On the diagonalization of the Ricci flow on Lie groups

Cynthia Will,
FaMAF and CIEM, Córdoba, Argentina

Geometric Structures on Manifolds and their Applications,
Marburg
July, 2012
1 Definitions
Contents

1. Definitions

2. Ricci Flow
Contents

1 Definitions

2 Ricci Flow

3 Nice Basis

Definitions

Ricci Flow

Nice Basis

Theorem

General Case
Contents

1. Definitions
2. Ricci Flow
3. Nice Basis
4. Theorem
Contents

1. Definitions
2. Ricci Flow
3. Nice Basis
4. Theorem
5. General Case
Definitions

Space of Lie algebras of dimension $n \leftrightarrow V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \} \subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$.

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\leftrightarrow \mu$. $\mu \leftrightarrow$ Lie group N_μ: Simply connected Lie $(N_\mu) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$.

$GL_n(\mathbb{R})$ acts on V by change of basis: $A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y)$, $X, Y \in \mathbb{R}^n$, $A \in GL_n(\mathbb{R})$, $\mu \in V$.

Geometrically: $A \in GL_n(\mathbb{R}) \leftrightarrow a$ Riemannian isometry $(N_A \cdot \mu, \langle \cdot, \cdot \rangle) \rightarrow (N \cdot \mu, \langle A \cdot \mu, A \cdot \mu \rangle)$ by exponentiating A^{-1}: $(\mathbb{R}^n, A \cdot \mu) \rightarrow (\mathbb{R}^n, \mu)$.

Definitions

Space of Lie algebras of dimension n
Definitions

Space of Lie algebras of dimension n \leftrightarrow
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

\[V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \]
Definitions

Space of Lie algebras of dimension n \(\iff \)

\[V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \]

\[\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n \]
Definitions

Space of Lie algebras of dimension n \(\sim \)

\[
V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \\
\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n
\]

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$)
Definitions

Space of Lie algebras of dimension $n \iff$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) \iff
Definitions

Space of Lie algebras of dimension $n \leftrightarrow \sim \\
\mathcal{V} = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.
\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n \\\nFix \text{ basis of } \mathbb{R}^n \ (\text{and } \langle \cdot, \cdot \rangle) \sim n \leftrightarrow \mu.
Definitions

Space of Lie algebras of dimension $n \leftrightarrow \mathcal{V}$

$$\mathcal{V} = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. $$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\leftrightarrow n \leftrightarrow \mu$.

μ
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.\quad \subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot , \cdot \rangle$) $\leftrightarrow n \leftrightarrow \mu$.

$\mu \leftrightarrow$
Define V as the space of Lie algebras of dimension n:

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \} \subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix a basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) to get $n \leftrightarrow \mu$. Then, $\mu \sim \text{Lie group } N_\mu$.
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$

$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\leadsto \mathfrak{n} \leftrightarrow \mu$.

$\mu \leadsto$ Lie group N_μ: Simply connected $\text{Lie}(N_\mu) = (\mathbb{R}^n, \mu)$
Space of Lie algebras of dimension $n \mapsto V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.
\subset \Lambda^2 (\mathbb{R}^n)^* \otimes \mathbb{R}^n$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\mapsto n \leftrightarrow \mu$.
$\mu \mapsto$ Lie group N_μ : Simply connected $\text{Lie}(N_\mu) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$.
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$ $$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) \rightsquigarrow $n \leftrightarrow \mu$.

$\mu \rightsquigarrow$ Lie group N_μ: Simply connected $Lie(N_\mu) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$.

$GL_n(\mathbb{R})$ acts on V
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$ \(\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n\)

Fix basis of \(\mathbb{R}^n\) (and \(\langle \cdot, \cdot \rangle\)) \(\rightsquigarrow \mathfrak{n} \leftrightarrow \mu\).

\(\mu \rightsquigarrow \text{Lie group } N_\mu : \text{Simply connected } \text{Lie}(N_\mu) = (\mathbb{R}^n, \mu)\) endowed with left invariant metric defined by \(\langle \cdot, \cdot \rangle\).

\(\text{GL}_n(\mathbb{R})\) acts on \(V\) by change of basis:
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}.$$
\subset \Lambda^2 (\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of $\mathbb{R}^n \ (\text{and } \langle \cdot, \cdot \rangle) \rightsquigarrow \mathfrak{n} \leftrightarrow \mu$.

$\mu \rightsquigarrow \text{Lie group } N_\mu : \text{Simply connected } \text{Lie}(N_\mu) = (\mathbb{R}^n, \mu) \text{ endowed with left invariant metric defined by } \langle \cdot, \cdot \rangle.$

$\text{GL}_n(\mathbb{R}) \text{ acts on } V \text{ by change of basis:}$

$$A \cdot \mu(X, Y) = A\mu(A^{-1}X, A^{-1}Y),$$
Definitions

Space of Lie algebras of dimension \(n \leftrightarrow \)

\[V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \]
\[\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n \]

Fix basis of \(\mathbb{R}^n \) (and \(\langle \cdot, \cdot \rangle \) \(\sim \) \(n \leftrightarrow \mu \).

\(\mu \sim \) Lie group \(N_\mu : \) Simply connected \(\text{Lie}(N_\mu) = (\mathbb{R}^n, \mu) \) endowed with left invariant metric defined by \(\langle \cdot, \cdot \rangle \).

\(\text{GL}_n(\mathbb{R}) \) acts on \(V \) by change of basis:

\[A \cdot \mu(X, Y) = A\mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, \ A \in \text{GL}_n(\mathbb{R}), \ \mu \in V. \]
Definitions

Space of Lie algebras of dimension n \iff

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$$ \subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) \iff $n \leftrightarrow \mu$.

$\mu \leftrightarrow$ Lie group N_{μ}: Simply connected $\text{Lie}(N_{\mu}) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$.

$\text{GL}_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A \mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \text{GL}_n(\mathbb{R}), \mu \in V.$$

Geometrically:
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.$$
$$\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot, \cdot \rangle$) $\sim n \leftrightarrow \mu$.

$\mu \sim$ Lie group N_μ: Simply connected $Lie(N_\mu) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot, \cdot \rangle$.

$GL_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A\mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in GL_n(\mathbb{R}), \mu \in V.$$

Geometrically: $A \in GL_n(\mathbb{R}) \sim$ a Riemannian isometry
Definitions

Space of Lie algebras of dimension $n \leftrightarrow$

$$V = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi} \}. \subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$$

Fix basis of \mathbb{R}^n (and $\langle \cdot , \cdot \rangle$) $\sim n \leftrightarrow \mu$.

$\mu \sim$ Lie group $N_\mu :$ Simply connected $Lie(N_\mu) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot , \cdot \rangle$.

$GL_n(\mathbb{R})$ acts on V by change of basis:

$$A \cdot \mu(X, Y) = A\mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in GL_n(\mathbb{R}), \mu \in V.$$

Geometrically: $A \in GL_n(\mathbb{R}) \sim$ a Riemannian isometry

$$(N_{A \cdot \mu}, \langle \cdot , \cdot \rangle) \rightarrow (N_\mu, \langle A \cdot, A \cdot \rangle)$$
Definitions

Space of Lie algebras of dimension n \[\iff\]

\[V = \{\mu : \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric, Jacobi}\}.\]

\[\subset \Lambda^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n\]

Fix basis of \mathbb{R}^n (and $\langle \cdot , \cdot \rangle$) \[\sim \mathfrak{n} \leftrightarrow \mu.\]

$\mu \mapsto$ Lie group N_μ: Simply connected $\text{Lie}(N_\mu) = (\mathbb{R}^n, \mu)$ endowed with left invariant metric defined by $\langle \cdot , \cdot \rangle$.

