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V. = {u:R"xR" — R": p bilinear, skew-symmetric, Jacobi}.
C /\2(Rn)* ® R"
Fix basis of R” (‘and (-,:) ) ~» n <> p.
p ~» Lie group N, : Simply connected Lie(N,) = (R", 1) endowed
with left invariant metric defined by (-, -).
GL,(R) acts on V by change of basis:

Au(X,Y) = A(A7IX,A7LY), X, Y eR", Ae GL,(R), € V.

Geometrically: A € GL,(R) ~~ a Riemannian isometry
(NA-HJ <'7 >) — (Nu7 <A7A>)

by exponentiating A= : (R", A u) — (R", p).
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The action of GL,(R) on V ~~ representation of gl,(R) on V :

() = ap(-,-) — plas, ) —p( o), a€gl,(R), pe V.

gl,(R) = so(n) @ sym(n) Cartan decomposition ~» a = diagonal
n x n is maximal abelian subalgebra of sym(n) ~» A C a, a system
of roots, positive roots:

¢:{E,,—Emm€a, />m}.
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Definitions
Basis of weight vectors
{vik=(eiNe)@e:1<i<j<n 1<k<n}
vijk(€i &) = —vij(ej, &) = ex

Corresponding weights af-j- = En — Eij — Ejj -

a;
ifa:[ ]Ea,
an

()i = (ax — aj — aj)vijk = (a, o) vijk,

€ V the structural constants céf are given by

leie] =D che, or [ 1= chvin
k

k; i<j
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(N, go) a Lie group with a left-invariant metric «~ metric Lie

algebra (n, (-, -)o).
Let g(t) be a solution to the Ricci flow

2 (1) = —2Relg(1)).

ODE for Lie groups.



Rc of (n,(-,-)) is given by

(O @ (=»

«E»

Q>



Definitions Ricci Flow Nice Basis Theorem General Case

Rc of (n, (-,-)) is given by

Rc=M — 1B~ S(ad H), (1)



Ricci Flow

Rc of (n, (-,-)) is given by

Re=M-1B—

2
Where

S(ad H),



Ricci Flow

Rc of (n, (-,-)) is given by

Re=M-1B—

2
Where

S(ad H),



Ricci Flow

Rc of (n, (-,-)) is given by

Re=M-1B—

2
Where

B = Killing form,

S(ad H),



Ricci Flow

Rc of (n, (-,-)) is given by

Where

B = Killing form,

Rc=M — 1B — S(ad H),

S(ad H)

2

1

-2

(ad H + (ad H)Y),



Ricci Flow

Rc of (n, (-,-)) is given by

Where
B = Killing form,

Hen:

Rc=M — 1B — S(ad H),

S(ad H)

2

=1
—2

(ad H + (ad H)Y),



Ricci Flow

Rc of (n, (-,-)) is given by
Rc=M — 1B — S(ad H),

Where

B = Killing form,  S(ad H) = 4(ad H + (ad H)?),

Hen: (H,X)=trad X for any X € n,



Ricci Flow

Rc of (n, (-,-)) is given by
Rc=M — 1B — S(ad H), (1)

Where

B = Killing form,  S(ad H) = 4(ad H + (ad H)?),
Hen: (H,X)=trad X for any X € n,
M(X7 Y) = _% <[X7Xi]7)<j><[Y7Xi]v)<j>

+1 520X X, X (X, X1, ).
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Ricci Flow

If n nilpotent ~» Rc = M.

(Ric,, o) = 4(m(a)p, 1), Vo € sym(n).

Equivalent to say that the moment map m: V \ {0} — sym(n)
for 7 is given by m(u) = ﬁ Ric,,.

[Lauret]

Diagonalization: relevant in classification of RF and RS in
3-dimensional unimodular Lie groups [ 1J 92, G 08, GP 10 ]. And
an obstacle for dimension 4. [ [JL 06 |.
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Ricci Flow

A basis {Xi,...,X,} of a Lie algebra is called

stably Ricci-diagonal if any diagonal left-invariant metric
(i.e. (Xj, Xj) =0 for all i # j) has diagonal Ricci tensor
[Payne (2010)].

~ set of diagonal metrics is invariant under the Ricci flow.

~» simplify the study.
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Nice basis

Let n be a nilpotent Lie algebra. A basis {Xi, ..., X,} of nis called
nice if the structural constants given by [Xj, Xj] = >~ c,-j?Xk satisfy

e for all i, there exists at most one k such that c,-’f #0,
e for all i, k there exists at most one j such that Cjj #0.

Example: n= (R47 [7]) {X17 cee 7X4}
[X17X2] = X37 [Xl,X3] = X4.

is a nice basis of n.
Let n = (R, [,]) where

[X1, X2] = Xa, [X1, Xa] = Xs,
[X1, Xs] = [X2, X3] = [X2, Xa] = X,

Not nice.
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Nice Basis

Note: if n is nilpotent
@ If (3 is a nice basis then [Ric]z is diagonal,
@ A nice basis is stably Ricci diagonal.

© n admits a nice basis if and only if the canonical basis
{e1,...,en} is nice for some A- [-,:] € V with A € GL,(R).

