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The Calabi-Yau equation

Yau’s Theorem [Symplectic version]. Let (M",J,Q) be a compact
Kahler manifold and let o be a volume form satisfying [,,Q" = [, 0.
Then there exists a unique Kahler form & € [Q] such that

+— CY Equation

CY equation still makes sense on an almost Kahler (AK) manifold when
J is non-integrable.
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CY equation on 4-manifolds

Let (M, J,Q) be a compact AK manifold with a volume form ¢ = ef Q"
satisfying [,,e'Q" = [, Q". Then

(Q+ da)" = efQ"
CY Equation +— ¢ Jda = da (%)
d*a=0

e (x) is elliptic for n = 2;

e (%) is overdetermined for n > 2.

Question: Can the Yau’s Theorem be generalized to AK 4-manifolds?
(At least in the special case b* = 1)
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Then
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Uniqueness of solutions

Proposition [Donaldson] In dimension 4 solutions to the CY
equation are unique.

Proof. Let wy and wy be two solutions to the CY equation.

Then

2 _ 2
Wy =Wy,

— da® + 2w Ada=0.
wr = w1 + da

Consider o = w1 4+ wp. @ is a symplectic form.
wNda=0— da=0. c.v.d.

[D] S.K.Donaldson, in Inspired by S.S.Chern,World Sci. 2006
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Existence of solutions

Donaldson’s Conjecture. Let (M,Q,J o) be a compact symplectic
4-manifold with an acs J tamed™ by Q and a volume form.

If & € [Q] is a symplectic form on M which is compatible with J and
solving the CY equation

P =c

then there are C*° a priori bounds on & depending only on €2, J and o.

Applications:

® Yau's theorem holds on compact 4-dimensional AK manifolds with
bt =1.

e If b¥(M) =1 and there exists Q taming J, then there exists Q
which is compatible with J.

*Q(J-, ) > 0.
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Let (M, g, J) be an almost Hermtian manifold. There exists a unique
connection V such that

VJ=Vg=0, Tor" =0.

Consider

o _pl i
Rijui = Rig + 4NNz

Theorem [Tosatti,Weinkove,Yau] If R > 0, then the Donaldson’s
conjecture holds.

[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, Proc. London Math. Soc.,
2008



The Chern connection

Let (M, g, J) be an almost Hermtian manifold. There exists a unique
connection V such that

VJ=Vg=0, Tor" =0.

Consider

o _pl i
Rijui = Rig + 4NNz

Theorem [Tosatti,Weinkove,Yau] If R > 0, then the Donaldson’s
conjecture holds.

Example: An infinitesimal deformation of the F-S structure on CP".

[T,W,Y] V. Tosatti, B. Weinkove, S.T. Yau, Proc. London Math. Soc.,
2008
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CY equation on the Kodaira-Thurston manifold

The Kodaira-Thurston manifold is defined as M = [\ Nil® x S*.
M has a global left-invariant coframe {e!, 2, 3, e*}

del =0, i=1,23, de*=e'ne?, (0,0,0,12).

M has the almost Kahler structure

Q=e'rNe+e2ne g:Ze’®ef.

bi(M) =3 and M has no Kahler structures
[K] K.Kodaira, Amer. J. Math., 1964
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M is a T2-bundle over a T2

SixSt — T\Ni® xSt
1
T2

The symplectic form € is Lagrangian w.r.t. this fibration, i.e. Q vanishes
on the fibers.

Theorem|[Tosatti,Weinkove] The CY equation on (M,Q, g) can be
solved for every T?-invariant volume form o.

Argument of the proof:

e Writing 0 = ef Q2, then every solution & = Q + da of the CY
equation satisfies | tr, & < MinyA f

e The continuity method gives the result.

[TV] V. Tosatti, B. Weinkove, J. Inst. Math. Jussieu, 2011.
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CY equation on the Kodaira-Thurston manifold Il

Consider the Calabi-Yau equation (Q + da)? = ef Q2. Let
a=vel+v.etyet, veC®(T?).

Then

13 23 14 24
da=vne +vye +vy,e” +y,e

and the CY equation becomes the Monge-Ampére equation

(14 vi) (1 + vyy) — ny =ef

Theorem [Li] The Monge-Ampere equation on the standard torus T" has
always solution.

[Li] Y.Y. Li, Comm. Pure Appl. Math., 1990.
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Goal: Generalize this argument to other AK structures on T2-bundles
over T?.

Theorem [Ue] Every orientable T2-bundle over a T? is an
infra-solvmanifold, i.e. a finite quotient of a solvmanifold.

Lemma Let M = I:\G be a 4-dimensional infra-solvmanifold equipped
with an invariant AK structure (J,2). Then condition R > 0 holds if and
only if J is integrable.

e In particular the Tosatti-Weinkove-Yau theorem cannot be applied to
the case of a T2-bundle over a T?.

[Ue] M. Ue, J. Math. Soc. Japan, 20009.
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The main result

Theorem [Fino, Li, Salamon, —/ Buzano, Fino, -] Let M be a T?-bundle
over a T? equipped with an invariant AK structure (2, J). Then for every
T2-invariant volume form o = ef Q2, f € C>°(T?) the associated CY
equation as a unique solution.

Layout of the proof:

e Use the classification of orientable T2-bundles over T?:

e (Classify in each case invariant Lagrangian AK structures and
invariant Symplectic AK structures;

e Rewrite the problem in terms of a Monge-Ampére equation;

e Show that such an equation has solution.
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e Classification of T2-bundles over T2

T2-bundles over T? were classified by Sakamoto and Fukuhara.

e Any T2-bundle over T? can be viewed as M = '\R*, T is a lattice
of a group G which acts on R*.

e The possible groups are
SO(4)x R*, NiP xR, So®xR, Ni*.

e T2_bundles over T? are classified in 9 families

[SK] K. Sakamoto, S. Fukuhara, Tokyo J. Math., 1983.