$\text{GL}_n(\mathbb{R})$ acts on V by change of basis:

\[A \cdot \mu(X, Y) = A\mu(A^{-1}X, A^{-1}Y), \quad X, Y \in \mathbb{R}^n, A \in \text{GL}_n(\mathbb{R}), \mu \in V.\]

Geometrically: $A \in \text{GL}_n(\mathbb{R}) \mapsto$ a Riemannian isometry

\[(N_{A \cdot \mu}, \langle \cdot , \cdot \rangle) \longrightarrow (N_\mu, \langle A \cdot , A \cdot \rangle)\]

by exponentiating $A^{-1} : (\mathbb{R}^n, A \cdot \mu) \longrightarrow (\mathbb{R}^n, \mu)$.
The action of $\text{GL}_n(R)$ on V
The action of $GL_n(\mathbb{R})$ on V ~→

$gl_n(\mathbb{R}) = so(n) \oplus \text{sym}(n)$ Cartan decomposition

$\Delta \subset a$, a system of roots, positive roots:

$$\Phi = \{E_{ll} - E_{mm} \in a, l > m\}.$$
The action of $\text{GL}_n(\mathbb{R})$ on $V \rightsquigarrow$ representation of $\text{gl}_n(\mathbb{R})$ on V:
The action of $GL_n(\mathbb{R})$ on $V \rightarrow$ representation of $gl_n(\mathbb{R})$ on V:

$$\pi(\alpha)\mu = \alpha \mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in gl_n(\mathbb{R}), \, \mu \in V.$$
The action of $GL_n(\mathbb{R})$ on V ~ representation of $gl_n(\mathbb{R})$ on $V :$

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha\cdot, \cdot) - \mu(\cdot, \alpha\cdot), \quad \alpha \in gl_n(\mathbb{R}), \ \mu \in V.$$

$gl_n(\mathbb{R}) = so(n) \oplus sym(n) \text{ Cartan decomposition}$
The action of $GL_n(\mathbb{R})$ on $V \sim$ representation of $\mathfrak{gl}_n(\mathbb{R})$ on V:

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha\cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

$\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \text{sym}(n)$ Cartan decomposition $\sim a = \text{diagonal } n \times n$
The action of $GL_n(\mathbb{R})$ on $V \rightsquigarrow$ representation of $gl_n(\mathbb{R})$ on $V :$

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha\cdot, \cdot) - \mu(\cdot, \alpha\cdot), \quad \alpha \in gl_n(\mathbb{R}), \ \mu \in V.$$

$gl_n(\mathbb{R}) = so(n) \oplus \text{sym}(n)$ Cartan decomposition $\rightsquigarrow a =$ diagonal

$n \times n$ is maximal abelian subalgebra of sym(n)
The action of $GL_n(\mathbb{R})$ on $V \sim \pi$ representation of $gl_n(\mathbb{R})$ on V:

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in gl_n(\mathbb{R}), \mu \in V.$$

$gl_n(\mathbb{R}) = so(n) \oplus \text{sym}(n)$ Cartan decomposition $\sim a = \text{diagonal}$

$n \times n$ is maximal abelian subalgebra of $\text{sym}(n) \sim \Delta \subset a$, a system of roots,
The action of $\text{GL}_n(\mathbb{R})$ on V corresponds to a representation of $\mathfrak{gl}_n(\mathbb{R})$ on V:

$$\pi(\alpha)\mu = \alpha \mu(\cdot, \cdot) - \mu(\alpha \cdot, \cdot) - \mu(\cdot, \alpha \cdot), \quad \alpha \in \mathfrak{gl}_n(\mathbb{R}), \ \mu \in V.$$

$\mathfrak{gl}_n(\mathbb{R}) = \mathfrak{so}(n) \oplus \mathfrak{sym}(n)$ Cartan decomposition corresponds to $\mathfrak{a} = \text{diagonal } n \times n$ is maximal abelian subalgebra of $\mathfrak{sym}(n)$, $\Delta \subset \mathfrak{a}$, a system of roots, positive roots:
The action of $GL_n(\mathbb{R})$ on $V \sim \pi \sim representation of \text{gl}_n(\mathbb{R})$ on V:

$$\pi(\alpha)\mu = \alpha\mu(\cdot, \cdot) - \mu(\alpha\cdot, \cdot) - \mu(\cdot, \alpha\cdot), \quad \alpha \in \text{gl}_n(\mathbb{R}), \, \mu \in V.$$

$\text{gl}_n(\mathbb{R}) = \text{so}(n) \oplus \text{sym}(n)$ Cartan decomposition $\sim a = \text{diagonal}$ $n \times n$ is maximal abelian subalgebra of $\text{sym}(n) \sim \Delta \subset a$, a system of roots, positive roots:

$$\Phi = \{ E_{ll} - E_{mm} \in a, \, l > m \}.$$
Basis of weight vectors
Basis of weight vectors

\[\{ v_{ijk} = (e_i' \wedge e_j') \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha^k_{ij} := E_{kk} - E_{ii} - E_{jj} \)
Basis of weight vectors

\[\{ v_{ijk} = (e_i' \wedge e_j') \otimes e_k : 1 \leq i < j \leq n, 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha^k_{ij} := E_{kk} - E_{ii} - E_{jj} : \)

if \(\alpha = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \in \mathfrak{a}, \)
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha^k_{ij} := E_{kk} - E_{ii} - E_{jj} : \)

if \(\alpha = \begin{bmatrix} a_1 \\ \cdot \cdot \cdot \\ a_n \end{bmatrix} \in \mathfrak{a}, \)

\[\pi(\alpha)v_{ijk} = (a_k - a_i - a_j)v_{ijk} = \langle \alpha, \alpha^k_{ij} \rangle v_{ijk}, \]
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha^k_{ij} := E_{kk} - E_{ii} - E_{jj} : \)

if \(\alpha = \begin{bmatrix} a_1 \\
\vdots \\
\end{bmatrix} \in \mathfrak{a}, \)

\[\pi(\alpha)v_{ijk} = (a_k - a_i - a_j)v_{ijk} = \langle \alpha, \alpha^k_{ij} \rangle v_{ijk}, \]

\(\mu \in V \)
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha_{ij}^k := E_{kk} - E_{ii} - E_{jj} : \)

if \(\alpha = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \in \mathfrak{a}, \)

\[\pi(\alpha)v_{ijk} = (a_k - a_i - a_j)v_{ijk} = \langle \alpha, \alpha_{ij}^k \rangle v_{ijk}, \]

\(\mu \in V \) the structural constants \(c_{ij}^k \) are given by
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, \ 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha^k_{ij} := E_{kk} - E_{ii} - E_{jj} : \)

if \(\alpha = \begin{bmatrix} a_1 \\ \cdot \\ \cdot \\ a_n \end{bmatrix} \in \mathfrak{a}, \)

\[\pi(\alpha) v_{ijk} = (a_k - a_i - a_j) v_{ijk} = \langle \alpha, \alpha^k_{ij} \rangle v_{ijk}, \]

\(\mu \in V \) the structural constants \(c_{ij}^k \) are given by

\[[e_i, e_j] = \sum_k c_{ij}^k e_k, \]
Basis of weight vectors

\[\{ v_{ijk} = (e'_i \wedge e'_j) \otimes e_k : 1 \leq i < j \leq n, 1 \leq k \leq n \} \]

\[v_{ijk}(e_i, e_j) = -v_{ijk}(e_j, e_i) = e_k \]

Corresponding weights \(\alpha^k_{ij} := E_{kk} - E_{ii} - E_{jj} : \)

if \(\alpha = \begin{bmatrix} a_1 \\ \cdot \cdot \\ a_n \end{bmatrix} \in a, \)

\[\pi(\alpha)v_{ijk} = (a_k - a_i - a_j)v_{ijk} = \langle \alpha, \alpha^k_{ij} \rangle v_{ijk}, \]

\(\mu \in V \) the structural constants \(c^k_{ij} \) are given by

\[[e_i, e_j] = \sum_k c^k_{ij} e_k, \quad \text{or} \quad [\cdot, \cdot] = \sum_{k; i<j} c^k_{ij} v_{ijk}. \]
Ricci Flow

Let $g(t)$ be a solution to the Ricci flow
$$\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)).$$
Ricci Flow

\((N, g_0)\) a Lie group with a left-invariant metric
(N, g₀) a Lie group with a left-invariant metric
Ricci Flow

(N, g_0) a Lie group with a left-invariant metric \leftrightarrow metric Lie algebra $(n, \langle \cdot, \cdot \rangle_0)$.
Ricci Flow

(N, g_0) a Lie group with a left-invariant metric \leftrightarrow metric Lie algebra $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$.

