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1. Basic Definitions and Facts

Ricci soliton: special solution of
Ricci flow equation % = —2 Ric(g)
of form g(t) = A(t)¢;(g90) where

¢+ IS @ 1-parameter family of diffeomorphisms with
¢(0) = idyy

A(t) smooth function with A\(0) = 1 (scale change)

“Static” Ricci soliton equation for pair (g, X) on
manifold M:

Ric(g) +3Lxg+59=0
where g is a complete metric,
X is a vector field
(necessarily complete, Z-H Zhang 2009)
A

€= —% is a real constant



e > 0 expanding soliton (A < 0)
e = 0 steady soliton (A =0)
e < 0 shrinking soliton (A > 0)
X Killing == g Einstein (“trivial' solitons)
In Einstein case, A = —% ~ Einstein constant.
gradient Ricci soliton: special solution where
XP = du
u . M — R (soliton potential )

static equation becomes

Ric(g) + Hessg (u) + %g =0

[Petersen-Wylie] g Einstein =

Gaussian or du parallel



3. Cohomogeneity One GRS Equations
Assume compact Lie group G acts isometrically
on manifold M™+1 with
e orbit space an interval I (closed or half-open)
e generic (principal) orbit type G/K
e singular orbits G/H; with H;/K ~ Sk
Write metric as g = dt? + g where
gt - a curve of G-invariant metricson P := G/K
GRS equations become the system:
—(8V'Ly)> —d(trLy) =0 (1)
—tr(Ly) —tr(L?) +i+5=0 (2

ricy — tI’(Lt)Lt — Lt +u Ly + % I=0 (3)



where
e [; is the shape operator of hypersurface P
o V' : T*(P) @ TP — TP codifferential,
e ric; is the Ricci operator of P; defined by
Ric(gt)(X,Y) = gu(ricy(X),Y)

Plus appropriate boundary conditions at endpoints
of I to guarantee smoothness and completeness



Conservation Law: two formulations
u+ (—u+trL)u=C+ eu (R. Hamilton) (4)
& Sp4tr(L?) — (—a+tr(L)?+ (n—1) 5§ =C +eu
Useful Fact: (A. Back for Einstein case)
smoothness (e.g. C3) of g,u + Eq. (3) +
codim(G/H) > 2 = Eq. (1)
above + conservation law = Eq. (2)
Hamiltonian Formulation:
C = S_2|_(p)K x R
On T*C (with canonical symplectic structure)

take Hamiltonian function



H = v(q)e™ ((2(L, L) + 42 — 2utrL)
+E—e(n+1—-u)—5S(q))
(from Perelman’s W-functional)
v(q) relative volume, E Lagrangian multiplier
KE has Lorentz signature

Then integral curves in {{ = 0} are equivalent to
solutions of Eqg. (2) and (3).

Initial Value Problem at Singular Orbit:
existence of a local solution (arbitrary ¢€) in a G-
invariant nbd of singular orbit G/H with prescribed
metric and shape operator on G/H

M. Buzano (JGP 2011)
under assumption: at special orbit G/H, the slice

rep. and the isotropy rep. as K-reps, have no
common irred. summands



4. Non-existence Result ([DHW], after Bohm)
Write g =t ® p (Adg-invariant decomposition)

p=p1D---Dp, (5)

where p; is the sum of all equivalent Adg-irreducible
summands of a fixed type. This decomposition is
unique up to permutation of summands.

Special orbits G/H;: h; =s5; D, p =35, Dq;

Theorem 1. Let M be a closed cohomogeneity
one G-manifold as described above. Assume that
some summand p;, in (5) is actually Ad g-irreducible
and that for any G-invariant metric on G/K, the
restriction to p;, of its traceless Ricci tensor is al-
ways negative definite. Assume further that p; N
s; = {0} forj =1,2.

Then there cannot be any G-invariant gradient
Ricci soliton structure on M.



Sketch of Proof:

Consider g = v_%g, where v := y/det g¢

Set F; := 5 tr;(§%). Then one computes that
Fy 4 &F; = tri(§°) + try(§5159) + 2 try(3r(©)
Pick 1ip.

At the singular orbits, F;, tend to +oo. S0 F;, has
an interior minimum.

There, F;,, =0, while F;, >0. O
Explicit example (C. B6hm):
Sk+1 w (G'/K") x M3 x --- x My
with M; compact isotropy irreducible and
G'/K'=SU(+m)/(SO(¥) - U(1) - U(m)),

¢>32, m=1,2, k=1,2,---,[¢/3]



Complete, non-compact, non-trivial GRS
I. Steady Case (¢ = 0)

can apply and/or sharpen results of B. L. Chen
(R > 0), Munteanu-Sesum, Peng Wu, ...

