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1. Basic Definitions and Facts

Ricci soliton: special solution of

Ricci flow equation ∂g
∂t = −2Ric(g)

of form g(t) = λ(t)ϕ∗t (g0) where

ϕt is a 1-parameter family of diffeomorphisms with

ϕ(0) = idM

λ(t) smooth function with λ(0) = 1 (scale change)

“Static” Ricci soliton equation for pair (g,X) on

manifold M :

Ric(g) + 1
2 LXg + ϵ

2 g = 0

where g is a complete metric,

X is a vector field

(necessarily complete, Z-H Zhang 2009)

ϵ = −Λ
2 is a real constant
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ϵ > 0 expanding soliton (Λ < 0)

ϵ = 0 steady soliton (Λ = 0)

ϵ < 0 shrinking soliton (Λ > 0)

X Killing =⇒ g Einstein (“trivial” solitons)

In Einstein case, Λ = − ϵ
2 ≈ Einstein constant.

gradient Ricci soliton: special solution where

X♭ = du

u : M −→ R (soliton potential )

static equation becomes

Ric(g) + Hessg (u) +
ϵ

2
g = 0

[Petersen-Wylie] g Einstein =⇒

Gaussian or du parallel
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3. Cohomogeneity One GRS Equations

Assume compact Lie group G acts isometrically

on manifold Mn+1 with

• orbit space an interval I (closed or half-open)

• generic (principal) orbit type G/K

• singular orbits G/Hi with Hi/K ≈ Ski

Write metric as g = dt2 + gt where

gt : a curve of G-invariant metrics on P := G/K

GRS equations become the system:

−(δ∇
t
Lt)♭ − d(trLt) = 0 (1)

−tr(L̇t)− tr(L2
t ) + ü+ ϵ

2 = 0 (2)

rict − tr(Lt)Lt − L̇t + u̇ Lt +
ϵ
2 I = 0 (3)
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where

• Lt is the shape operator of hypersurface Pt

• δ∇
t
: T ∗(P )⊗ TP → TP codifferential,

• rict is the Ricci operator of Pt defined by

Ric(gt)(X,Y ) = gt(rict(X), Y )

Plus appropriate boundary conditions at endpoints

of I to guarantee smoothness and completeness
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Conservation Law: two formulations

ü+ (−u̇+ trL) u̇ = C + ϵu (R. Hamilton) (4)

⇔ St+tr(L2)− (−u̇+tr(L))2+(n− 1) ϵ
2 = C + ϵu

Useful Fact: (A. Back for Einstein case)

smoothness (e.g. C3) of ḡ, u + Eq. (3) +

codim(G/H) ≥ 2 =⇒ Eq. (1)

above + conservation law =⇒ Eq. (2)

Hamiltonian Formulation:

C = S2
+(p)K × R

On T ∗C (with canonical symplectic structure)

take Hamiltonian function
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H = v(q)e−u
((

2⟨L,L⟩+ u̇2 − 2u̇ trL
)

+E − ϵ(n+1− u)− S(q))

(from Perelman’s W-functional)

v(q) relative volume, E Lagrangian multiplier

KE has Lorentz signature

Then integral curves in {H = 0} are equivalent to

solutions of Eq. (2) and (3).

Initial Value Problem at Singular Orbit:

existence of a local solution (arbitrary ϵ) in a G-

invariant nbd of singular orbit G/H with prescribed

metric and shape operator on G/H

M. Buzano (JGP 2011)

under assumption: at special orbit G/H, the slice

rep. and the isotropy rep. as K-reps, have no

common irred. summands
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4. Non-existence Result ([DHW ], after Böhm)

Write g = k⊕ p (AdK-invariant decomposition)

p = p1 ⊕ · · · ⊕ pr (5)

where pi is the sum of all equivalent AdK-irreducible

summands of a fixed type. This decomposition is

unique up to permutation of summands.