The nine families

G Structure equations
i, i | SO(4) x R* (0,0,0,0)
i | NP xR (0,0,0,12)
iv,v| So® xR (0,0,13,41)
vi, vii, viii | Nil® x R (0,0,0,12)
ix Nil* (0,13,0,12)

Theorem [Geiges| Let M be the total space of an orientable T?-bundle
over a T2, Then
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Theorem [Geiges| Let M be the total space of an orientable T?-bundle
over a T2, Then

e every a € H>(M,R) can be represented by a symplectic form;

e M has a Kihler structure if and only if G = SO(4) x R* and in this
case all the invariant AK structures are genuine Kahler structures;

e If G = Nil* then every left-invariant AK structure is Lagrangian;

[G] H. Geiges, Duke Math. J., 1992.
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G Structure equations
i, i | SO(4) x R* (0,0,0,0)
i | NP xR (0,0,0,12)
iv, v| Sol®xR (0,0,13,41)
vi, vii, viii | Nil® x R (0,0,0,12)
ix Nil* (0,13,0,12)

Theorem [Geiges| Let M be the total space of an orientable T?-bundle
over a T2, Then

e every a € H>(M,R) can be represented by a symplectic form;

e M has a Kihler structure if and only if G = SO(4) x R* and in this
case all the invariant AK structures are genuine Kahler structures;

If G = Nil* then every left-invariant AK structure is Lagrangian;

If G = Sol® x R every AK structure is non-Lagrangian.

[G] H. Geiges, Duke Math. J., 1992.
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e Classification of invariant AK structures

Goal: Classify all invariant AK structures (g, Q) on Nil® x R, Nil*
Sol® x R.

In each case there exists an ON basis (') such that Q = 12 4 £3* and

e G=Nil*— fle(el), fPe(ee?), e (el e? ed).
e G=SoPxR— fle(e), fPe(e?), fre(e ).

© G=NIP xR~ fle(e), g(e’f?) =0, g(e®, F*)g(e*, ) > 0.
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Geometry type G = Nil® x R

i | NP xR (0,0,0,12)

In this case all the total spaces are nilmanifolds, all the invariant AK
structures are Lagrangian and we can work as in the Kodaira-Thurston
manifold.



Geometry type G = Nil®> x R

vi, vii, viii | Nil® x R (0,0,0,12)

In this case the total spaces could be infra-nilmanifolds, invariant AK
structures could be either Lagrangian or non-Lagrangian and the
argument used in the Kodaira-Thurston case has to be modified.



Geometry type G = Sol® x R

iv,v| Sol®xR (0,0,13,41)

In this case the total space could be an infra-sovmanifold, all invariant
AK structures are non-Lagrangian and the CY equation reduces to a
Monge-Ampere equation.



Geometry type G = Nil*

ix Nif* (0,13,0,12)

In this case all total spaces are nilmanifolds, all invariant AK structures
are Lagrangian and the CY reduces to the same Monge-Ampere equation
for Lagrangian AK structures in the families vi), vii), viii) associated to

NiPP x R.



e The Monge-Ampére equation

The following equation covers all cases

All[u]A22[u] - (Alz[u])2 == El + E2 ef

where

A11[u] = v + Briuy + Gii + Du,
Alg[u] = UXy + Blguy + C12,
Axnlu] = uy, + Bou, + Cx,

and Bjj, Cj, D, E; are constants.



e The Monge-Ampére equation

The following equation covers all cases

All[u]A22[u] - (Alz[u])2 == El + E2 ef

where

A11[U] = Uy + Buuy + CGi1 + Du,
Alg[u] = Uxy + Blguy + C12,
Axlu] = uyy + Basuy, + Coo,

and Bjj, Cj, D, E; are constants.

In the Lagrangian case
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e Solutions to the Monge-Ampére equation

Goal: Show that

on T2.

A11[u]A22[u] - (A12[u])2 = E1 + E2 ef

has a solution

e The first step consists on observing that solutions to the equation
are unique up to a constant.

® We look for a solution u satisfying [, u=0.

e We apply the continuity method to

Anr[ulAnlu] — (Anlu])’ = B+ (1 — 0)E + thhe', t€[0,1].

using the a priori estimate

[lulle: < 2(Bus + 1)[Bale® + Cir + Ca |
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The CY equation on the Kodaira-Thurston manifold
(Still in progress!)
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The CY equation writes as

Ay +Xax; —aix+ a4 = —as; + azz,

Jda=da <=
a4,y + Xdg z — a1z = —d3x + ast

l14+az,+xa3,—are)(l —asx+ az;)—
(4 day = of ( ¥ z = are)( : 4x T 32,z2) .
—(—ast+a3z)" —(a3x —a2)" =¢".



Theorem The CY problem is equivalent to the following Monge-Ampére
type equation

<(0y + x8,)u+ 8 u + (8, + x0,)Bsu — d:Biu + 1) ((fu + &u+ 1>—
2 2
(axatu + (9, + x02)0u + 8283u> - <(ay 4 x0:)u — 8,0pu + Dyu + OXB3u) =ef

where By and Bs are linear operators solving

Ox(Biu) + 0,(Bsu) = —0xu
Ox(Bsu) — 0,(Biu) = —0,u.



Open related problems

e Find a (generalized) 9d-lemma which ensures that the CY problem
reduces to a Monge-Ampere equation.

e Find a proof of the main theorem in terms of a (modified) Ricci flow.

e Find examples / classify compact AK non-Kahler manifolds with
R > 0.