Let $g(t)$ be a solution to the Ricci flow.
Ricci Flow

(N, g_0) a Lie group with a left-invariant metric \leftrightarrow metric Lie algebra $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$.

Let $g(t)$ be a solution to the Ricci flow

$$\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)).$$
(N, g_0) a Lie group with a left-invariant metric \(\xmapsto{} \) metric Lie algebra \((\mathfrak{n}, \langle \cdot, \cdot \rangle_0) \).
Let \(g(t) \) be a solution to the Ricci flow

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)).
\]

ODE for Lie groups.
Rc of \((\mathfrak{n}, \langle \cdot, \cdot \rangle)\) is given by
Rc of \((n, \langle \cdot, \cdot \rangle)\) is given by

\[
Rc = M - \frac{1}{2} B - S(\text{ad } H),
\]

(1)
Rc of $(\mathfrak{n}, \langle \cdot, \cdot \rangle)$ is given by

$$
Rc = M - \frac{1}{2}B - S(\text{ad } H),
$$

(1)

Where

B = Killing form,

$S(\text{ad } H) = \frac{1}{2}(\text{ad } H + (\text{ad } H)^t)$,

$H \in \mathfrak{n}$:

$\langle H, X \rangle = \text{tr } \text{ad } X$ for any $X \in \mathfrak{n}$,

$M(X, Y) = -\frac{1}{2} \sum \langle [X, X_i], X_j \rangle \langle [Y, X_i], X_j \rangle + \frac{1}{4} \sum \langle [X_i, X_j], X \rangle \langle [X_i, X_j], Y \rangle$.

Rc of \((\mathfrak{n}, \langle \cdot, \cdot \rangle)\) is given by

\[\text{Rc} = M - \frac{1}{2} B - S(\text{ad} \, H), \]

(1)

Where

\[B \]
Rc of \((\mathfrak{n}, \langle \cdot, \cdot \rangle)\) is given by

\[Rc = M - \frac{1}{2} B - S(\text{ad } H), \tag{1} \]

Where

\[B = \text{Killing form}, \]
Rc of $(\mathfrak{n}, \langle \cdot, \cdot \rangle)$ is given by

$$Rc = M - \frac{1}{2} B - S(\text{ad} \, H),$$ \hspace{1cm} (1)$$

Where

$$B = \text{Killing form}, \quad S(\text{ad} \, H) = \frac{1}{2}(\text{ad} \, H + (\text{ad} \, H)^t),$$
Rc of \((\mathfrak{n}, \langle \cdot, \cdot \rangle)\) is given by

\[
\text{Rc} = M - \frac{1}{2} B - S(\text{ad} \, H),
\]

(1)

Where

\[
B = \text{Killing form}, \quad S(\text{ad} \, H) = \frac{1}{2}(\text{ad} \, H + (\text{ad} \, H)^t),
\]

\(H \in \mathfrak{n} :\)
Rc of \((\mathfrak{n}, \langle \cdot, \cdot \rangle)\) is given by

\[
Rc = M - \frac{1}{2} B - S(\text{ad} H),
\]

(1)

Where

\[B = \text{Killing form}, \quad S(\text{ad} H) = \frac{1}{2}(\text{ad} H + (\text{ad} H)^t),\]

\[H \in \mathfrak{n}: \langle H, X \rangle = \text{tr ad} X \text{ for any } X \in \mathfrak{n},\]
Rc of \((\mathfrak{n}, \langle \cdot, \cdot \rangle)\) is given by

\[
\text{Rc} = M - \frac{1}{2}B - S(\text{ad } H),
\]

(1)

Where

\[
B = \text{Killing form}, \quad S(\text{ad } H) = \frac{1}{2}(\text{ad } H + (\text{ad } H)^t),
\]

\(H \in \mathfrak{n}: \langle H, X \rangle = \text{tr} \text{ ad } X \text{ for any } X \in \mathfrak{n},\)

\[
M(X, Y) = -\frac{1}{2} \sum \langle [X, X_i], X_j \rangle \langle [Y, X_i], X_j \rangle + \frac{1}{4} \sum \langle [X_i, X_j], X \rangle \langle [X_i, X_j], Y \rangle.
\]
If η nilpotent
If \mathfrak{n} nilpotent \mapsto
If \mathfrak{n} nilpotent $\hookrightarrow \text{Rc} = M$.

[Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups [IJ 92, G 08, GP 10]. And an obstacle for dimension 4. [IJL 06].
If \mathfrak{n} nilpotent $\leadsto \text{Rc} = M$.

$$\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).$$
If \mathfrak{n} nilpotent $\sim Rc = M$.

$$\langle \operatorname{Ric}_\mu, \alpha \rangle = 4 \langle \pi(\alpha) \mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).$$

Equivalent to say that the moment map

\Lauret

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups [IJ 92, G 08, GP 10]. And an obstacle for dimension 4. [IJL 06].
If \mathfrak{n} nilpotent $\leadsto \text{Rc} = M$.

\[
\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).
\]

Equivalent to say that the moment map $m : V \setminus \{0\} \to \text{sym}(n)$
If \(\mathfrak{n} \) nilpotent \(\leadsto \text{Rc} = M \).

\[
\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).
\]

Equivalent to say that the moment map \(m : V \setminus \{0\} \longrightarrow \text{sym}(n) \) for \(\pi \) is given by
If \(n \) nilpotent \(\rightsquigarrow Rc = M. \)

\[
\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).
\]

Equivalent to say that the moment map \(m : V \setminus \{0\} \longrightarrow \text{sym}(n) \) for \(\pi \) is given by \(m(\mu) = \frac{4}{||\mu||^2} \text{Ric}_\mu. \)
If \mathfrak{n} nilpotent $\leadsto \text{Rc} = M$.

$$\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).$$

Equivalent to say that the moment map $m : V \setminus \{0\} \longrightarrow \text{sym}(n)$ for π is given by $m(\mu) = \frac{4}{||\mu||^2} \text{Ric}_\mu$.

[Lauret]

Diagonalization:
If \(\mathfrak{n} \) nilpotent \(\leadsto \) \(\text{Rc} = M \).

\[
\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).
\]

Equivalent to say that the moment map \(m : V \setminus \{0\} \longrightarrow \text{sym}(n) \) for \(\pi \) is given by \(m(\mu) = \frac{4}{||\mu||^2} \text{Ric}_\mu \).

[Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups
If \(\mathfrak{n} \) nilpotent \(\rightsquigarrow \text{Rc} = M \).

\[
\langle \text{Ric}_\mu, \alpha \rangle = 4\langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).
\]

Equivalent to say that the moment map \(m : V \setminus \{0\} \longrightarrow \text{sym}(n) \) for \(\pi \) is given by \(m(\mu) = \frac{4}{||\mu||^2} \text{Ric}_\mu \).

[Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups [IJ 92, G 08, GP 10].
If \(\mathfrak{n} \) nilpotent \(\leadsto \text{Rc} = M \).

\[
\langle \text{Ric}_\mu, \alpha \rangle = 4 \langle \pi(\alpha)\mu, \mu \rangle, \quad \forall \alpha \in \text{sym}(n).
\]

Equivalent to say that the moment map \(m : V \setminus \{0\} \rightarrow \text{sym}(n) \) for \(\pi \) is given by \(m(\mu) = \frac{4}{||\mu||^2} \text{Ric}_\mu \).

[Lauret]

Diagonalization: relevant in classification of RF and RS in 3-dimensional unimodular Lie groups [IJ 92, G 08, GP 10]. And an obstacle for dimension 4. [IJL 06].
A basis $\{X_1, \ldots, X_n\}$ of a Lie algebra
A basis \(\{ X_1, \ldots, X_n \} \) of a Lie algebra is called stably Ricci-diagonal.
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called **stably Ricci-diagonal** if any diagonal left-invariant metric
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called **stably Ricci-diagonal** if any diagonal left-invariant metric

(i.e. \(\langle X_i, X_j \rangle = 0 \) for all \(i \not= j \))
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called \textbf{stably Ricci-diagonal} if any diagonal left-invariant metric (i.e. \(\langle X_i, X_j \rangle = 0 \) for all \(i \neq j \)) has diagonal Ricci tensor.
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called **stably Ricci-diagonal** if any diagonal left-invariant metric (i.e. \(\langle X_i, X_j \rangle = 0 \) for all \(i \neq j \)) has diagonal Ricci tensor [Payne (2010)].
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called \textbf{stably Ricci-diagonal} if any diagonal left-invariant metric (i.e. \(\langle X_i, X_j \rangle = 0 \) for all \(i \neq j \)) has diagonal Ricci tensor [Payne (2010)].
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called \textbf{stably Ricci-diagonal} if any diagonal left-invariant metric (i.e. \(\langle X_i, X_j \rangle = 0 \) for all \(i \neq j \)) has diagonal Ricci tensor [Payne (2010)].

\(\sim \) set of diagonal metrics is invariant under the Ricci flow.
A basis \(\{X_1, \ldots, X_n\} \) of a Lie algebra is called **stably Ricci-diagonal** if any diagonal left-invariant metric (i.e. \(\langle X_i, X_j \rangle = 0 \) for all \(i \neq j \)) has diagonal Ricci tensor [Payne (2010)].

\[\Rightarrow \] set of diagonal metrics is invariant under the Ricci flow.

\[\Rightarrow \] simplify the study.
Nice basis

Let n be a nilpotent Lie algebra. A basis $\{X_1,...,X_n\}$ of n is called nice if the structural constants given by $[X_i, X_j] = \sum c_{kj}^i X_k$ satisfy

- for all i, j there exists at most one k such that $c_{kj}^i \neq 0$,
- for all i, k there exists at most one j such that $c_{kj}^i \neq 0$.

Example: $n = (\mathbb{R}^4, [\cdot, \cdot])$
$\{X_1, ..., X_4\} \quad [X_1, X_2] = X_3, \quad [X_1, X_3] = X_4$.

is a nice basis of n.

Let $n = (\mathbb{R}^6, [\cdot, \cdot])$ where $[X_1, X_2] = X_4, \quad [X_1, X_4] = X_5, \quad [X_1, X_5] = [X_2, X_3] = [X_2, X_4] = X_6$.

Not nice.
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra.
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called

Nice basis

Let \(n \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(n \) is called nice.
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k \)
Nice basis

Let \mathfrak{n} be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of \mathfrak{n} is called **nice** if the structural constants given by $[X_i, X_j] = \sum c_{ij}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ij}^k \neq 0$,
- for all i, k there exists at most one j such that $c_{ij}^k \neq 0$.
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k\) satisfy

1. for all \(i, j \) there exists at most one \(k \) such that \(c_{ij}^k \neq 0 \),
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c^k_{ij} X_k\) satisfy

- for all \(i, j \) there exists at most one \(k \) such that \(c^k_{ij} \neq 0 \),
- for all \(i, k \) there exists at most one \(j \) such that \(c^k_{ij} \neq 0 \).
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k\) satisfy

- for all \(i, j \) there exists at most one \(k \) such that \(c_{ij}^k \neq 0 \),
- for all \(i, k \) there exists at most one \(j \) such that \(c_{ij}^k \neq 0 \).

Example:
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k\) satisfy

- for all \(i, j \) there exists at most one \(k \) such that \(c_{ij}^k \neq 0 \),
- for all \(i, k \) there exists at most one \(j \) such that \(c_{ij}^k \neq 0 \).

Example: \(\mathfrak{n} = (\mathbb{R}^4, [,]) \)
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k \) satisfy

- for all \(i, j \) there exists at most one \(k \) such that \(c_{ij}^k \neq 0 \),
- for all \(i, k \) there exists at most one \(j \) such that \(c_{ij}^k \neq 0 \).

Example: \(\mathfrak{n} = (\mathbb{R}^4, [,]) \) \(\{X_1, \ldots, X_4\} \)
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k \) satisfy

- for all \(i, j \) there exists at most one \(k \) such that \(c_{ij}^k \neq 0 \),
- for all \(i, k \) there exists at most one \(j \) such that \(c_{ij}^k \neq 0 \).

Example: \(\mathfrak{n} = (\mathbb{R}^4, [,]) \) \(\{X_1, \ldots, X_4\} \)

\[[X_1, X_2] = X_3, \quad [X_1, X_3] = X_4. \]
Nice basis

Let \mathfrak{n} be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of \mathfrak{n} is called nice if the structural constants given by $[X_i, X_j] = \sum c^k_{ij} X_k$ satisfy

- for all i, j there exists at most one k such that $c^k_{ij} \neq 0$,
- for all i, k there exists at most one j such that $c^k_{ij} \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \ldots, X_4\}$

$$[X_1, X_2] = X_3, \quad [X_1, X_3] = X_4.$$

is a nice basis of \mathfrak{n}.
Nice basis

Let \mathfrak{n} be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of \mathfrak{n} is called **nice** if the structural constants given by $[X_i, X_j] = \sum c_{ij}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ij}^k \neq 0$,
- for all i, k there exists at most one j such that $c_{ij}^k \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [,]) \{X_1, \ldots, X_4\}$

\[
[X_1, X_2] = X_3, \quad [X_1, X_3] = X_4.
\]

is a nice basis of \mathfrak{n}.

Let $\mathfrak{n} = (\mathbb{R}^6, [,])$
Nice basis

Let \(\mathfrak{n} \) be a nilpotent Lie algebra. A basis \(\{X_1, \ldots, X_n\} \) of \(\mathfrak{n} \) is called nice if the structural constants given by \([X_i, X_j] = \sum c_{ij}^k X_k\) satisfy

- for all \(i, j \) there exists at most one \(k \) such that \(c_{ij}^k \neq 0 \),
- for all \(i, k \) there exists at most one \(j \) such that \(c_{ij}^k \neq 0 \).

Example: \(\mathfrak{n} = (\mathbb{R}^4, [\ , \]) \) \(\{X_1, \ldots, X_4\} \)

\[
[X_1, X_2] = X_3, \quad [X_1, X_3] = X_4.
\]

is a nice basis of \(\mathfrak{n} \).