Special orbits G/Hi: hi = si ⊕ k, p = si ⊕ qi

Theorem 1. Let M be a closed cohomogeneity

one G-manifold as described above. Assume that

some summand pi0 in (5) is actually AdK-irreducible

and that for any G-invariant metric on G/K, the

restriction to pi0 of its traceless Ricci tensor is al-

ways negative definite. Assume further that pi0 ∩
sj = {0} for j = 1,2.

Then there cannot be any G-invariant gradient

Ricci soliton structure on M .
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Sketch of Proof:

Consider g̃ = v−
2
ng, where v :=

√
det gt

Set Fi :=
1
2 tri(g̃

2). Then one computes that

F̈i + ξḞi = tri( ˙̃g
2
) + tri( ˙̃gg̃

−1 ˙̃gg̃) + 2 tri(g̃
2r(0))

Pick i0.

At the singular orbits, Fi0 tend to +∞. So Fi0 has

an interior minimum.

There, Ḟi0 = 0, while F̈i0 ≥ 0. 2

Explicit example (C. Böhm):

Sk+1 × (G′/K′)×M3 × · · · ×Mr

with Mi compact isotropy irreducible and

G′/K′ = SU(ℓ+m)/(SO(ℓ) ·U(1) ·U(m)),

ℓ ≥ 32, m = 1,2, k = 1,2, · · · , [ℓ/3]
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Complete, non-compact, non-trivial GRS

I. Steady Case (ϵ = 0)

can apply and/or sharpen results of B. L. Chen
(R̄ > 0), Munteanu-Sesum, Peng Wu, ...

Proposition 2.For a complete, non-compact, non-
trivial steady GRS of cohomogeneity one:

(a) u is strictly decreasing and concave (as func-
tion of t) with ü(0) = C/(k +1) < 0

(note: no curvature assumptions)

(b) trL is strictly decreasing; 0 < trL ≤ n
t .

(c) generalized mean curvature ξ := −u̇ + trL is
strictly decreasing with asymptotic limit

√
−C. Hence

C ξ−2 is a general Lyapunov function.

(d) ambient scalar curvature is strictly decreasing
with asymptotic limit 0 (since R̄+ u̇2 = −C ).

(e) quantity F := v
2
n(S+tr(L0)

2) is non-increasing
on any trajectory corresponding to a non-trivial
soliton (Lyapunov function)
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Example 1. [DW2009] M = Rd1+1×M2×· · ·×Mr

M1 = Sd1, d1 > 1, equipped with the constant cur-

vature 1 metric h1

(Mi, hi), 2 ≤ i ≤ r Einstein with Einstein constants

λi > 0 and dimension di.

∃ r−1 parameter family of non-trivial steady GRS

structures with ḡ = dt2 + g1(t)
2h1 + · · ·+ gr(t)2hr,

Ric(ḡ) ≥ 0 (positive off the zero section )

Remarks:

(i) generally non-Kähler; generally not locally con-

formally flat if r ≥ 2

(ii) r = 1: Bryant solitons on Rn, n ≥ 3

(n = 2 is Hamilton’s cigar, which is Kähler)

These have positive sectional curvature.
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(iii) r = 2 Ivey’s generalization of Bryant solitons,

PAMS (1994)

(iv) asymptotics: gi ∼
√
t, trL ∼ n

2t + O(t−2) and

u(t) ∼ −
√
−Ct+ n

4 log t.

(iv) C. Böhm (1999): r − 2 parameter family of

complete Ricci-flat metrics (C=0); asymptotically

Euclidean

Example 2. [DZ Chen 2010]

M = S1 × Lq where Lq is the complex line bundle

over a Fano KE manifold with |q| the first Chern

number.

∃ a 3-parameter family of “explicit” steady soliton

solutions (modulo homothety)

Hypersurfaces are T2 bundles over Fano with con-

nection metric

Metric on T2 = S1 × S1 is not “diagonal”

Asymptotically, metric components ∼ t (paraboloidal)
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II. Expanding Case: (ϵ > 0) Set

ξ := −u̇+ trL (generalized mean curvature)

and E = C + ϵu.

