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We will investigate the spectrum of the Dirac operator of a me-
tric connection with torsion on a manifold with special geometric
structure through a suitable twistor equation.

Plan

1. The square of the Riemannian Dirac operator

2. Special geometries via connections with torsion

3. Twistorial estimates for manifolds with reducible
holonomy



1. The square of the Riemannian Dirac operator
(M™, g): compact Riemannian spin mnfd, X: spin bdle

Classical Riemannian Dirac operator D9Y:
Dfn DI (X)) —T(X), D% = S e Vi

DY is elliptic differential operator of first order, essentially self-adjoint
on L2(X), pure point spectrum



Schrodinger(1932)-Lichnerowicz(1962)

SL formula : (D9)? = A + Scald

oSL formula = EV of (D9)%: X > zScall .
e optimal only for spinors with (A, ) = ||[V9%[° = 0, i.e. parallel
spinors, and then Scal? . =0

e no parallel spinors if Scal? .. > 0



Friedrich’s inequality

T
Scal?

; Friedrich, 1980
an 1) Smin | |

Thm. Optimal EV estimate: A\ >

" =" if there exists a Killing spinor (KS) ¢: V%4 =const-X ¢ VX
Link to special geometries:

Thm. 3 KS & n=5: (M,g) is Sasaki-Einstein mnfd [e contact str.]
< n=26:(M,g) nearly Kahler mnfd

< n=7:(M,gqg) nearly parallel Go> mnfd

[Friedrich, Kath, Grunewald. . .]



Friedrich’s inequality has two alternative proofs:
1. by deforming the connection V%4 ~ V%4 4+ cX -9

2. by using twistor theory: the twistor or Penrose operator:

o 1
Pypi= ) e® lvgkw + —ep - Dgw]
k=1 n

= ||Py|? + L D9y||% = || V9|2
together with the SL formula = integral formula
DY)y, dM:L/ Py||2dM " /Scalg 24M
J (@20 wyant == [ IPgIPM + 4P | scalfu)

and Friedrich’s inequality follows, with equality iff ¢ is a twistor spinor,

1
Ppy=0 & Viyp+-X -DI9=0 VX
X n

Furthermore, ¢ is automatically a Killing spinor.



2. Special geometries via connections with torsion

Given a mnfd M™ with G-structure (G C SO(n)), replace VY by a metric
connection V with torsion that preserves the geometric structure!

torsion: T(X,Y,Z) = ¢g(VxY —VyX —[X,Y],2)
Special case: require T € A3(M"™) (< same geodesics as V9)
= 9(VxY,2) = g(V&Y,2) +3T(X,Y, %)

1. representation theory vields

- a clear answer which G-structures admit such a connection; if existent,
it's unique and called the ‘characteristic connection’

2. Dirac operator ) of the metric connection with torsion 7'/3: ‘cha-

racteristic Dirac operator’
— generalizes Dolbeault operator and Kostant's cubic Dirac operator



Some characteristic connections

Ex. 1 — contact mnfd [Friedrich, Ivanov 2000]

A large class admits a char. connection V, and Holg(V) C U(n) C
SO(2n + 1). For Sasaki manifolds, the formula is particularly simple,

g(V&Y, Z2) = g(V&Y,Z) + sn Adn(X,Y, Z),
and VI' = 0 holds. [Kowalski-Wegrzynowski, 1987 for Sasaki]
Ex. 2 — almost Hermitian 6-mnfd [Friedrich, Ivanov 2000]
(M, gq,J), J almost complex, compatible with ¢
3 a char. connection V < Nijenhuis tensor ¢(N(X,Y), Z) € A3(M),

g(V& Y, 2) = g(V%Y,Z) + 3 [g(N(X,Y), Z) + dQ(J X, JY, JZ)]



Example3 - naturally reductive homogeneous space [Agricola 2003]

M = G/H reductive space, g=hdm, (,) a scalar product on m.

The PFB G — G/H induces a metric connection V with torsion
T(X,Y,Z) = —([X,Y]m, Z2),

called the ‘canonical connection’.

Dfn. M = G/H is called naturally reductive if T € A3(M); V coincides
then with the characteristic connection.

Naturally reductive spaces have the properties VI' = VR =0



3. The square of the Dirac operator with torsion
With torsion:

(M, g): mnfd with G-structure and charact. connection V¢, torsion T,
assume VT = 0 (for convenience)

ID: Dirac operator of connection with torsion 7/3

generalized SL formula: [Agricola-Friedrich, 2003]
1 1 1
2 2 2
D = Ap+-—Scal¥d+—||T||“ —=-T
Ty 3 || T] 4

[1/3 rescaling: Slebarski (1987), Bismut (1989), Kostant, Goette (1999), IA (2002)]



Spectrum of D

For eigenvalue estimates, the action of T on the spinor bundle needs
to be known!

