
The Calabi-Yau equation for
T 2-fibrations

Luigi Vezzoni

Marburg, July 2012

In collaboration with

A. Fino, E. Buzano, Y.Y. Li and S. M. Salamon



The Calabi-Yau equation

Yau’s Theorem [Symplectic version]. Let (Mn, J,Ω) be a compact
Kähler manifold and let σ be a volume form satisfying

∫
M

Ωn =
∫
M
σ.

Then there exists a unique Kähler form ω̃ ∈ [Ω] such that

ω̃n = σ

←− CY Equation

CY equation still makes sense on an almost Kähler (AK) manifold when
J is non-integrable.
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CY equation on 4-manifolds

Let (M, J,Ω) be a compact AK manifold with a volume form σ = ef Ωn

satisfying
∫
M
ef Ωn =

∫
M

Ωn.

Then

CY Equation ←→


(Ω + dα)n = ef Ωn

Jdα = dα

d∗α = 0

(∗)

• (∗) is elliptic for n = 2;

• (∗) is overdetermined for n > 2.

Question: Can the Yau’s Theorem be generalized to AK 4-manifolds?

(At least in the special case b+ = 1)
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Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY
equation are unique.

Proof. Let ω1 and ω2 be two solutions to the CY equation.
Then {

ω2
1 = ω2

2 ,

ω2 = ω1 + dα
=⇒ dα2 + 2ω1 ∧ dα = 0 .

Consider ω̄ = ω1 + ω2. ω̄ is a symplectic form.

ω̄ ∧ dα = 0 =⇒ dα = 0 . c.v.d.

[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006
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Existence of solutions

Donaldson’s Conjecture. Let (M,Ω, J, σ) be a compact symplectic
4-manifold with an acs J tamed ∗ by Ω and a volume form.
If ω̃ ∈ [Ω] is a symplectic form on M which is compatible with J and
solving the CY equation

ω̃2 = σ

then there are C∞ a priori bounds on ω̃ depending only on Ω, J and σ.

Applications:

• Yau’s theorem holds on compact 4-dimensional AK manifolds with
b+ = 1.

• If b+(M) = 1 and there exists Ω taming J, then there exists Ω̃
which is compatible with J.

* Ω(J·, ·) > 0.
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The Chern connection

Let (M, g , J) be an almost Hermtian manifold. There exists a unique
connection ∇ such that

∇J = ∇g = 0 , Tor1,1 = 0 .

Consider
Ri jkl = R j

ikl
+ 4N r

l j
N i

rk

Theorem [Tosatti,Weinkove,Yau] If R > 0, then the Donaldson’s
conjecture holds.

Example: An infinitesimal deformation of the F-S structure on CPn.

[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, Proc. London Math. Soc.,
2008
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CY equation on the Kodaira-Thurston manifold

The Kodaira-Thurston manifold is defined as M = Γ\Nil3 × S1.

M has a global left-invariant coframe {e1, e2, e3, e4}

de i = 0 , i = 1, 2, 3 , de4 = e1 ∧ e2 , (0, 0, 0, 12) .

M has the almost Kähler structure

Ω = e1 ∧ e3 + e2 ∧ e4 g =
∑

e i ⊗ e i .

b1(M) = 3 and M has no Kähler structures

[K] K.Kodaira, Amer. J. Math., 1964
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M is a T 2-bundle over a T2

S1×S1 ↪→ Γ\Nil3 ×S1

↓
T2

The symplectic form Ω is Lagrangian w.r.t. this fibration, i.e. Ω vanishes
on the fibers.

Theorem[Tosatti,Weinkove] The CY equation on (M,Ω, g) can be
solved for every T 2-invariant volume form σ.

Argument of the proof:

• Writing σ = ef Ω2, then every solution ω̃ = Ω + dα of the CY

equation satisfies trg g̃ ≤ MinM∆ f

• The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.
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CY equation on the Kodaira-Thurston manifold II

Consider the Calabi-Yau equation (Ω + dα)2 = ef Ω2.

Let

α = v e1 + vx e3 + vy e4 , v ∈ C∞(T2) .

Then
dα = vxx e13 + vxye23 + vxy e14 + vyy e24

and the CY equation becomes the Monge-Ampère equation

(1 + vxx)(1 + vyy )− v2
xy = ef

Theorem [Li] The Monge-Ampère equation on the standard torus Tn has
always solution.