Let \(\mathfrak{n} = (\mathbb{R}^6, [\ , \]) \) where

\[
[X_1, X_2] = X_4, \quad [X_1, X_4] = X_5, \\
[X_1, X_5] = [X_2, X_3] = [X_2, X_4] = X_6.
\]
Nice basis

Let \mathfrak{n} be a nilpotent Lie algebra. A basis $\{X_1, \ldots, X_n\}$ of \mathfrak{n} is called nice if the structural constants given by $[X_i, X_j] = \sum c_{ij}^k X_k$ satisfy

- for all i, j there exists at most one k such that $c_{ij}^k \neq 0$,
- for all i, k there exists at most one j such that $c_{ij}^k \neq 0$.

Example: $\mathfrak{n} = (\mathbb{R}^4, [\cdot, \cdot]) \{X_1, \ldots, X_4\}$

$$[X_1, X_2] = X_3, \quad [X_1, X_3] = X_4.$$ is a nice basis of \mathfrak{n}.

Let $\mathfrak{n} = (\mathbb{R}^6, [\cdot, \cdot])$ where

$$[X_1, X_2] = X_4, \quad [X_1, X_4] = X_5,$$

$$[X_1, X_5] = [X_2, X_3] = [X_2, X_4] = X_6,$$

Not nice.
Note:
Note: if \mathfrak{n} is nilpotent
Note: if \(\mathfrak{n} \) is nilpotent

1. If \(\beta \) is a nice basis then \([\text{Ric}]_\beta\) is diagonal,
Note: If \mathfrak{n} is nilpotent

1. If β is a nice basis then $[\text{Ric}]_\beta$ is diagonal,
2. A nice basis is stably Ricci diagonal.
Note: if \(\mathfrak{n} \) is nilpotent

1. If \(\beta \) is a nice basis then \([\text{Ric}]_\beta\) is diagonal,
2. A nice basis is stably Ricci diagonal.
3. \(\mathfrak{n} \) admits a nice basis if and only if the canonical basis \(\{e_1, \ldots, e_n\} \) is nice for some \(A \cdot [\cdot, \cdot] \in V \) with \(A \in \text{GL}_n(\mathbb{R}) \).
Note: if \mathfrak{n} is nilpotent

1. If β is a nice basis then $[\text{Ric}]_\beta$ is diagonal,

2. A nice basis is stably Ricci diagonal.

3. \mathfrak{n} admits a nice basis if and only if the canonical basis $\{e_1, \ldots, e_n\}$ is nice for some $A \cdot [\cdot, \cdot] \in V$ with $A \in \text{GL}_n(\mathbb{R})$.

Solitons:
Note: if \mathfrak{n} is nilpotent

1. If β is a nice basis then $[\text{Ric}]_\beta$ is diagonal,
2. A nice basis is stably Ricci diagonal.
3. \mathfrak{n} admits a nice basis if and only if the canonical basis
 $\{e_1, \ldots, e_n\}$ is nice for some $A \cdot [\cdot, \cdot] \in V$ with $A \in \text{GL}_n(\mathbb{R})$.

Note: if \mathfrak{n} is nilpotent

1. If β is a nice basis then $[\text{Ric}]_\beta$ is diagonal,
2. A nice basis is stably Ricci diagonal.
3. \mathfrak{n} admits a nice basis if and only if the canonical basis $\{e_1, \ldots, e_n\}$ is nice for some $A \cdot [\cdot, \cdot] \in V$ with $A \in \text{GL}_n(\mathbb{R})$.

Nikolayevsky:
Note: if \(\mathfrak{n} \) is nilpotent

1. If \(\beta \) is a nice basis then \([\text{Ric}]_\beta\) is diagonal,
2. A nice basis is stably Ricci diagonal.
3. \(\mathfrak{n} \) admits a nice basis if and only if the canonical basis \(\{e_1, \ldots, e_n\} \) is nice for some \(A \cdot [\cdot, \cdot] \in V \) with \(A \in \text{GL}_n(\mathbb{R}) \).

Nikolayevsky: simple criterium to decide whether a given nilpotent Lie algebra with a nice basis admits a nilsoliton or not.
Existence
Existence

- Any nilpotent Lie algebra of dimension ≤ 5
Existence

- Any nilpotent Lie algebra of dimension ≤ 5
- Any filiform \mathbb{N}-graded Lie algebra [Nikolayevsky]
Existence

- Any nilpotent Lie algebra of dimension ≤ 5
- Any filiform \mathbb{N}-graded Lie algebra [Nikolayevsky]
- Any nilradicals of a Borel subalgebras of any semisimple Lie algebra admits a nice basis.
Existence

- Any nilpotent Lie algebra of dimension \(\leq 5 \)
- Any filiform \(\mathbb{N} \)-graded Lie algebra [Nikolayevsky]
- Any nilradicals of a Borel subalgebras of any semisimple Lie algebra admits a nice basis.
- Any two step nilpotent Lie algebra given by a graph.
Existence

- Any nilpotent Lie algebra of dimension ≤ 5
- Any filiform \mathbb{N}-graded Lie algebra [Nikolayevsky]
- Any nilradicals of a Borel subalgebras of any semisimple Lie algebra admits a nice basis.
- Any two step nilpotent Lie algebra given by a graph.
- Any nilpotent Lie algebra admitting a simple derivation.
The free 3-step nilpotent Lie algebra in 3 generators
The free 3-step nilpotent Lie algebra in 3 generators (which is of type $(3, 3, 8)$)
The free 3-step nilpotent Lie algebra in 3 generators (which is of type \((3, 3, 8)\)) does not admit a nice basis [Nikolayevsky]
• The free 3-step nilpotent Lie algebra in 3 generators (which is of type \((3, 3, 8)\)) does not admit a nice basis [Nikolayevsky]

• Infinitely many 2-step nilpotent Lie algebras with type \((p, q)\)
The free 3-step nilpotent Lie algebra in 3 generators (which is of type $(3, 3, 8)$) does not admit a nice basis [Nikolayevsky].

Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

\[
\frac{1}{2} \min \{ q(q-1), pq \} + q^2 + p^2 - 1 < \frac{1}{2} pq(q-1) \]

does not admit a nice basis [Nikolayevsky] (dimensional argument).

Any 6-dimensional nilpotent Lie algebras with the only exception of:

\[
\begin{align*}
[X_1, X_2] &= X_4, \\
[X_1, X_4] &= X_5, \\
[X_1, X_5] &= [X_2, X_3] = [X_2, X_4] = X_6,
\end{align*}
\]

(nice basis \Rightarrow get a basis compatible with the type).
- The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3, 3, 8)) does not admit a nice basis [Nikolayevsky].
- Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

\[\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2} pq(q - 1) \]
- The free 3-step nilpotent Lie algebra in 3 generators (which is of type \((3, 3, 8)\)) does not admit a nice basis [Nikolayevsky].

- Infinitely many 2-step nilpotent Lie algebras with type \((p, q)\) such that
 \[
 \frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q - 1)
 \]
 does not admit a nice basis [Nikolayevsky].
The free 3-step nilpotent Lie algebra in 3 generators (which is of type (3, 3, 8)) does not admit a nice basis [Nikolayevsky].

Infinitely many 2-step nilpotent Lie algebras with type \((p, q)\) such that

\[
\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2} pq(q - 1)
\]

does not admit a nice basis [Nikolayevsky] (dimensional argument).
The free 3-step nilpotent Lie algebra in 3 generators (which is of type $(3, 3, 8)$) does not admit a nice basis [Nikolayevsky].

Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

\[\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q - 1) \]

does not admit a nice basis [Nikolayevsky] (dimensional argument). $\dim n \geq 13$.

Note: The text may contain formatting issues or abbreviations that need clarification or correction.
The free 3-step nilpotent Lie algebra in 3 generators (which is of type $(3, 3, 8)$) does not admit a nice basis [Nikolayevsky].

Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2} pq(q - 1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). $\dim n \geq 13$.