Proposition 2. For a complete, non-compact, non-
trivial steady GRS of cohomogeneity one:

(a) u is strictly decreasing and concave (as func-
tion of t) with uw(0) =C/(k+1) <O

(note: no curvature assumptions)
(b) trL is strictly decreasing; 0 < trL < %.
(¢) generalized mean curvature £ .= —u + trL is
strictly decreasing with asymptotic limit/—C'. Hence

C £~2 js a general Lyapunov function.

(d) ambient scalar curvature is strictly decreasing
with asymptotic limit O (since R+ 42 = —C ).

2
(e) quantity F := vn(S+tr(Lg)?) is non-increasing
on any trajectory corresponding to a non-trivial
soliton (Lyapunov function)



Example 1. [DW2009] M = RU+1 x My x - x M,

M1 = S% dq > 1, equipped with the constant cur-
vature 1 metric hq

(M;, h;), 2 <i<r Einstein with Einstein constants
A; > 0 and dimension d;.

4 r — 1 parameter family of non-trivial steady GRS
structures with g = dt2 + g1 (t)2h1 + - - - + gr(t)?hr,
Ric(g) > 0 (positive off the zero section )

Remarks:

(i) generally non-Kahler; generally not locally con-
formally flat if r > 2

(ii)) » = 1: Bryant solitons on R", n > 3
(n = 2 is Hamilton’s cigar, which is Kahler)

T hese have positive sectional curvature.
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(iii) »r = 2 1Ivey’s generalization of Bryant solitons,
PAMS (1994)

(iv) asymptotics: g; ~ vt, trL ~ 2 4+ O(t~2) and
u(t) ~ —/—Ct + Zlogt.

(iv) C. Bohm (1999): r — 2 parameter family of

complete Ricci-flat metrics (C=0); asymptotically
Euclidean

Example 2. [DZ Chen 2010]
M = S! x Ly where Ly is the complex line bundle
over a Fano KE manifold with |q| the first Chern

number.

4 a 3-parameter family of “explicit” steady soliton
solutions (modulo homothety)

Hypersurfaces are T2 bundles over Fano with con-
nection metric

Metric on T2 = S1 x S1 is not “diagonal”

Asymptotically, metric components ~ ¢ (paraboloidal)
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II. Expanding Case: (e > 0) Set
£ .= —u + trL (generalized mean curvature)
and £ = C + eu.
Conservation law becomes: £ + £€£€ — €€ = 0.
Its derivative yields for y = u:
i+ &y — (5+tr(L?)y =0

can apply and/or sharpen results of B.L. Chen
(R+5(n+1) > 0), Shijin Zhang, Zhuhong Zhang,

Carillo-Ni, Munteanu-Sesum, Pigola-Rimoldi-Setti,....

Proposition 3. For a non-trivial complete expand-
ing GRS with u(0) =0

(a) uw is strictly decreasing and strictly concave;
iw(0) =C/(k+1) <0

(b) volume grows at least logarithmically

(c) 3ty > 0 such that —/5n < trL < ,/5n fort >ty
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Proposition 4. (gradient bound) 3 t1 > 0 and a >
O such that fort > tq

(a) 2 (—;&tla)) (5t+a) <|Vul < 5t+v/=C

Hence u is asymptotically bounded above and be-
low by quadratics.

(b) My 400 § = F00
2
(c) Fort large, the quantity F := vn(S + tr(Lg)?)

is strictly decreasing on any trajectory in velocity
phase space except when Lg vanishes

: _ .0 0 9 (—u(t1)
(d) i45 = —Ricz(g; ) < 5 (1 * 10 ( §t+la,) (%t + a))
provided t > t;.

(e) If u+¢/2 <0 fort > tg, then trL is strictly
decreasing, 0 < trL < n/t and R > —5n.
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Example 3 [DWW2009]

On the same manifolds as in Example 1, there
is an r-parameter family of non-trivial (generally
non-Kahler, non-locally conformally flat) expand-
ing GRS structures

Remarks:

(i) r=1 1Ivey in [Chow et al] ;

(ii) r =2 Gastel and Kronz (2004)

(iii) Bohm (1999): r» — 1 parameter family of com-
plete negative Einstein metrics on these manifolds

Einstein metric components grow exponentially with
t, mean curvature asymptotically constant ~ ,/ne/2.