Thm. Assume VI = 0 and let XM = @, 3, be the splitting of the
spinor bundle into eigenspaces of 1. Then:

a) V¢ preserves the splitting of X, i.e. VX, C X, Vyu,
b) P20 T =Tol?, i.e. P?°Z,, C X, Vu. [Agr.-Fr. 2004]
= Estimate on every subbundle of >,

Corollary (universal estimate). The first EV X\ of P2 satisfies

1 1 1
A > =Scal? T2 = = max(u?, ..., ud),
> Scall i + 2T - 5 max(id, .., i)

min

where pq,...,u, are the eigenvalues of 7.



Universal estimate:
e follows from generalized SL formula
e does not vield Friedrich’s inequality for T"— 0O

e Ooptimal iff 3 a V¢parallel spinor:

This sometimes happens on mnfds with Scal? . > 0 !
deformation techniques: yield often estimates quadratic in Scal9,
require subtle case by case discussion, often restriced curvature range
[Agricola, Friedrich, Kassuba [PhD], 2008]



Results
twistor techniques:

ecstimate always linear in Scal9, no curvature restriction, rather uni-
versal,

elead to a twistor eq. with torsion and sometimes to a Killing eq. with
torsion

eyield another twistorial estimate for manifolds with reducible holono-
my

— submitted — [Agricola, Becker-Bender [PhD], Kim 2010-11]



T wistors with torsion

m . TM®>XM — >M: Clifford multiplication

p = projection on kerm: p(X @) = X @9+ -5 1 e;®e; - X -9
VY (= V4Y + 2sT(X,Y, —)

(s = 1/4 is the standard normalisation, V1/4 = char. conn.)
twistor operator: P = po V*

Fundamental relation: ||P$y||2 + 1HD%H2 INEUIR

i is called s-twistor spinor < ¢ € ker P® < V54 + X D% = 0.

Idea: to play with the parameter "s'" !
different scaling in V [s = ﬂ and [s = 4—13}



Thm (twistor integral formula). Any spinor ¢ satisfies

2 _ " S, 112 2
| WPe.p)dm = n_1/ |PoelPant + oo | scal|gldn
n(n — 5 5 n(n — 4) 5
gl [ lplPant - 2= [ (120, han,

— n—1
where s = A(n—3)"

Thm (twistor estimate). The first EV )\ of ]p? satisfies (n > 3)

n n(n—5) o n(n—4) 2 2
A > Scalg — max(uf, ..., us),
where pq,...,u, are the eigenvalues of 7', and " =" iff

e Scald is constant,

e ¢ is a twistor spinor for s, = #_13),

e ¢ lies in >, corresponding to the largest eigenvalue of T2,



Twistor estimate:

e reduces to Friedrich’s estimate for 7' — 0O
e estimate is good for Scal? . dominant (compared to 17]|%)

Ex. (M, g) of class W3 (" balanced”), Stab(T) abelian

Known: p = 0,+2||T||, no V¢parallel spinors

3 7
twistor estimate: A > —Scald. — —|T|?
10 12
. . 1 g 3 2
universal estimate: X > —Scall. . — <[|T]
4 3

e better than anything obtained by deformation
On the other hand:

Ex. (M?,g) Sasaki: deformation technique yielded better estimates.



Twistor and Killing spinors with torsion

Thm (twistor eq). ¢ is an sp-twistor spinor (Pt = 0) iff

1 1
Vi + XDy + (XAT) -y =

2(n — 3)

Dfn. ¢ is a Killing spinor with torsion if V3¢ = kX -1 for s, = #_13).

o VY- |kt F | Xt (XAT)Y =

2(n —3) 2(n —3)
In particular:
e 1) iS a twistor spinor with torsion for the same value sy
e x Satisfies the quadratic eq.
2
L 5 n —4
= Scaly

" [’” 2<n—3>] =Dt g el T~ 2y’

e Scald9 = constant.



In general, this twistor equation cannot be reduced to a Killing equa-
tion.

... with one exception: n =206
Thm. Assume 9 is a sg-twistor spinor for some u # 0. Then:

e ¢ is a ID eigenspinor with eigenvalue

2
po = 5 lu-alTl)y
7

e the twistor equation for sg is equivalent to the Killing equation V¢ =
AX - for the same value of s.

Observation:

The Riemannian Killing / twistor eq. and their analogue with torsion
behave very differently depending on the geometry!



Killing spinors on nearly Kahler manifolds

o (MP®, g, J) 6-dimensional nearly Kihler manifold
- V¢ its characteristic connection, torsion is parallel

Einstein, ||T||? = &Scal’

T has EV pu = 0,x2||T|

3 2 Riemannian KS ¢4 € 2 51, V°-parallel

univ. estimate = twistor estimate, A > %Scal?

Thm. The following classes of spinors coincide:

e Riemannian Killing spinors e VC-parallel spinors

e Killing spinors with torsion e [ wistor spinors with torsion

There is exactly one such spinor ¢+ in each of the subbundles ZiQHTH.