Any 6-dimensional nilpotent Lie algebras...
• The free 3-step nilpotent Lie algebra in 3 generators (which is of type \((3, 3, 8)\)) does not admit a nice basis [Nikolayevsky]

• Infinitely many 2-step nilpotent Lie algebras with type \((p, q)\) such that

\[
\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q - 1)
\]

does not admit a nice basis [Nikolayevsky] (dimensional argument). \(\dim n \geq 13\).

• Any 6-dimensional nilpotent Lie algebras (34)
• The free 3-step nilpotent Lie algebra in 3 generators (which is of type \((3, 3, 8)\)) does not admit a nice basis [Nikolayevsky]

• Infinitely many 2-step nilpotent Lie algebras with type \((p, q)\) such that

\[
\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q - 1)
\]

does not admit a nice basis [Nikolayevsky] (dimensional argument). \(\dim n \geq 13\).

• Any 6-dimensional nilpotent Lie algebras \((34)\) with the only exception of:
- The free 3-step nilpotent Lie algebra in 3 generators (which is of type \((3, 3, 8)\)) does not admit a nice basis [Nikolayevsky].
- Infinitely many 2-step nilpotent Lie algebras with type \((p, q)\) such that

\[
\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2} pq(q - 1)
\]

does not admit a nice basis [Nikolayevsky] (dimensional argument). \(\dim n \geq 13\).
- Any 6-dimensional nilpotent Lie algebras \((34)\) with the only exception of:

\[
\begin{align*}
[X_1, X_2] &= X_4, & [X_1, X_4] &= X_5, \\
[X_1, X_5] &= [X_2, X_3] = [X_2, X_4] &= X_6,
\end{align*}
\]
The free 3-step nilpotent Lie algebra in 3 generators (which is of type $(3, 3, 8)$) does not admit a nice basis [Nikolayevsky]

Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q - 1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). $\dim n \geq 13$.

Any 6-dimensional nilpotent Lie algebras (34) with the only exception of:

$$[X_1, X_2] = X_4, \quad [X_1, X_4] = X_5, \quad [X_1, X_5] = [X_2, X_3] = [X_2, X_4] = X_6,$$

(nice basis \mapsto)
The free 3-step nilpotent Lie algebra in 3 generators (which is of type $(3, 3, 8)$) does not admit a nice basis [Nikolayevsky].

Infinitely many 2-step nilpotent Lie algebras with type (p, q) such that

$$\frac{1}{2} \min\{q(q - 1), pq\} + q^2 + p^2 - 1 < \frac{1}{2}pq(q - 1)$$

does not admit a nice basis [Nikolayevsky] (dimensional argument). $\dim n \geq 13$.

Any 6-dimensional nilpotent Lie algebras (34) with the only exception of:

$$[X_1, X_2] = X_4, \quad [X_1, X_4] = X_5,$$
$$[X_1, X_5] = [X_2, X_3] = [X_2, X_4] = X_6,$$

(nice basis \leadsto get a basis compatible with the type).
Theorem

A basis of a nilpotent Lie algebra is stably Ricci-diagonal if and only if it is nice.
Lemma

The canonical basis \(\{e_1, \ldots, e_n\}\) is nice for \(n\) if and only if

\[
\alpha^k_{ij} - \alpha^t_{rs} \notin \Phi, \quad \text{for any} \quad c^k_{ij}, c^t_{rs} \neq 0.
\]
Lemma

The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(n \) if and only if

\[
\alpha^{k}_{ij} - \alpha^{t}_{rs} \notin \Phi, \quad \text{for any} \quad c^{k}_{ij}, c^{t}_{rs} \neq 0.
\]
Lemma

The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(n \) if and only if

\[
\alpha^k_{ij} - \alpha^t_{rs} \notin \Phi, \quad \text{for any} \quad c^k_{ij}, c^t_{rs} \neq 0.
\]
Lemma

The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(n \) if and only if

\[
\alpha_{ij}^k - \alpha_{rs}^t \not\in \Phi, \quad \text{for any} \quad c_{ij}^k, c_{rs}^t \neq 0.
\]

\(n \leftrightarrow \mu = [\cdot, \cdot] = \)
Lemma

The canonical basis \(\{ e_1, \ldots, e_n \} \) is nice for \(n \) if and only if

\[
\alpha^k_{ij} - \alpha^t_{rs} \notin \Phi, \quad \text{for any} \quad c^k_{ij}, c^t_{rs} \neq 0.
\]

\(n \leftrightarrow \mu = [\cdot, \cdot] = \sum_{k; i<j} c^k_{ij} v_{ijk}. \)
Lemma

The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(n \) if and only if

\[
\alpha_{ij}^k - \alpha_{rs}^t \notin \Phi, \quad \text{for any} \quad c_{ij}^k, c_{rs}^t \neq 0.
\]

\[n \leftrightarrow \mu = [\cdot, \cdot] = \sum_{k; i<j} c_{ij}^k v_{ijk}. \]

\(\rightsquigarrow \) Generalization.
Theorem

For a nilpotent Lie algebra \mathfrak{n}, the following conditions are equivalent:

(i) The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n}.

(ii) $\langle \pi(X) v_{ijk}, \nu_{rst} \rangle = 0$, for all $X \in \mathfrak{g}$, $\lambda \in \Phi$, $c_{ij} \neq 0$.

(iii) $\text{Ric} A \cdot \mu(e_l, e_m) = 0$ for all $l \neq m$ and any diagonal $A \in \text{GL}_n(\mathbb{R})$.

(iv) The canonical basis $\{e_1, \ldots, e_n\}$ is stably Ricci-diagonal for \mathfrak{n}.
Theorem

For a nilpotent Lie algebra \(\mathfrak{n} \), the following conditions are equivalent:

(i) *The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(\mathfrak{n} \).*
Theorem

For a nilpotent Lie algebra \mathfrak{n}, the following conditions are equivalent:

(i) The canonical basis $\{e_1, \ldots, e_n\}$ is nice for \mathfrak{n}.

(ii) $\langle \pi(X)v_{ijk}, v_{rst} \rangle = 0$, for all $X \in \mathfrak{g}_\lambda$, $\lambda \in \Phi$, $c^k_{ij}, c^t_{rs} \neq 0$.

Theorem

For a nilpotent Lie algebra \(n \), the following conditions are equivalent:

(i) The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(n \).

(ii) \(\langle \pi(X) v_{ij}, v_{rst} \rangle = 0 \), for all \(X \in g_\lambda, \lambda \in \Phi, c_{ij}^k, c_{rs}^t \neq 0 \).

(iii) \(\text{Ric}_{A, \mu}(e_l, e_m) = 0 \) for all \(l \neq m \) and any diagonal \(A \in \text{GL}_n(\mathbb{R}) \).
Theorem

For a nilpotent Lie algebra \(\mathfrak{n} \), the following conditions are equivalent:

(i) The canonical basis \(\{e_1, \ldots, e_n\} \) is nice for \(\mathfrak{n} \).

(ii) \(\langle \pi(X) v_{ijk}, v_{rst} \rangle = 0 \), for all \(X \in \mathfrak{g}_\lambda, \lambda \in \Phi, c_{ij}^k, c_{rs}^t \neq 0 \).

(iii) \(\text{Ric}_{A, \mu}(e_l, e_m) = 0 \) for all \(l \neq m \) and any diagonal \(A \in \text{GL}_n(\mathbb{R}) \).