[Li] Y.Y. Li, Comm. Pure Appl. Math., 1990.
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Goal: Generalize this argument to other AK structures on T 2-bundles
over T2.

Theorem [Ue] Every orientable T 2-bundle over a T2 is an
infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let M = Γ̃\G be a 4-dimensional infra-solvmanifold equipped
with an invariant AK structure (J,Ω). Then condition R > 0 holds if and
only if J is integrable.

• In particular the Tosatti-Weinkove-Yau theorem cannot be applied to
the case of a T 2-bundle over a T2.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.



Goal: Generalize this argument to other AK structures on T 2-bundles
over T2.

Theorem [Ue] Every orientable T 2-bundle over a T2 is an
infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let M = Γ̃\G be a 4-dimensional infra-solvmanifold equipped
with an invariant AK structure (J,Ω). Then condition R > 0 holds if and
only if J is integrable.

• In particular the Tosatti-Weinkove-Yau theorem cannot be applied to
the case of a T 2-bundle over a T2.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.



Goal: Generalize this argument to other AK structures on T 2-bundles
over T2.

Theorem [Ue] Every orientable T 2-bundle over a T2 is an
infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let M = Γ̃\G be a 4-dimensional infra-solvmanifold equipped
with an invariant AK structure (J,Ω). Then condition R > 0 holds if and
only if J is integrable.

• In particular the Tosatti-Weinkove-Yau theorem cannot be applied to
the case of a T 2-bundle over a T2.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.



Goal: Generalize this argument to other AK structures on T 2-bundles
over T2.

Theorem [Ue] Every orientable T 2-bundle over a T2 is an
infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let M = Γ̃\G be a 4-dimensional infra-solvmanifold equipped
with an invariant AK structure (J,Ω). Then condition R > 0 holds if and
only if J is integrable.

• In particular the Tosatti-Weinkove-Yau theorem cannot be applied to
the case of a T 2-bundle over a T2.

[Ue] M. Ue, J. Math. Soc. Japan, 2009.



The main result

Theorem [Fino, Li, Salamon, –/ Buzano, Fino, –] Let M be a T 2-bundle
over a T2 equipped with an invariant AK structure (Ω, J). Then for every
T 2-invariant volume form σ = ef Ω2, f ∈ C∞(T2) the associated CY
equation as a unique solution.

Layout of the proof:

• Use the classification of orientable T 2-bundles over T2;

• Classify in each case invariant Lagrangian AK structures and
invariant Symplectic AK structures;

• Rewrite the problem in terms of a Monge-Ampère equation;

• Show that such an equation has solution.
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• Classification of T 2-bundles over T2

T 2-bundles over T2 were classified by Sakamoto and Fukuhara.

• Any T 2-bundle over T2 can be viewed as M = Γ\R4, Γ is a lattice
of a group G which acts on R4.

• The possible groups are
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The nine families

G Structure equations

i , ii SO(4) nR4 (0, 0, 0, 0)
iii Nil3 × R (0, 0, 0, 12)

iv , v Sol3 × R (0, 0, 13, 41)
vi , vii , viii Nil3 × R (0, 0, 0, 12)

ix Nil4 (0, 13, 0, 12)

Theorem [Geiges] Let M be the total space of an orientable T 2-bundle
over a T2. Then

• every a ∈ H2(M,R) can be represented by a symplectic form;

• M has a Kähler structure if and only if G = SO(4) nR4 and in this
case all the invariant AK structures are genuine Kähler structures;

• If G = Nil4 then every left-invariant AK structure is Lagrangian;

• If G = Sol3 × R every AK structure is non-Lagrangian.

[G] H. Geiges, Duke Math. J., 1992.
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• Classification of invariant AK structures

Goal: Classify all invariant AK structures (g ,Ω) on Nil3 × R, Nil4

Sol3 × R.

In each case there exists an ON basis (f i ) such that Ω = f 12 + f 34 and

• G = Nil4 → f 1 ∈
〈
e1
〉
, f 2 ∈

〈
e1, e2

〉
, f 3 ∈

〈
e1, e2, e3

〉
.

• G = Sol3 × R→ f 1 ∈
〈
e1
〉
, f 3 ∈

〈
e3
〉
, f 4 ∈

〈
e3, e4

〉
.