Solitons: [Lauret-W (2006), Nikolayevsky (2008) , Fernandez
Culma (2011)]

Nikolayevsky : simple criterium to decide whether a given nilpotent
Lie algebra with a nice basis admits a nilsoliton or not.
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Existence

Any nilpotent Lie algebra of dimension <5
Any filiform N-graded Lie algebra [Nikolayevsky]

Any nilradicals of a Borel subalgebras of any semisimple Lie
algebra admits a nice basis.

Any two step nilpotent Lie algebra given by a graph.

Any nilpotent Lie algebra admitting a simple derivation.
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Nice Basis

The free 3-step nilpotent Lie algebra in 3 generators (which is
of type (3,3,8)) does not admit a nice basis [ Nikolayevsky |

Infinitely many 2-step nilpotent Lie algebras with type (p, q)
such that

Imin{g(q —1),pq} + ¢* + p* — 1 < pg(q — 1)

does not admit a nice basis [ Nikolayevsky | (dimensional
argument). dimn > 13.

Any 6-dimensional nilpotent Lie algebras ( 34 ) with the only
exception of:

[X1, Xo] = Xa, [X1, Xa] = Xs,
[X1, Xs] = [X2, X3] = [X2, Xa] = X,

(nice basis ~+ get a basis compatible with the type).
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The canonical basis {e1, ..., e} is nice for n if and only if

k t k t
aj —au &, forany ¢, c #0.

neu= [,] = Z C{;V,'jk.
k;i<j

~ Generalization.
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Theorem
For a nilpotent Lie algebra n, the following conditions are
equivalent:

(i) The canonical basis {e1, ..., e} is nice for n.

(it) (m(X)vjjk, vest) = 0, for all X € gy, A € &, céf, ck #0.

(iii) Rica.u(es, em) =0 for all | # m and any diagonal
A € GL,y(R).

(iv) The canonical basis {e1,...,en} is stably Ricci-diagonal for n.
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A few words about the proof:
e (@([{frxed, Xegy,aca:

</\ + Ck,J, a>< (X)VUk7 Vf5f> <O‘£s7 a) <7T(X)Viﬂ<’ Vf5f>7

(i) = (iii)

iRicag(enen) = (m(Em)A-[, ], A-[,])
= ZC,{( rs{T(Eim)A - Vijk, A-Vrst)
- ZCU rts aag ait;s< (Elm)Vljk7 Vrst>7

(iii) = (ii) uses: m is multiplicity free and special properties of
the weights (afj)
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General Case

What about non-nilpotent Lie groups?

Rc=M — 1B — S(ad H).

Nice # stably Ricci diagonal:
Let {X1, X2, X3} be a basis of sl>(R) such that

[X1, Xo] = Xa, [X1, X3] = = X3, [X2, X3] = Xi.
Nice but
-3 0 0
o -1 -1
0 -1 -

Ric =
1
2

(for the metric which makes it orthonormal)
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Stably Ricci diagonal # nice:
53 be the 3-dimensional Lie algebra defined by
[X]_,Xg] = X2 + X3.

The basis {Xi, X2, X3} is not nice but it is stably-Ricci diagonal :
for every (-,-)

<Xi7Xf>:a,27 ai>07 <XI7)<J>:O VI§AJ7
Ric(Xr, Xs) = 3 22005, 5, X1 X {5 X 5,1 Xe)

_%<[H’ Xr], Xs> — %(Xh [H> Xs]>

Vanishes if either r or s is 1, and

. 1 2 1 2
Ric(Xp, X3) = 1 (iﬁ) ~1 (if) —0.
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General Case
In the non-nilpotent case both assertion of the Theorem fails.
Diagonal solution of the Ricci Flow?
Let (N, go) be a (non-necessarily nilpotent) Lie group endowed

with a left-invariant metric with metric Lie algebra (n, (-, -)o).
Let g(t) be a solution to the Ricci flow

5:6(t) = —2Rc(g(t)),  &(0) = go-

Or equivalently
%<'7'>t =2 Rc(<'7‘>t)7 <‘7'>0 :g(O)(E)
where (-, )¢ := g(t)(e), and

Re((-,)t) == Rc(g(t))(e) :n xn — R.
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General Case

If P(t) is the positive definite operators of (n, (-, )o)

then the Ricci flow equation determines the following ODE for
P(t):
4 P(t) = —2P(t) Ricy, P(0) = I,

where Ric; := Ric(g(t))(e) : n — n is the Ricci operator.

A starting metric gg will be called Ricci flow diagonal if the Ricci
flow solution g(t) is diagonal in the sense that P(t) is diagonal
when written in some fixed orthonormal basis of (n, (-, -)o).
Equivalently the same for Ric; or the commutativity of the family
of symmetric operators P(t).

Stably Ricci diagonal basis = Ricci diagonal.
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General Case

More examples: Agebraic Ricci solitons.

If {X1,...,X,} is an orthonormal basis of eigenvectors of Ricy with
respective eigenvalues ry, ..., r,,

P(t)=d ((—2ct +1)n/e L (—2ct + 1)r"/c) :

(Payne, Williams)



THANK YOU!
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