(iv) The canonical basis \(\{e_1, \ldots, e_n\} \) is stably Ricci-diagonal for \(\mathfrak{n} \).
A few words about the proof:
A few words about the proof:
(i) \Leftrightarrow (ii)
A few words about the proof:
(i) ⇔ (ii) If $\lambda \in \Phi$, $X \in g_\lambda$, $\alpha \in a$:
A few words about the proof:

(i) ⇔ (ii) If \(\lambda \in \Phi, X \in g_{\lambda}, \alpha \in \mathfrak{a} \):

\[
\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle,
\]
A few words about the proof:

(i) ⇔ (ii) If $\lambda \in \Phi$, $X \in g_\lambda$, $\alpha \in \mathfrak{a}$:

$$\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle,$$

(iii) ⇒ (ii) uses: π is multiplicity free and special properties of the weights (α^k_{ij}).
A few words about the proof:

(i) ⇔ (ii) If $\lambda \in \Phi$, $X \in g_\lambda$, $\alpha \in a$:

$$\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle,$$

(ii) ⇒ (iii)

$$\frac{1}{4} \text{Ric}_A[e_l, e_m] = \langle \pi(E_{lm}) A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle$$
A few words about the proof:

(i) \Leftrightarrow (ii) If $\lambda \in \Phi$, $X \in g_\lambda$, $\alpha \in a$:

$$\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle,$$

(ii) \Rightarrow (iii)

$$\frac{1}{4} \text{Ric}_{A \cdot [\cdot, \cdot]}(e_i, e_m) = \langle \pi(E_{lm})A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle = \sum c^k_{ij} c^t_{rs} \langle \pi(E_{lm})A \cdot v_{ijk}, A \cdot v_{rst} \rangle$$
A few words about the proof:

(i) \iff (ii) If $\lambda \in \Phi$, $X \in g_\lambda$, $\alpha \in a$:

$$\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle,$$

(ii) \implies (iii)

$$\frac{1}{4} \text{Ric}_A[., .](e_l, e_m) = \langle \pi(E_{lm})A \cdot [., .], A \cdot [., .] \rangle$$

$$= \sum c^k_{ij} c^t_{rs} \langle \pi(E_{lm})A \cdot v_{ijk}, A \cdot v_{rst} \rangle$$

$$= \sum c^k_{ij} c^t_{rs} \frac{a_k}{a_i a_j} \frac{a_t}{a_r a_s} \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle,$$
A few words about the proof:

(i) ⇔ (ii) If $\lambda \in \Phi$, $X \in g_{\lambda}$, $\alpha \in a$:

$$\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X) v_{ijk}, v_{rst} \rangle,$$

(ii) ⇒ (iii)

$$\frac{1}{4} \text{Ric}_A \cdot [\cdot, \cdot] (e_l, e_m) = \langle \pi(E_{lm}) A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle = \sum c^k_{ij} c_{rs}^t \langle \pi(E_{lm}) A \cdot v_{ijk}, A \cdot v_{rst} \rangle = \sum c^k_{ij} c_{rs}^t a^k_{ai} a^t_{aj} a^r_{as} a^s_{as} \langle \pi(E_{lm}) v_{ijk}, v_{rst} \rangle,$$

(iii) ⇒ (ii)
A few words about the proof:

(i) ⇔ (ii) If \(\lambda \in \Phi, X \in g_\lambda, \alpha \in a \):

\[
\langle \lambda + \alpha^k_{ij}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle = \langle \alpha^t_{rs}, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle,
\]

(ii) ⇒ (iii)

\[
\frac{1}{4} \text{Ric}_{A \cdot [\cdot, \cdot]}(e_l, e_m) = \langle \pi(E_{lm})A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle
= \sum c^k_{ij} c^t_{rs} \langle \pi(E_{lm})A \cdot v_{ijk}, A \cdot v_{rst} \rangle
= \sum c^k_{ij} c^t_{rs} a_k a_t a_r a_s \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle,
\]

(iii) ⇒ (ii) uses: \(\pi \) is multiplicity free
A few words about the proof:

(i) \iff (ii) If $\lambda \in \Phi$, $X \in g_\lambda$, $\alpha \in a$:

$$\langle \lambda + \alpha_{ij}^k, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle = \langle \alpha_{rs}^t, \alpha \rangle \langle \pi(X)v_{ijk}, v_{rst} \rangle,$$

(ii) \implies (iii)

$$\frac{1}{4} \text{Ric}_A[A, e_i, e_m] = \langle \pi(E_{lm})A \cdot [\cdot, \cdot], A \cdot [\cdot, \cdot] \rangle$$

$$= \sum c_{ij}^k c_{rs}^t \langle \pi(E_{lm})A \cdot v_{ijk}, A \cdot v_{rst} \rangle$$

$$= \sum c_{ij}^k c_{rs}^t \frac{a_k}{a_i a_j} \frac{a_t}{a_r a_s} \langle \pi(E_{lm})v_{ijk}, v_{rst} \rangle,$$

(iii) \implies (ii) uses: π is multiplicity free and special properties of the weights (α_{ij}^k).

(iii) \implies (ii) uses: π is multiplicity free and special properties of the weights (α_{ij}^k).
What about non-nilpotent Lie groups?
What about non-nilpotent Lie groups?

\[\text{Rc} = M - \frac{1}{2} B - S(\text{ad } H). \]
What about non-nilpotent Lie groups?

\[Rc = M - \frac{1}{2}B - S(\text{ad } H). \]

Nice \(\not\Rightarrow \) stably Ricci diagonal:
What about non-nilpotent Lie groups?

\[\text{Rc} = M - \frac{1}{2} B - S(\text{ad } H). \]

Nice $\not\Rightarrow$ stably Ricci diagonal:
Let \(\{X_1, X_2, X_3\} \) be a basis of \(\mathfrak{sl}_2(\mathbb{R}) \) such that
What about non-nilpotent Lie groups?

\[\text{Rc} = M - \frac{1}{2} B - S(\text{ad} \ H). \]

Nice \(\not\Rightarrow \) stably Ricci diagonal:
Let \(\{ X_1, X_2, X_3 \} \) be a basis of \(\mathfrak{sl}_2(\mathbb{R}) \) such that

\[[X_1, X_2] = X_2, \quad [X_1, X_3] = -X_3, \quad [X_2, X_3] = X_1. \]
What about non-nilpotent Lie groups?

\[\text{Rc} = M - \frac{1}{2}B - S(\text{ad } H). \]

Nice \(\not\Rightarrow \) stably Ricci diagonal:
Let \(\{X_1, X_2, X_3\} \) be a basis of \(\mathfrak{sl}_2(\mathbb{R}) \) such that

\[
[X_1, X_2] = X_2, \quad [X_1, X_3] = -X_3, \quad [X_2, X_3] = X_1.
\]

Nice but
What about non-nilpotent Lie groups?

\[\text{Rc} = M - \frac{1}{2} B - S(\text{ad } H). \]

Nice \(\not\Rightarrow \) stably Ricci diagonal:
Let \(\{ X_1, X_2, X_3 \} \) be a basis of \(\mathfrak{sl}_2(\mathbb{R}) \) such that

\[[X_1, X_2] = X_2, \quad [X_1, X_3] = -X_3, \quad [X_2, X_3] = X_1. \]

Nice but

\[\text{Ric} = \begin{bmatrix} -\frac{3}{2} & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & -\frac{1}{2} \end{bmatrix}. \]

(for the metric which makes it orthonormal)
Stably Ricci diagonal \(\not\Rightarrow \) nice:

\[X_1, X_3 = X_2 + X_3. \]

The basis \(\{X_1, X_2, X_3\} \) is not nice but it is stably-Ricci diagonal:

for every \(\langle \cdot, \cdot \rangle \)

\[
\begin{align*}
\langle X_i, X_i \rangle &= a_{2i}, \\
\langle X_i, X_j \rangle &= 0 \quad \forall i \neq j,
\end{align*}
\]

\[
\text{Ric}(X_r, X_s) = \frac{1}{4} \sum \langle [X_i, X_j], X_r \rangle \langle [X_i, X_j], X_s \rangle - \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle.
\]

