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Quaternionic Manifolds

Definition. A pair (K, Q) of a smooth 4n-manifold K and a three
dimensional subbundle O C End(7T'K) is called Quaternionic Manifold if

I) Q — Span{J17']27J3}
(J1)* = (J2)? = (J3)* = —Id, J1Jo = —Ja J1 = J3;

i) There exists a torsion-free connection V on 7K with VO C O,
X eTK.

e The above definition resembles the definition of a complex manifold.

e Unlike the complex manifolds, quaternionic manifolds can be distin-
guished locally by a curvature tensor.



Hyper-Surfaces of Quaternionic Manifolds
Let M C K be any hyper-surface of the quaternionic manifold (i, Q).

Dfn. We define H C T'M to be the maximal O-invariant distribution on
M.

e If [ is any defining function for M, i.e. M = f~'(0) and df|s # 0,
then

H = { X eTlM : df(JlX) = df(JQX) = df(JgX) =0 }

e Thus H is always a smooth codimension 3 distribution on M.



Quaternionic Contact Hyper-Surfaces of Quaternionic Manifolds

Definotion. We say that a hyper-surface M of a quaternionic manifold
(K, Q= {J1, o, J3}) is a QC-hyper-surface if

) Vdf(X,X)#0, X eH, unless X =0,
i) Vdf(J,X,J.Y)=Vdf(X,Y), X,YeH, s=1,2,3,
where H C T'M is the maximal O-invariant distribution on M, vV is

any torsion-free quaternionic connection of (K, Q), and [ is any defining
function for M.



Examples of QC-Hyper-Surfaces

e Consider the field of the quaternions
H = spanp{l,17,7,k},
2 _ _

where i? = j° = —k*’=—landi-j=—j-i=Fk.

e Consider the flat quaternionic manifold K := H" ! with its standard
quaternionic structure O = span{.Jy, Jo, J5}.

Ji(x) = —x -1, Jo(x) := —x - J, J3(x) := —u - k.

e As a torsion free quaternionic connection V we take the flat connection
here. It clearly holds V x O C O.



q1

Let © = q e H"™ x H.

p

We have the following three basic examples of QC hyper-surfaces of
H"™ x H

o Mi: 3 i_1lqal® +Re(p) =0

o My: 3o ylaal®—Ipf* =1

o Ms: > le.*+p|*=1 (the Sphere).



o Let Sp(1):={z€H : |z]| =1}

e The quaternionic affine group G'L(n + 1,H) x Sp(1) x H""! acts on
the vector space H" ™! by

where ¢ = (A, z,y) € GL(n + 1,H) x Sp(1) x H* !,
o If M is a QC-hyper-surface, then ¢(M) is a QC-hyper-surface as well.

e Thus the three examples My, M5 and M3 determine three orbits of
QC-hyper-surfaces of H" !,



Theorem. If M is a connected QC-hyper-surface of H" ™! then there
exists a transformation ¢ € GL(n + 1,H) x Sp(1) x H"™! such that
»(M) is an open set of one of the hyper-surfaces

o Mi: > i_il|q.” +Re(p) =0
o My: i qlaal® —Ip[*=-1

o Ms: Y ,ilaal®+1pl*=1.




Let (K, Q = {J1, o, J3}) be a quaternionic manifold and M C K be a
QC-hyper-surface, i.e. we have

o VAf(J.X,J,.X)+Vdf(X,Y)=0, X,YeH
o @df|H is positive or negative definite on /.

If we define:

e Metric g := Vdf|z on H.

e Three 1-forms 71,72, 713 on M given by

ns(u) := —df (Jsu), we TM.

Then it holds: ¢g(J: X, J.Y)=¢(X,Y) and dns(X,Y) = g(J:X,Y) for
any X,Y € H.



Abstract Quaternionic Contact Manifolds

Definition. A pair (M, H) of a (4n + 3)-manifold M and a 4n-distri-
bution A on M is called Quaternionic Contact Manifold if locally there
exists a smooth field (71,172,713, [1, I2, I3, g), where

® 11,172,173 are 1-forms on M with common kernel

e /1,15, 15 € End(H) satisfy
(I11)? = (Iy)* = (I3)° = —1Id, i1y = —Ixy = I3

e g € H*® H* is symmetric and positive definite,

and all these satisfy the equations

dns(X,Y) = g(JsX,Y) X,Y € H.



Conformal Infinity
Let (M, H) be a QC manifold.

