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Abstract ' o " ~ AL < - ~ : :
. _ L : L , _ A The sets of points fixed by C'; are F;-coadjoint orbits. r=TMe (EG(V) '5[7“”{?{}) =HaV)® ('H @ V)

Coadjoint orbits for the group SO(6) parametrize Riemannian (& -reductions in six dimensions, / | , ,

and we use this correspondence to interpret symplectic fibrations between these orbits, and to : : w = —wp + 2v A Jpv, M =ANVxH, Vo =5V @ H, Ty =1y @ H,

analyse moment polytopes associated to the standard Hamiltonian torus action on the coadjoint _ AN ¥, = A2H ® V. ¥ — S%?—E 2V, Yo =1y @V,

orbits. The theory is then applied to describe so-called intrinsic torsion varieties of Riemannian . ' - 9 9 9 9 ar 9 5

structures on the Iwasawa manifold. - X pr(w) = (=14 2(x7 + 3), —1 + 2(23 + x3), —1 + 2(z5 + z5)) = (=, y, 2).

HEZTMeuDau2)ZHaV) o (VaoH)[N]),
SO(6) coadjoint orbits ®ul)ew2)”=He JE’(( eH) & ]])-

Thus the projections of this form satisfy o +y + 2z = —1,

o~ P 1.1 T
The set of adjoint orbits is parametrized by the closed fundamental Weyl chamber B. The Konstant— N~ ~ M = IHD2V@2v)y ] @ [PA] @ [12A%]
Kirillov—Souriau is a standard symplectic structure on coadjoint orbits. Restricting the group action = ' @ 2[vA20] @ 2[vA°?] @ [vo? ] @ [ve®?] @ [R(2,1)].
to the maximal torus T° C (', we obtain a Hamiltonian torus action on the orbit. The Atiyah and
Guillemin—Sternberg Convexity Theorem implies that the image by g7 of an orbit passing through M=V +V
A € t 1s the convex hull of the Weyl group orbit of A: | y 1A ‘; | _ Proposition 9. The intrinsic torsion tensor T 4 of a MS is completely determined by the intrin-
ur(G - A) = conv(W - X). _.\ L i y " : LE:? rﬂir;si:;ln tensors Ty , Ty oOf the underlying OCS and OPS. Conversely, T_g determines the pair
W)

G50(6) _ _ S?{ﬁ} ___~ S0(6) Figure 5: 7 fibres over 2+ : 5909 fibres over over %: 7 fibres over %~ \ / Theorem 10. (Abbena-Garbiero-Salamon) Thci? set I of invariant complex structures on N is given
U(l) xU(1) x U(1) T ' by the disjoint union of the point wy and a CP". This is a T -invariant subset of 22 and its image
Riemannian geometry in six dimensions | | by pr is the union of a vertex and the edge 13 of Az

point in B | stabilizer orbit image by pr _ _ _ _ _ _ ] _ Figure 7: The moment polytope Ag interpreted as intersection of J-invariant sets. Theorem 11. The ITV's of invariant SO(2) x SO(4) reductions of the standard Riemannian struc-
Let (M, g) be a Riemannian manifold of dimension N. Any smooth 2-form w determines a skew- ture on the Iwasawa manifold are:

) U(3) P+ =CP® | tetrahedron A 5+ symmetric endomorphism § of each tangent space via A Klein COITESPOI]CIEHCE
Loy —x) U(3 P~ = CP® | tetrahedron A 4

ITv topological description geometric properties

0.0) U(1)xSO(1) | 9=G ([Pf.ﬂ) A w(X,Y) =gFX.Y). Gro(RY) = Gry(C?) is identified with a non-degenerate quadric in P(A?C?): two points totally geodesic horizontal foliations
U b4 i = T2 octahedron F . . . . 1 - a - 1 1 . . .
Definition 1. Two distinguished Riemannian G -structures defined via 2-forms are called compatible l. & parametrizes the projective lines CP" in CP~. : CP ucCpP totally geodesic horizontal foliations

a (3)

a (1)

a,f3, ) U(1) x I:T( if the associated skew-symmetric endomorphisms commute. 2. A point z € CP* determines a plane in % . consisting of all the lines passing through that ) | Gra(RY) vertical foliations
o, B, —B) | U(1)=xU(2) - truncated tetrahedron A - point. ’ CP2 | CP2
a (2)
a (2)
a (2)