(iv) solitons are asymptotically conical and satisfy
u+¢e/2 <0 for t > tg; also, ambient scalar curva-

ture tends to 0 and § ~ 5t.
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4. A General Winding Number for Shrinkers

Recall £ = —u + trL (generalized mean curvature
for measure e™“dug)

Eqg. (2) = £ is strictly decreasing from
+o0o0 to —oo in all cases (unique zero)
Let £ :==C 4+ eu and F = .
Recall Conservation law (4) in the form
E+ 55’ —e€ =0
Let ds := £dt and / denote differentiation wrt s.

Note: insert —1 for change of variables after unique
zero of &.

We now have (with W := ¢ 1)
E'= W F

Fl=WE-F
15



associated vector field

Theorem 5. ([DHW 2011]) For trajectories of the
flow of (F,E) starting from either the positive or
negative £ axis, the winding number about the
origin up to the (unique) turning point is finite,
non-positive and bounded from below by —(6+ 7).

Remark: The origin corresponds to Einstein tra-
jectories.
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Some General Facts about Shrinking GRS:

(a) R > 0. It is positive unless the soliton metric
is flat. (B. L. Chen without sectional curvature
bounds, Pigoli-Rimoldi-Setti for rigidity)

(b) Quadratic bound for soliton potential in com-
plete, non-compact case

[H. D. Cao-D. Zhou 2010]
—5(n+1) + S(tvV/—€+c2)?2 < ER) = C + eu(t)
< —5(n+1)+ £(tv/—€—c1)?

Note: ¢; depend only on n+1 = dim M. (Haslhofer-
Miller 2011)

Ambient scalar curvature

R

—2tr(L) —tr(L?) — (trL)2 4+ S

>2
=-£-5-5(n+1)
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So General Fact (a) implies in non-flat cases

E < —%(n + 1), and

ii(0) < -5 (1)
Theorem 6. [DHW?2011]

Let (M,g,u) be a non-trivial complete shrinking
GRS of cohomogeneity one with invariant soliton
potential and orbit space I. Then, regarding £ as
a function of t:

(i) &€ = C 4+ eu must change sign and is a Morse-
Bott function on M.

(i) If g is nonflat, then £ < —5(n + 1).

(iii) If M is compact, £ has at most 4 critical points
inintl. As a function of t, £ is either a local max
(where £ > 0) or a local min (where £ < 0).

(iv) If M is complete, noncompact, £ has at most
5 critical points in int 1.

Remark: In known examples, £ is monotone de-
creasing. But these are all Kahler.
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T heorem rules out

Example 1 smooth Gaussian (rigid in Petersen-
Wylie sense)

M =RUTL Mo x - x My
R%1+1 Euclidean, M; positive Einstein i > 1

u(t) = 52, trL =4, R= —5(n —dy)
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Example 2 [FIK 2003], [DW 2008]

(Vi,Jihi),1 < i < r, r > 2, Fano KE manifolds
with complex dimension n; and ¢1(V;) = p;a; where
p; > 0 and a; are indivisible classes in H2(V;,7Z)

Vi1 = CP"1,nqy > 0, with normalised Fubini-Study
metric

P, : principal ST bundle over V1 x---x V- with Euler
class —nj(a1) +>7F_5 q;m; (a;), i.e., g1 = —1.

Assume 0 < —(n1+1)qg; <p; forall 2 <3< r.

Then there is a complete shrinking GKRS struc-
ture on the space M obtained from the line bun-
dle P; x g1 C by blowing the zero section down to
Vo X oo X V.

soliton metric has an asymptotically conical end
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Remarks: (a) Feldman-Illmanen-Knopf considered
case with r = 2,n; = 0 and V5 to be a complex
projective space.

(b) The case »r = 2,no, = 0 corresponds to flat
Cc™1t1 as a shrinking soliton.

(c) Also: Bo Yang (2008), A.Futaki-M.T.Wang
(2010), Chi Li (2010)

(d) There is a version of theorem where the base
IS @ coadjoint orbit and the principal orbits are
suitable circle bundles over it.

(e) The condition %+ 5 > 0 holds except in flat
case.

Proposition 7. Assume u < —5 on some [a, +0),

a > 0.

e from some tg > a on, trL is decreasing and 0 <
trL < (£ + c(to))~ ! and

e ambient scalar curvature < —%n.
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Numerical Search: [DHW]

negative search results in compact cases

(i) S° with SO(3) x SO(3) action

(i) 52 x S3 with SO(3) x SO(3) action

(iii) S11 with SO(6) x SO(6) action

(iv) HP*+1 g HP?+1 with Sp(1) x Sp(n+ 1) action;
connected sum of Cayley projective planes

(v) R3 bundle over HP™ with G = Sp(n + 1); prin-
cipal orbit is twistor fibration over HP"

(vi) non-trivial sphere bundles over S2 (Hashimoto-
Sakaguchi-Yasui): principal orbit §3 x S92
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