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o (Fernandez—Gray 1982) G structure ¢ torsion-free if

Vep=0 & dp=dip=0 < Hol(gy) C G

Definition

(M7, ) with o torsion-free is a Go manifold

e (Bryant 1985) Simply connected M ~~
Hol(g,) = G2 & Bae COO(/\l) \ {0}, Voa=0

o (Joyce 1996) Compact M ~~ Hol(g,) = G2 & m1(M) finite
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@ (Bryant-Salamon 1989) AC holonomy G, manifolds
o A2(8*) and A% (CP?) have rate —4, ¥ = CP3 and SU(3)/T?
o S(8%) hasrate -3, ¥ = 83 x S3
o (Joyce—Karigiannis) Potential method for constructing CS
holonomy G, manifolds, ¥ = CPP3
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AC deformations

Theorem (Joyce 1996)

M compact G, manifold = moduli space of torsion-free G,
structures is locally a smooth manifold of dimension b3(M)

(Nordstrom 2009) Asymptotically cylindrical case

Theorem (Karigiannis—L 2012)
M AC Gy manifold with generic rate v € (—4,—5/2) = moduli
space is locally a smooth manifold of dimension
o b3 (M) ifv € (—4,-3)
° bgs(M) + dimIm (H3(M) — H3(Z)) -+ Z/\e(—3,u) my () if
ve(—3,-5/2)
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Theorem (Karigiannis—L 2012)
M CS G, manifold with rate v near 0 =

e 1 finite-dimensional vector spaces of forms T and O
@ JopenU 50 inZ and smooth w: U — O with w(0) =0

such that the moduli space is locally homeomorphic to 7=1(0) and
has expected dimension at least

o b3(M) —dimlm (H3(M) — H3(X)) — > ore(—3,0 M=(A)

@ T is the infinitesimal deformation space
@ O is the obstruction space

e O = {0} ~» smooth moduli space



Applications
°

Applications




Applications
°

Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3 (M)=b*M)=1, b3(X)=0



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3(M) = b*(M) =1, b¥(E) =0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3 (M)=b*M)=1, b3(X)=0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0)



Applications
°

Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3 (M)=b*M)=1, b3(X)=0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3(M) = b*(M) =1, B¥(X) =0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness

2. M =S(83%), AC with rate —3



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3(M) = b*(M) =1, B¥(X) =0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness

2. M =S(83%), AC with rate —3
o BL(M) =0, B3(M) =1, b3(T) =2



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3(M) = b*(M) =1, B¥(X) =0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness

2. M =S(83%), AC with rate —3
o BL(M) =0, B3(M) =1, b3(T) =2
o dimIm (H3(M) — H3(X)) =1



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3(M) = b*(M) =1, B¥(X) =0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness

2. M =S(83%), AC with rate —3
o b (M)=0, B3(M)=1, b3(X)=2
o dimIm (H3(M) — H3(X)) =1
e my(A\) =0 for A € (—3,0)



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3(M) = b*(M) =1, B¥(X) =0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness

2. M =§(83?), AC with rate —3
o b (M)=0, B3(M)=1, b3(X)=2
o dimIm (H3(M) — H3(X)) =1
e my(A\) =0 for A € (—3,0)
e dimM, =1 for v € (—3,0)



Applications
Applications

1. M = A%(S*) or A2 (CP?), AC with rate —4
o b3 (M)=b*M)=1, b3(X)=0
@ (Moroianu-Semmelmann 2010) ms(\) = 0 for A € (—3,0)
o dim M, = b3 (M) =1 for v € (—4,0) ~ local uniqueness

