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Quaternionic Manifolds

Definition. A pair (K,Q) of a smooth 4n-manifold K and a three
dimensional subbundle Q ⊂ End(TK) is called Quaternionic Manifold if

i) Q = span{J1, J2, J3}

(J1)
2 = (J2)

2 = (J3)
2 = −Id, J1 J2 = −J2 J1 = J3;

ii) There exists a torsion-free connection ∇̂ on TK with ∇̂XQ ⊂ Q,
X ∈ TK.

• The above definition resembles the definition of a complex manifold.

• Unlike the complex manifolds, quaternionic manifolds can be distin-
guished locally by a curvature tensor.



Hyper-Surfaces of Quaternionic Manifolds

Let M ⊂ K be any hyper-surface of the quaternionic manifold (K,Q).

Dfn. We define H ⊂ TM to be the maximal Q-invariant distribution on
M .

• If f is any defining function for M , i.e. M = f−1(0) and df |M 6= 0,
then

H = { X ∈ TM : df(J1X) = df(J2X) = df(J3X) = 0 }.

• Thus H is always a smooth codimension 3 distribution on M .



Quaternionic Contact Hyper-Surfaces of Quaternionic Manifolds

Definotion. We say that a hyper-surface M of a quaternionic manifold
(K,Q = {J1, J2, J3}) is a QC-hyper-surface if

i) ∇̂df(X,X) 6= 0, X ∈ H, unless X = 0,

ii) ∇̂df(JsX, JsY ) = ∇̂df(X,Y ), X, Y ∈ H, s = 1, 2, 3,

where H ⊂ TM is the maximal Q-invariant distribution on M , ∇̂ is
any torsion-free quaternionic connection of (K,Q), and f is any defining
function for M .



Examples of QC-Hyper-Surfaces

• Consider the field of the quaternions

H = span
R
{1, i, j, k},

where i2 = j2 = −k2 = −1 and i · j = −j · i = k.

• Consider the flat quaternionic manifold K := H
n+1 with its standard

quaternionic structure Q = span{J1, J2, J3}.

J1(x) := −x · i, J2(x) := −x · j, J3(x) := −x · k.

• As a torsion free quaternionic connection ∇̂ we take the flat connection
here. It clearly holds ∇̂XQ ⊂ Q.
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We have the following three basic examples of QC hyper-surfaces of
H

n ×H

• M1 :
∑n

a=1
|qa|2 + Re(p) = 0

• M2 :
∑n

a=1
|qa|2 − |p|2 = −1

• M3 :
∑n

a=1
|qa|2 + |p|2 = 1 (the Sphere).



• Let Sp(1) := {z ∈ H : |z| = 1}.

• The quaternionic affine group GL(n+ 1,H) × Sp(1) ⋊ H
n+1 acts on

the vector space H
n+1 by

φ(x) = A · x · z̄ + y,

where φ = (A, z, y) ∈ GL(n+ 1,H)× Sp(1)⋊H
n+1.

• If M is a QC-hyper-surface, then φ(M) is a QC-hyper-surface as well.

• Thus the three examples M1,M2 and M3 determine three orbits of
QC-hyper-surfaces of Hn+1.



Theorem. If M is a connected QC-hyper-surface of Hn+1 then there
exists a transformation φ ∈ GL(n+ 1,H) × Sp(1) ⋊ H

n+1 such that
φ(M) is an open set of one of the hyper-surfaces

• M1 :
∑n

a=1
|qa|2 + Re(p) = 0

• M2 :
∑n

a=1
|qa|2 − |p|2 = −1

• M3 :
∑n

a=1
|qa|2 + |p|2 = 1.



Let (K,Q = {J1, J2, J3}) be a quaternionic manifold and M ⊂ K be a
QC-hyper-surface, i.e. we have

• ∇̂df(JsX, JsX) + ∇̂df(X,Y ) = 0, X, Y ∈ H

• ∇̂df |H is positive or negative definite on H.

If we define:

• Metric g := ∇̂df |H on H.

• Three 1-forms η1, η2, η3 on M given by

ηs(u) := −df(Jsu), u ∈ TM.

Then it holds: g(JsX, JsY ) = g(X,Y ) and dηs(X,Y ) = g(JsX,Y ) for
any X,Y ∈ H.



Abstract Quaternionic Contact Manifolds

Definition. A pair (M,H) of a (4n+ 3)-manifold M and a 4n-distri-
bution H on M is called Quaternionic Contact Manifold if locally there
exists a smooth field (η1, η2, η3, I1, I2, I3, g), where

• η1, η2, η3 are 1-forms on M with common kernel H

• I1, I2, I3 ∈ End(H) satisfy

(I1)
2 = (I2)

2 = (I3)
2 = −Id, I1I2 = −I2I1 = I3

• g ∈ H∗ ⊗H∗ is symmetric and positive definite,

and all these satisfy the equations

dηs(X,Y ) = g(JsX,Y ) X,Y ∈ H.



Conformal Infinity

Let (M,H) be a QC manifold.