• G = Nil3 × R→ f 1 ∈
〈
e1
〉
, g(e3, f 2) = 0, g(e3, f 3)g(e4, f 4) ≥ 0.
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Geometry type G = Nil3 × R

G Structure equations
i , ii SO(4) nR4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv , v Sol3 × R (0, 0, 13, 41)

vi , vii , viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)
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In this case all the total spaces are nilmanifolds, all the invariant AK
structures are Lagrangian and we can work as in the Kodaira-Thurston
manifold.
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G Structure equations
i , ii SO(4) nR4 (0, 0, 0, 0)
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iv , v Sol3 × R (0, 0, 13, 41)

vi , vii , viii Nil3 × R (0, 0, 0, 12)
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In this case the total spaces could be infra-nilmanifolds, invariant AK
structures could be either Lagrangian or non-Lagrangian and the
argument used in the Kodaira-Thurston case has to be modified.



Geometry type G = Sol3 × R

G Structure equations
i , ii SO(4) nR4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv , v Sol3 × R (0, 0, 13, 41)

vi , vii , viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

In this case the total space could be an infra-sovmanifold, all invariant
AK structures are non-Lagrangian and the CY equation reduces to a
Monge-Ampère equation.



Geometry type G = Nil4

G Structure equations
i , ii SO(4) nR4 (0, 0, 0, 0)

iii Nil3 × R (0, 0, 0, 12)
iv , v Sol3 × R (0, 0, 13, 41)

vi , vii , viii Nil3 × R (0, 0, 0, 12)
ix Nil4 (0, 13, 0, 12)

In this case all total spaces are nilmanifolds, all invariant AK structures

are Lagrangian and the CY reduces to the same Monge-Ampère equation

for Lagrangian AK structures in the families vi), vii), viii) associated to

Nil3 × R.



• The Monge-Ampère equation

The following equation covers all cases

A11[u]A22[u]−
(
A12[u]

)2
= E1 + E2 e

f

where

A11[u] = uxx + B11uy + C11 + Du,

A12[u] = uxy + B12uy + C12,

A22[u] = uyy + B22uy + C22,

and Bij , Cij , D, Ei are constants.

In the Lagrangian case D = 0
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• Solutions to the Monge-Ampère equation

Goal: Show that A11[u]A22[u]−
(
A12[u]

)2
= E1 + E2 e

f has a solution

on T2.

• The first step consists on observing that solutions to the equation
are unique up to a constant.

• We look for a solution u satisfying
∫
T2 u = 0.

• We apply the continuity method to

A11[u]A22[u]−
(
A12[u]

)2
= E1 + (1− t)E2 + tE2 e

f , t ∈ [0, 1].

using the a priori estimate

‖u‖C 2 ≤ 2(B11 + 1)|B22|e2C22 + C11 + C22.
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The CY equation on the Kodaira-Thurston manifold
(Still in progress!)

Let (M,Ω, J) be the Kodaira-Thurston manifold with the standard AK
structure and let

σ = ef Ω2 , f ∈ C∞(M,R).

f can be regarded as a map f ∈ C∞(R4,R) such that

f (x , y , z , t) = f (x + n, y + m, z + k + ny , t + l) , (n,m, k, l) ∈ Z4 .

The CY equation writes as

Jda = da ⇐⇒

{
a2,y + xa2,z − a1,x + a4 = −a4,t + a3,z ,

a4,y + xa4,z − a1,z = −a3,x + a2,t

(Ω + da)2 = ef ⇐⇒
(1 + a3,y + xa3,z − a1,t)(1− a4,x + a2,z)−

− (−a4,t + a3,z)2 − (a3,x − a2,t)
2 = ef .
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Theorem The CY problem is equivalent to the following Monge-Ampère
type equation(
(∂y + x∂z)

2u + ∂2
t u + (∂y + x∂z)B3u − ∂tB1u + 1

)(
∂2
xu + ∂2

zu + 1
)
−(

∂x∂tu + (∂y + x∂z)∂zu + ∂zB3u
)2

−
(
(∂y + x∂z)∂xu − ∂z∂tu + ∂zu + ∂xB3u

)2

= eF

where B1 and B3 are linear operators solving{
∂x(B1u) + ∂z(B3u) = −∂xu

∂x(B3u)− ∂z(B1u) = −∂zu.



Open related problems

• Find a (generalized) ∂∂̄-lemma which ensures that the CY problem
reduces to a Monge-Ampère equation.

• Find a proof of the main theorem in terms of a (modified) Ricci flow.

• Find examples / classify compact AK non-Kähler manifolds with
R > 0.