2. M =S(83%), AC with rate —3
o b (M)=0, B3(M)=1, b3(X)=2
o dimIm (H3(M) — H3(X)) =1
e my(A\) =0 for A € (—3,0)

e dmM, =1 for v € (—3,0) ~> local uniqueness



Applications
Applications

3. MCSwithE=CP3orS3xS3



Applications
Applications

3. MCSwithE=CP3orS3xS3
o mz(O) =0



Applications
Applications

3. MCSwithE=CP3orS3xS3
e my(0) =0~ O ={0}



Applications
Applications

3. M CS with ¥ = CP3 or 83 x S8
e my(0) =0~ O={0}
e M, smooth



Applications
Applications

3. M CS with ¥ = CP3 or $3 x &3
e my(0) =0~ O={0}
e M, smooth, dim M, = b*(M) or b3(M)



Applications
Applications

3. M CS with ¥ = CP3 or $3 x &3
e my(0) =0~ O={0}
e M, smooth, dim M, = b*(M) or b3(M)

4. M CS with ¥ = SU(3)/T?



Applications
Applications

3. M CS with ¥ = CP3 or $3 x &3
e my(0) =0~ O={0}
e M, smooth, dim M, = b*(M) or b3(M)

4. M CS with ¥ = SU(3)/T?
("] mz(O) =38



Applications
Applications

3. M CS with ¥ = CP3 or $3 x &3
e my(0) =0~ O={0}
e M, smooth, dim M, = b*(M) or b3(M)

4. M CS with ¥ =SU(3)/T?
4 mz(O):8wdimO§8



Applications
Applications

3. M CS with ¥ =CP3 or S3x 83

e my(0) =0~ O={0}

e M, smooth, dim M, = b*(M) or b3(M)
4. M CS with ¥ = SU(3)/T?

e my(0) =8 ~»dimO <38
@ Smoothness for M,, <+ deformations of SU(3)/T?



Applications
)

Applications

3. M CS with ¥ = CP3 or $3 x &3
e my(0) =0~ O={0}
e M, smooth, dim M, = b*(M) or b3(M)

4. M CS with ¥ =SU(3)/T?
e my(0) =8 ~»dimO <38
@ Smoothness for M,, <+ deformations of SU(3)/T?

5. M CS with cone C and N AC with rate v < -3 to C



Applications
)

Applications

3. M CS with ¥ =CP3 or S3x 83

e my(0) =0~ O={0}

e M, smooth, dim M, = b*(M) or b3(M)
4. M CS with ¥ = SU(3)/T?

e my(0) =8 ~»dimO <38
@ Smoothness for M,, <+ deformations of SU(3)/T?

5. M CS with cone C and N AC with rate v < -3 to C

e (Karigiannis 2009) Can desingularize M via gluing with N if
topological condition and gauge-fixing condition satisfied



Applications
)

Applications

3. M CS with ¥ = CP3 or $3 x &3
e my(0) =0~ O={0}
e M, smooth, dim M, = b*(M) or b3(M)

4. M CS with ¥ =SU(3)/T?
e my(0) =8 ~»dimO <38
@ Smoothness for M,, <+ deformations of SU(3)/T?

5. M CS with cone C and N AC with rate v < -3 to C

e (Karigiannis 2009) Can desingularize M via gluing with N if
topological condition and gauge-fixing condition satisfied

@ Slice theorem = gauge-fixing always holds
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Strategy

(M7, ) Gy conifold rate v
o 7, ={r¢ Coo(/\i) with rate v : d7 = d¥7 = 0}
e D, = {diffeomorphisms with rate v isotopic to id}

° Mu:%/Dy

(a) Gauge ~> slice S, 3 ¢, S, — M, homeomorphism

(b) 7 closed, Hodge theory ~» 3! co-exact /3, harmonic 7 such
that 7 —p =df +~

(c) TeS, & AyB=d,F(dB +7)

(d) Implicit Function Theorem, elliptic regularity ~» M,, locally
parametrised by harmonic 3-forms rate v
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Gauge-fixing

(a) To(¢Dy) = {Lvp} ~ seek T transverse to all L, = d(vayp)
o N2 = A2 A3, with A2 = {v.p}
o <Ta d(V_I(,O)>SD = <d;k07—a VJ@)‘P
o m7(d;7) =0 ~ gauge-fixing
Analytic framework: weighted Sobolev Liu
ofelf, &r 3¢ e l?
© ACv>—% = notinL?
N =N N e A3, with A3 = {fo} and A3 = {vox, ¢}
e Dirac operator [ acting on A} @ A3 by
fo+ vask, o= mi7d(vap) + x,d(fe)
@ Surjectivity of ) for AC ~ slice
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(b) Hodge theory not valid in general on L ,
@ AC: decomposition works by choice of rates

e CS:T—p=dB8+7+n

()T=¢p+{eS ~
0 K,(*,7) =+ %771(5) +2m7(§) — £+ F(&)
o diT =0 d3é = fdrm(&) +2d5mr(€) + diF(€)
o m7(d3€) =0 & dim(§) = dim7(§) =0
o Ayp =didp ~ elliptic equation

(d) Maybe Imd;, ¢ Im A, ~~ obstructions to applying IFT
@ AC: no obstruction

o CS: obstructions <+ O
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Open problems

@ New examples of nearly Kahler 6-manifolds

@ Deformations of nearly Kahler 6-manifolds

Examples of CS holonomy G, manifolds

Ricci-flat deformations of G, conifolds
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