) - truncated tetrahedron A ¢

2
2

horizontal foliations

_ , . - In six dimensions A2R® = 50{6} =~ R!% Reductions of the Riemannian structure defined by a . AT . - - 4 . SR _
Lo, 3) U(2)=xU(1) : skew-cuboctahedron A+ fifferential 2 form: 3. A point y € (CP")* determines a plane in %, consisting of all the lines lying in the plane y. , 3 gl » gl horizontal foliations

. . A completely new interpretation:

,a,0) U(2 X-%TO(Q) - cuboctahedron A go ’ P _ Y P o | o _ . 15 (= R* bundle over CP' LI CP*
La,—f) | U@2)xU(1) , skew-cuboctahedron A Case | 2-form SO(6) orbit 1". Given a decomposition T,M = V & H arising from an OPS P, there is a CP" worth of
L — compatible OCS’s parametrized by w € S? C A2 H*. This is our projective line in 2.

apr =ale” + e +e”) 2'. Given an OCS J we have the J-invariant 2-planes generated by {v, Jv} and each one : S* x S bundle over S° vertical distributions of type D,
aps = a(e'? + 3 — ¢56) , determines an OPS. Wi23456 generic point in Gra(RS) generic OPS

horizontal foliations
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ST« ST bundle over S° horizontal distributions of type Dy

[

ajy = ael? 3'. Given an OCS J we have the .J -invariant oppositely-oriented 2-planes generated by {v, —Jv}.

Theorem 12. The ITV's of invariant SO(4) x SO(2)-structures on % exclusive of W2345 and
W05 are stable under the action of T'.

aipiy + agpo = (a; +as)e'? + ai(e?* + %)

aijig + agpry = (a1 + ag)e®® + a;(e*! — %)

aip+agps = (a;+asz)(et?+e??)+ (a3 —as)e®®, a; > ay

aipy+ajps = 2&1(E12+€34]

56

aipy +agps = (a;+as)(et?+e*)+(ay—as)e a1 < as

Ol |||l w| & || w]| e

F50(6)

ajf + aspo + asply Figure 8: A polytope map induced by the Klein correspondence.

Case 1. Orthogonal almost complex structures (OCS) on T, M compatible with a fixed orientation.

Proposition 6. Denote by L := pu7'(E12). The image pr (w7 (L)) C Az+ is the polytope shown

Case 2. OCS’s inducing the opposite orientation on T}, M . 2
on the left in Figure 9. The set w; (L) is a symplectic toric manifold.

Case 3 The orbit % parametrizes a set orthogonal almost product structures (OPS).

A mixed structure (MS) is a reduction of the structure group to U/(p) x U(q). This is equivalent Proposition 7. Denote by K the set of 2-planes in the subspace (e',e?, ¢*, ¢*). The image (75 ' (K))
to the assignment of an OCS J (J? = —I) and an OPS P (P? = I) which are compatible is the rectangular prismoid represented in bold on the right of Figure 9. The set :rrg_l(K) is a sym-
(JP = P.J). plectic toric manifold.

Case 4. A .# " orbit parametrizes MS’s determined by an OCS .J in %" and an OPS in ¢ whose
2-plane is J-invariant and oriented consistently with J.

Differential fibrations with fibres CP! and CP2. CEISEE S.F pf{rametrizes MS’s with J € 22~ and an OPS whose 2-plane is .J -invariant and oriented .- 1 €
consistently with J. _ ' (Warss)

Cases 6 and 8. The position of the 2-form in B exhibits it as a weighted linear combination of two
172 compatible OCS’s J. € &7 and J_ € 9.
Corollary 15. The ITV inside . consisting of MS’s on N of class [vA\°?] & Ay 1@ H isa
Proposition 8. Let F™ and F~ denote the Cy-invariant subsets of 4 (both symplectomorphic to disjoint union CP' LICP' UCP'. The projectionto A+ consists of the segments AB, CD, EF.