A 5-dim. ex. with Killing spinors with torsion

e 5-dimensional Stiefel manifold M = S0O(4)/S0O(2), so(4) = s0(2) & m
e Jensen metric: m = my @ my (irred. components of isotropy rep.),

((X,a), (Y,b))r = 2B(X,Y) +2t-ab, t >0, 8= Killing form \m
4

e t = 1/2: undeformed metric: 2 parallel spinors
e { = 2/3: Einstein-Sasaki with 2 Riemannian Killing spinors

e For general t: metric contact structure in direction m; with charac-
teristic connection V satisfying VI' =20

o |T||? = 4t, Scaly =8 —2t, Ricd =diag(2 —t,2 1,2 —t,2 —t,2t).
e Universal estimate: A > 2(1 —1t) =: Buniv

25, __.
— 5t = Ptw

N[O

e T wistor estimate: A >



2.57\

Result: there exist 2 twistor spinors with torsion for ¢t = 2/5, and these
are even Killing spinors with torsion.



4. Twistorial estimates for mfds with reducible holo-
nomy

Parallel distributions
T C TM™ is a parallel distribution = VxY €7 forY € T and X € TM"

TM" = T1&...8 T with Hol(M™; V3) C SO(nq1) X ... X SO(nk),
where T1,...,7T; are the parallel distributions of T M™.

Then the Ricci tensor has block structure:
I Rici| O
Ric = 0 0 :
0 RiCk |

i.e. Ric(X,Y) # 0 can only happen if X,Y € 7T, for some i.

k
And Scal; :=tr Ric;=Scal = ) Scal;.
i=1



1-parameter family of connections

VY = V4Y +2sT(X,Y,-).

Dfn. [Geometry with reducible parallel torsion]
A manifold with s-parameter family of connections with torsion and
a parallel distribution of T'M as above has a geometry with reducible

parallel torsion if
1. there exists a value sg with V0T = Q,
2. the torsion splits into a sum T = Y% . T;, T; € A3(T;).

3. the tangent bundle 7TM" = @,1?217; splits into V®-parallel distribu-
tions 7; for some parameter s and
Hol(M™; V%) C SO(n1) X ... x SO(nyg),



(M™, a geometry with reducible parallel torsion):

o(M™, g) is locally a product of Riemannian manifolds [de Rham]
o\V50T T, = QO for each T; [Cleyton, Moroianu 2012]
12 =512,  ||T|? = x|

e RS(X,Y,Z,V) # 0 if all vectors lie in the same subspace 7, for some

,

k
e o splits in op = ) o; with o; := o, Where
i=1

op = %Zi(eiJT) A (e;2T).



Partial Schrodinger-Lichnerowicz formulas

ePartial connections:
k

S,’i . — 7.
Vy = V; (x) henceV® = zjlv“.
1=

ePartial Dirac operators and partial spinor Laplacians:

1

s . Z 7 S.1 s . Z S, 18,1
D' . — em ° V/r'zbj A,l: . _— - V/r'zb v,nzb.
m=1 m=1

Then



Let

D; = ) (e%JTZ‘)'VZ;:;w

m=1

Prop.[PSL formulas]
M with a geometry with reducible parallel torsion. Then

1
(i) (D)2 = A+ (6 —8s)o; — 4sDf + ZScal;;?‘,
(i) D{D$+ DD =0 for i # j,

3 1
i) (D/3)2 = Af+230i+25calg—282|m||2.



Adapted Twistor Operator

PS¢ sz—l— Z Z Gl ®€l DSw

i=1"v =1
One checks that
k
1
IPoy[* = (A=Y —(DS) )b, ).

i=1"



Thm.[Twistorial estimate for products]
Let n1 <no <...<ng and X\ the smallest eigenvalue oleQ. Then

ng g ng(ng —5) > np(4—ng) 2 2
A > Scal” . T max(us, ...,
" =":for s = g — 1
4(nk — 3)

ethe Riemannian scalar curvature of (M, g) is constant,
ethe eigenspinor 1) is a twistor spinor for s on My,
o =1,...k—1:

(a)n; < n: VS-parallel spinor on M;,

(b)n; = n.: VS-parallel or twistor spinor for § on M;,

espinors lie in X, (M;) corresponding to the largest eigenvalue of TZ-Q.



A generalization of

N
A9 > Scald_.
= 4(ny — 1) min

[E. C. Kim (2004), B. Alexandrov (2006)]




EX.

Let M be a product of 5-dimensional manifolds with parallel torsion,
then M is a 10-dimensional manifold with a geometry with reducible
parallel torsion:

The "twistorial eigenvalue estimate’ reads
25 > 15
17|

5
A>—Scald. 4+ — — == max(u?),
> 15°%@lmin T 196 29 M)

and the 'twistorial eigenvalue estimate for products’ reads

5 5
g 2
A > ZScaImin T max(pu<).