Conservation law becomes: Ë + ξĖ − ϵE = 0.

Its derivative yields for y = u̇:

ÿ + ξẏ − ( ϵ2 + tr(L2))y = 0

can apply and/or sharpen results of B.L. Chen

(R̄+ ϵ
2(n+1) > 0), Shijin Zhang, Zhuhong Zhang,

Carillo-Ni, Munteanu-Sesum, Pigola-Rimoldi-Setti,....

Proposition 3.For a non-trivial complete expand-

ing GRS with u(0) = 0

(a) u is strictly decreasing and strictly concave;

ü(0) = C/(k +1) < 0

(b) volume grows at least logarithmically

(c) ∃ t1 > 0 such that −
√

ϵ
2n < trL <

√
ϵ
2n for t ≥ t1
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Proposition 4. (gradient bound) ∃ t1 > 0 and a >

0 such that for t ≥ t1

(a) 9
10

(
−u̇(t1)
ϵ
2 t+a

) (
ϵ
2 t+ a

)
< |∇u| < ϵ

2 t+
√
−C

Hence u is asymptotically bounded above and be-

low by quadratics.

(b) limt→+∞ ξ = +∞

(c) For t large, the quantity F := v
2
n(S + tr(L0)

2)

is strictly decreasing on any trajectory in velocity

phase space except when L0 vanishes

(d) ü+ ϵ
2 = −Ricḡ(

∂
∂t,

∂
∂t) ≤ ϵ

2

(
1+ 9

10

(
−u̇(t1)
ϵ
2 t+a

) (
ϵ
2 t+ a

))
provided t ≥ t1.

(e) If ü + ϵ/2 ≤ 0 for t ≥ t0, then trL is strictly

decreasing, 0 < trL < n/t and R̄ > − ϵ
2n.
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Example 3 [DW2009]

On the same manifolds as in Example 1, there

is an r-parameter family of non-trivial (generally

non-Kähler, non-locally conformally flat) expand-

ing GRS structures

Remarks:

(i) r = 1 Ivey in [Chow et al] ;

(ii) r = 2 Gastel and Kronz (2004)

(iii) Böhm (1999): r−1 parameter family of com-

plete negative Einstein metrics on these manifolds

Einstein metric components grow exponentially with

t, mean curvature asymptotically constant ∼
√
nϵ/2.

(iv) solitons are asymptotically conical and satisfy

ü+ ϵ/2 ≤ 0 for t ≥ t0; also, ambient scalar curva-

ture tends to 0 and ξ ∼ ϵ
2 t.
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4. A General Winding Number for Shrinkers

Recall ξ = −u̇ + trL (generalized mean curvature

for measure e−udµḡ)

Eq. (2) =⇒ ξ is strictly decreasing from

+∞ to −∞ in all cases (unique zero)

Let E := C + ϵu and F := u̇.

Recall Conservation law (4) in the form

Ë + ξĖ − ϵE = 0

Let ds := ξ dt and ′ denote differentiation wrt s.

Note: insert −1 for change of variables after unique

zero of ξ.

We now have (with W := ξ−1)

E ′ = ϵWF

F ′ = WE − F
15



associated vector field

Theorem 5. ([DHW 2011]) For trajectories of the

flow of (F , E) starting from either the positive or

negative E axis, the winding number about the

origin up to the (unique) turning point is finite,

non-positive and bounded from below by −(6+ π
4).