CP?) projected by ur on two disjoint faces of A«. The images ;JT(:?T%_ Y(F%)) are respectively a
(F) is a symplectic toric

PrﬂpﬂSitiﬂI] J A _@i orbit paramerrizes MS’s determined b}' an OCS J in ff;,:l: and an OPS in 4 h,g‘xagg” and a r}'jangu!ﬂr prf_g;ngid as shown in ngurg 10. The set ﬂ-Q_

whose 2-plane is oriented consistently with —J. manifold Corollary 16. The ITV inside F* consisting of MS’s on N of class [vA\"?] & 2[[1»’)&,5’1]] Gt 2H isa
: : _ ' s : 1 2 1 ., ol

Case 7 Riemannian f-structure. ( f* + f = 0, the structure group reduces to U(p) x SO(q)). 7t \ disjoint union CP* L CP* U (CP" x CP").

Case 9 T -reductions of the Riemannian structure.

Lemma 2. Iftwo OCS’s on R® are compatible then they coincide up to sign on a real 4-plane (and,
FT : therefore, on a complementary 2-plane).

Each fibre can be interpreted as a coadjoint orbit.

ﬁSO[E} Y, GI’Q(RG) » ﬁSD[il-} ~~ GTQ (RG] “ Grg{]ﬁé) oy, GI‘Q {Rﬁ} ){1 (Sr:? . SE) M'ﬂ'ment pﬂlytﬂpes

The reduced Riemannian G -structures are realized as smooth sections of fibre bundles with fibre
G506) = 3 5 GSUB) ~ CP? x CP? x CP! ©. The mapping SO(6)/G — A?T*M which associates a 2-form to a specific G'-reduction can
be interpreted (at each point of M ) as the moment map SO(6)G — so(6)* associated to the KKS
symplectic structure. The orthogonal projection so*(6) — t* is the moment map
The above fibrations are symplectic (the fibre 7! (p) = F is a symplectic manifold,the transi- SO(6
tion mappings induce symplectomorphisms of F'). Toric manifolds (dimT = 1/2 dimM ) can be ur - (6) 2R3,
recognized by their moment (Delzant) polytopes. In our case symplectic fibrations over (symplectic G

submanifolds of) coadjoint orbits are illustrated by the moment map, even though the torus actions Theorem 4. The Hamiltonian action of the maximum torus T of SO(6) on & associates a charac-
are typically low-dimensional. teristic “moment polytope” to each of the Riemannian structures defined by a 2-form.

Corollary 16. The ITV inside .F* consisting of MS’s on N of class [vA*?] & 2[vAy'] @ 2H isa
disjoint union CP' L CP? U (CP! x CP!).

Proposition 5. If a 2-form is fixed by the action of some subgroup C' of the maximum torus, then

. Figure 11: A polytope map induced by the Klein correspondence.
the corresponding skew-symmetric endomorphism § commutes with the action of C on RV . 8 poTyTope map Y P

An application

The intrinsic torsion of a geometrical structure is the first order obstruction to its integrability. For
this reason, a standard way of classifying Riemannian G'-structures is based on criteria whereby
its intrinsic torsion tensor 7 reduces to a specific subset of (7 -irreducible components of the corre-
. _ sponding space of intrinsic torsion #". The prototype case gave rise to the sixteen classes of almost
Figure 3: A generic SU(3) coadjoint orbit fibres symplectically over Cp? 5t ' ' S - - | Hermitian manifolds a la Gray—Hervella

W =T*Mout =A@ A ] = oW oW1 & ¥,
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Figure 6: Roots orthogonal to Ay and As. Projections of C'; and (s -invariant sets.




