are there any examples of chains (H,K ,G ) satisfying condition (∗)
which contain non-regular subgroups?
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