If (η̂1, η̂2, η̂3, Î1, Î2, Î3, ĝ) and (η1, η2, η3, I1, I2, I3, g) are two admissible
sets in an open neighborhood U ⊂ M then

(Î1, Î2, Î3) = (I1, I2, I3)Ψ, (η̂1, η̂2, η̂3) = F(η1, η2, η3)Ψ, ĝ = Fg,

where F : U → R
+ and Ψ : U → SO(3).

Dfn. We say that a Riemannian metric G defined on M × (0, ǫ) with
coordinates (x, ρ) has as conformal infinity the QC-manifold (M,H) if
there exists an admissible set (η1, η2, η3, I1, I2, I3, g) such that

G ∼ 1

ρ2
((η1)

2 + (η2)
2 + (η3)

2 + dρ2) +
1

ρ
g,

when ρ tends to zero.



Theorem. [O.Biquard, 2000] Each real analytic QC-manifold (M,H) is
the conformal infinity of a unique quaternionic Kähler metric G defined
on a neighborhood of M .

Example. The quaternionic hyperbolic metric on the unit-ball in H
n+1

has as conformal infinity the unit-sphere S4n+3 with the QC distribution
H being induced by the imbedding of S4n+3 into the quaternionic
manifold H

n+1.

Theorem. [D.Duchemin, 2006] Each real analytic QC-manifold (M,H)
can be imbedded as a QC-hyper-surface in an appropriate quaternionic
manifold (K,Q).



Typical examples of QC-manifolds are provided by the 3-Sasakian
geometry.

Recall: A Riemannian (4n + 3)-manifold (M,h) is called 3-Sasaki if
there exist 3-Killing vector fields ξ1, ξ2, ξ3 such that

• h(ξi, ξj) = δij, i, j = 1, 2, 3

• [ξi, ξj] = −2ξk, for any cyclic permutation (i, j, k) of (1, 2, 3)

• (DX Ĩi)Y = h(ξi, Y )X − h(X,Y )ξi, i = 1, 2, 3, X, Y ∈ TM ,
where Ĩi(X) := DXξi and D denotes the Levi-Civita connection of the
Riemannian metric h.

We construct a QC-structure on M out of the 3-Sasakian one by setting
H = {ξ1, ξ2, ξ3}⊥.



QC-Hyper-Surfaces of Hyper-Kähler Manifolds

Let (K,Q) be a quaternionic manifold and G be any Q-compatible
Riemannian metric on K.

Dfn. (K,Q, G) is called a hyper-Kähler manifold if there exists a
frame {J1, J2, J3} of Q which is parallel with respect to the Levi-Civita
connection of G.

• A trivial example of a hyper-Kähler manifold is provided by H
n+1 with

its flat metric.



From now on we will assume: (M,H) is a QC-hyper-surface of a
hyper-Kähler manifold (K,J1, J2, J3, G).

Furthermore:

• Let D be the Levi-Civita connection of G

• Let N be the unit-normal vector field of the imbedding

• II(X,Y ) := −G(DXN,Y ), X,Y ∈ TM is the second fundamental
form.

Then it holds:

• II|H is symmetric and negative definite

• II(JsX, JsY ) = II(X,Y ), s = 1, 2, 3, X, Y ∈ H.

Note that we make no assumption about II(JsN,X), s = 1, 2, 3,
X ∈ H.



• The key point in our method is proving that for each QC-hyper-surface
(M,H) there exists a function f : M → R for which it holds

II(JsN, JsX) = −f−1df(X), s = 1, 2, 3, X ∈ H.

• The function f is obtained by performing a certain volume normalization
on M by comparing II|H with the hyper-Kähler metric G|H. For this
purpose we use the following lemma

Lemma. Let H4n be a real vector space with a prescribed hyper-complex
structure (J1, J2, J3). Assume that we are given two positive definite
inner products ĝ and g on H4n compatible with (J1, J2, J3).

If we set
γ̂i(X,Y ) := ĝ(IjX,Y ) +

√
−1 ĝ(IkX,Y ) and

γi(X,Y ) := g(IjX,Y ) +
√
−1 g(IkX,Y ),

then there exists a positive constant µ such that (γ̂s)
n = µ(γs)

n,
s = 1, 2, 3.



Note that the Levi-Civita connection of the hyper-Kähler metric G

induces a connection in the bundle TK|M → M .

Theorem. If (M,H) is a QC-hyper-surface of a hyper-Kähler manifold
(K,Q) then it holds:

• The second fundamental form II extends in an unique way to a
symmetric Js-invariant section ∆ of the bundle (T ∗K ⊗ T ∗K)|M → M .

• The section f∆ is parallel with respect to the Levi-Civita connection
of the hyper-Kähler metric G.



Let (K,Q, G) be a hyper-Kähler manifold with Riemannian curvature
tensor R.

Theorem. If M ⊂ K is a QC-hyper-surface with normal vector N , then
at each point of M it holds

R(X,Y )N = 0, X, Y ∈ TK.



Thank You for Your Attention!