If (77177727@37?17]27237@) and (771777277737]17]271379) are two admissible
sets in an open neighborhood U C M then

(I1,12,13) = (11, I3, )Y, (i, 72, 73) = F(n,m2,m3)¥,  § = Fg,

where 7 : U — RT and ¥ : U — SO(3).

Dfn. We say that a Riemannian metric G defined on M x (0,€) with
coordinates (x, p) has as conformal infinity the QC-manifold (M, H) if
there exists an admissible set (7)1, 72,73, I1, [, I3, g) such that

1 1
G~ ?((771)2+(772)2+(773)2+dp2) + P

when p tends to zero.



Theorem. [O.Biquard, 2000] Each real analytic QC-manifold (M, H) is
the conformal infinity of a unique quaternionic Kahler metric G defined
on a neighborhood of M.

Example. The quaternionic hyperbolic metric on the unit-ball in H"*!
has as conformal infinity the unit-sphere S***3 with the QC distribution

H being induced by the imbedding of S***2 into the quaternionic
manifold H" 1.

Theorem. [D.Duchemin, 2006] Each real analytic QC-manifold (M, H)
can be imbedded as a QC-hyper-surface in an appropriate quaternionic
manifold (/, Q).



Typical examples of QC-manifolds are provided by the 3-Sasakian
geometry.

Recall: A Riemannian (4n + 3)-manifold (M, h) is called 3-Sasaki if
there exist 3-Killing vector fields &1, &5, &3 such that

¢ h(gzagj) — 52']'7 Za] — 17273
o &, &) = —2&, for any cyclic permutation (¢, 7, k) of (1,2, 3)

o (Dx})Y =h(&,Y)X —h(X,Y)&, i=1,2,3, X,Y € TM,
where [;(X) := Dx¢&; and D denotes the Levi-Civita connection of the
Riemannian metric h.

We construct a QC-structure on ) out of the 3-Sasakian one by setting

H = {¢&, 6,8



QC-Hyper-Surfaces of Hyper-Kahler Manifolds

Let (/K,Q) be a quaternionic manifold and G be any O-compatible
Riemannian metric on /.

Dfn. (K,09,G) is called a hyper-Kahler manifold if there exists a
frame {.J1, Jo, J3} of O which is parallel with respect to the Levi-Civita
connection of G.

e A trivial example of a hyper-Kahler manifold is provided by H" ! with
its flat metric.



From now on we will assume: (M, H) is a QC-hyper-surface of a
hyper-Kahler manifold (K, .J1, Js, J3, G).

Furthermore:
e Let D be the Levi-Civita connection of (¢

e Let NV be the unit-normal vector field of the imbedding

e /I(X,Y):=—-G(DxN,Y), X,Y € TM is the second fundamental
form.

Then it holds:
e /|7 is symmetric and negative definite
o [1(J,X,J,Y)=1I(X,Y), s=1,2,3, X,YeH.

Note that we make no assumption about [/(J,N,X), s = 1,2,3,
X e H.



e The key point in our method is proving that for each QC-hyper-surface
(M, H) there exists a function f : M — R for which it holds

II(J,N,J,X)=—f"1df(X), s=1,2,3, X¢€H.

e The function f is obtained by performing a certain volume normalization
on M by comparing [ 1|y with the hyper-Kahler metric GG|;. For this
purpose we use the following lemma

Lemma. Let #*" be a real vector space with a prescribed hyper-complex
structure (.J1,Jo,.J3). Assume that we are given two positive definite
inner products § and g on H*" compatible with (.J1, .Js, J3).

If we set

G(X,Y) = (X, Y)++v/=19(I,X,Y)  and

(X, Y) = g(LX,Y)++vV—1g([,X,Y),

then there exists a positive constant p such that (9:)" = u(vs)",
s=1,2,3.



Note that the Levi-Civita connection of the hyper-Kahler metric G
induces a connection in the bundle T'K|,; — M.

Theorem. If (M, H) is a QC-hyper-surface of a hyper-Kahler manifold
(K, Q) then it holds:

e The second fundamental form [/ extends in an unique way to a
symmetric Js-invariant section A of the bundle (7T*K @ T*K)|yr — M.

e The section fA is parallel with respect to the Levi-Civita connection
of the hyper-Kahler metric 5.



Let (K, O,G) be a hyper-Kahler manifold with Riemannian curvature
tensor R.

Theorem. If M C K is a QC-hyper-surface with normal vector /V, then
at each point of M it holds

R(X,Y)N=0, X,Y€eTK.



Thank You for Your Attention!