Remark: The origin corresponds to Einstein tra-

jectories.
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Some General Facts about Shrinking GRS:

(a) R̄ ≥ 0. It is positive unless the soliton metric

is flat. (B. L. Chen without sectional curvature

bounds, Pigoli-Rimoldi-Setti for rigidity)

(b) Quadratic bound for soliton potential in com-

plete, non-compact case

[H. D. Cao-D. Zhou 2010]

− ϵ
2(n+1)+ ϵ

4(t
√
−ϵ+ c2)

2 ≤ E(t) = C + ϵu(t)

≤ − ϵ
2(n+1)+ ϵ

4(t
√
−ϵ− c1)

2

Note: ci depend only on n+1 = dimM . (Haslhofer-

Müller 2011)

Ambient scalar curvature

R = −2 tr(L̇)− tr(L2)− (trL)2 + S

= −E − Ė2

ϵ2
− ϵ

2(n+1)
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So General Fact (a) implies in non-flat cases

E < − ϵ
2(n+1), and

ü(0) < − ϵ
2

(
n+1
k+1

)
Theorem 6. [DHW2011]

Let (M, ḡ, u) be a non-trivial complete shrinking
GRS of cohomogeneity one with invariant soliton
potential and orbit space I. Then, regarding E as
a function of t:

(i) E = C + ϵu must change sign and is a Morse-
Bott function on M .

(ii) If ḡ is nonflat, then E < − ϵ
2(n+1).

(iii) If M is compact, E has at most 4 critical points
in int I. As a function of t, E is either a local max
(where E > 0) or a local min (where E < 0).

(iv) If M is complete, noncompact, E has at most
5 critical points in int I.

Remark: In known examples, E is monotone de-
creasing. But these are all Kähler.
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Theorem rules out

Example 1 smooth Gaussian (rigid in Petersen-

Wylie sense)

M = Rd1+1 ×M2 × · · · ×Mr

Rd1+1 Euclidean, Mi positive Einstein i > 1

u(t) = − ϵ
4t

2, trL = d1
t , R = − ϵ

2(n− d1)
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Example 2 [FIK 2003], [DW 2008]

(Vi, Ji, hi),1 ≤ i ≤ r, r ≥ 2, Fano KE manifolds

with complex dimension ni and c1(Vi) = piai where

pi > 0 and ai are indivisible classes in H2(Vi,Z)

V1 = CPn1, n1 ≥ 0, with normalised Fubini-Study

metric

Pq : principal S1 bundle over V1×· · ·×Vr with Euler

class −π∗
1(a1) +

∑r
i=2 qi π

∗
i (ai), i.e., q1 = −1.

Assume 0 < −(n1 +1) qi < pi for all 2 ≤ i ≤ r.

Then there is a complete shrinking GKRS struc-

ture on the space M obtained from the line bun-

dle Pq ×S1 C by blowing the zero section down to

V2 × · · · × Vr.

soliton metric has an asymptotically conical end
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Remarks: (a) Feldman-Illmanen-Knopf considered

case with r = 2, n1 = 0 and V2 to be a complex

projective space.

(b) The case r = 2, n2 = 0 corresponds to flat

Cn1+1 as a shrinking soliton.

(c) Also: Bo Yang (2008), A.Futaki-M.T.Wang

(2010), Chi Li (2010)

(d) There is a version of theorem where the base

is a coadjoint orbit and the principal orbits are

suitable circle bundles over it.

(e) The condition ü + ϵ
2 > 0 holds except in flat

case.

Proposition 7. Assume ü ≤ − ϵ
2 on some [a,+∞),

a > 0.

• from some t0 ≥ a on, trL is decreasing and 0 <

trL < ( t
n + c(t0))

−1 and

• ambient scalar curvature < − ϵ
2n.
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Numerical Search: [DHW ]

negative search results in compact cases

(i) S5 with SO(3)× SO(3) action

(ii) S2 × S3 with SO(3)× SO(3) action

(iii) S11 with SO(6)× SO(6) action

(iv) HPn+1 ♯HPn+1 with Sp(1)×Sp(n+1) action;

connected sum of Cayley projective planes

(v) R3 bundle over HPn with G = Sp(n+1); prin-

cipal orbit is twistor fibration over HPn

(vi) non-trivial sphere bundles over S2 (Hashimoto-

Sakaguchi-Yasui): principal orbit S3 × Sd−2

22