Vanishes if either \(r \) or \(s \) is 1, and

\[
\text{Ric}(X_2, X_3) = \frac{1}{2} (a_2 a_1)^2 - \frac{1}{2} (a_2 a_1)^2 = 0.
\]
Stably Ricci diagonal $\not\Rightarrow$ nice:

\mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

\[
[\mathfrak{s}_1, \mathfrak{s}_3] = \mathfrak{s}_2 + \mathfrak{s}_3.
\]

The basis \{\mathfrak{s}_1, \mathfrak{s}_2, \mathfrak{s}_3\} is not nice but it is stably-Ricci diagonal:

for every \[\langle \cdot, \cdot \rangle \] \[\langle \mathfrak{s}_i, \mathfrak{s}_i \rangle = a_{2i}, \quad a_i > 0, \]

\[\langle \mathfrak{s}_i, \mathfrak{s}_j \rangle = 0 \quad \forall \ i \neq j, \]

\[\text{Ric}(\mathfrak{s}_r, \mathfrak{s}_s) = \frac{1}{4} \sum \langle [\mathfrak{s}_1 a_i \mathfrak{s}_i, 1 a_j \mathfrak{s}_j], \mathfrak{s}_r \rangle \langle [\mathfrak{s}_1 a_i \mathfrak{s}_i, 1 a_j \mathfrak{s}_j], \mathfrak{s}_s \rangle - \frac{1}{2} \langle [\mathfrak{H}, \mathfrak{s}_r], \mathfrak{s}_s \rangle - \frac{1}{2} \langle \mathfrak{s}_r, [\mathfrak{H}, \mathfrak{s}_s] \rangle.\]

Vanishes if either r or s is 1, and

\[\text{Ric}(\mathfrak{s}_2, \mathfrak{s}_3) = \frac{1}{2} (a_2 a_1)^2 - \frac{1}{2} \frac{(a_2 a_1)^2}{2} = 0.\]
Stably Ricci diagonal $\not\Rightarrow$ nice:

\mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$
Stably Ricci diagonal $\not\Rightarrow$ nice:

\mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis \{\(X_1, X_2, X_3\}\} is not nice but it is stably-Ricci diagonal
Stably Ricci diagonal ≠ nice:

s_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal:

for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \quad \langle X_i, X_j \rangle = 0 \quad \forall i \neq j,$$
Stably Ricci diagonal \(\not\Rightarrow \) nice:

\(\mathfrak{s}_3 \) be the 3-dimensional Lie algebra defined by

\[
[X_1, X_3] = X_2 + X_3.
\]

The basis \(\{X_1, X_2, X_3\} \) is not nice but it is stably-Ricci diagonal:

for every \(\langle \cdot, \cdot \rangle \)

\[
\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \quad \langle X_i, X_j \rangle = 0 \quad \forall i \neq j,
\]

\[
\text{Ric}(X_r, X_s) = \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle - \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle.
\]
Stably Ricci diagonal \(\not\Rightarrow \) nice:

\(\mathfrak{s}_3 \) be the 3-dimensional Lie algebra defined by

\[
[X_1, X_3] = X_2 + X_3.
\]

The basis \(\{X_1, X_2, X_3\} \) is not nice but it is stably-Ricci diagonal: for every \(\langle \cdot, \cdot \rangle \)

\[
\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \quad \langle X_i, X_j \rangle = 0 \quad \forall i \neq j,
\]

\[
\text{Ric}(X_r, X_s) = \frac{1}{4} \sum \langle [\frac{1}{a_i}X_i, \frac{1}{a_j}X_j], X_r \rangle \langle [\frac{1}{a_i}X_i, \frac{1}{a_j}X_j], X_s \rangle \\
- \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle.
\]

Vanishes if either \(r \) or \(s \) is 1,
Stably Ricci diagonal \(\not\Rightarrow \) nice:

\(s_3 \) be the 3-dimensional Lie algebra defined by

\[
[X_1, X_3] = X_2 + X_3.
\]

The basis \(\{X_1, X_2, X_3\} \) is not nice but it is stably-Ricci diagonal: for every \(\langle \cdot, \cdot \rangle \)

\[
\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \quad \langle X_i, X_j \rangle = 0 \quad \forall i \neq j,
\]

\[
\text{Ric}(X_r, X_s) = \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle
- \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle.
\]

Vanishes if either \(r \) or \(s \) is 1, and
Stably Ricci diagonal \not \Rightarrow nice:

Let \mathfrak{s}_3 be the 3-dimensional Lie algebra defined by

$$[X_1, X_3] = X_2 + X_3.$$

The basis $\{X_1, X_2, X_3\}$ is not nice but it is stably-Ricci diagonal: for every $\langle \cdot, \cdot \rangle$

$$\langle X_i, X_i \rangle = a_i^2, \quad a_i > 0, \quad \langle X_i, X_j \rangle = 0 \quad \forall i \neq j,$$

$$\text{Ric}(X_r, X_s) = \frac{1}{4} \sum \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_r \rangle \langle [\frac{1}{a_i} X_i, \frac{1}{a_j} X_j], X_s \rangle - \frac{1}{2} \langle [H, X_r], X_s \rangle - \frac{1}{2} \langle X_r, [H, X_s] \rangle.$$

Vanishes if either r or s is 1, and

$$\text{Ric}(X_2, X_3) = \frac{1}{2} \left(\frac{a_2}{a_1} \right)^2 - \frac{1}{2} \left(\frac{a_2}{a_1} \right)^2 = 0.$$
In the non-nilpotent case both assertion of the Theorem fails.
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let \((N, g_0)\) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$.
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let \((N, g_0)\) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra \((n, \langle \cdot, \cdot \rangle_0)\). Let \(g(t)\) be a solution to the *Ricci flow*
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let \((N, g_0)\) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra \((n, \langle \cdot, \cdot \rangle_0)\). Let \(g(t)\) be a solution to the *Ricci flow*

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g_0.
\]
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let \((N, g_0)\) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra \((n, \langle \cdot, \cdot \rangle_0)\). Let \(g(t)\) be a solution to the *Ricci flow*

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g_0.
\]

Or equivalently
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let (N, g_0) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra $(\mathfrak{n}, \langle \cdot, \cdot \rangle_0)$. Let $g(t)$ be a solution to the *Ricci flow*

$$\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g_0.$$

Or equivalently

$$\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = g(0)(e)$$
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let \((N, g_0)\) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra \((\mathfrak{n}, \langle \cdot, \cdot \rangle_0)\). Let \(g(t)\) be a solution to the *Ricci flow*

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g_0.
\]

Or equivalently

\[
\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = g(0)(e)
\]

where \(\langle \cdot, \cdot \rangle_t := g(t)(e)\),
In the non-nilpotent case both assertion of the Theorem fails.

Diagonal solution of the Ricci Flow?

Let \((N, g_0)\) be a (non-necessarily nilpotent) Lie group endowed with a left-invariant metric with metric Lie algebra \((n, \langle \cdot, \cdot \rangle_0)\).

Let \(g(t)\) be a solution to the *Ricci flow*

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g_0.
\]

Or equivalently

\[
\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = g(0)(e)
\]

where \(\langle \cdot, \cdot \rangle_t := g(t)(e)\), and

\[
\text{Rc}(\langle \cdot, \cdot \rangle_t) := \text{Rc}(g(t))(e) : n \times n \rightarrow \mathbb{R}.
\]
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$
If $P(t)$ is the positive definite operators of $(\mathbb{n}, \langle \cdot, \cdot \rangle_0)$

\[\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0, \]
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t)\cdot, \cdot \rangle_0,$$

then the Ricci flow equation
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:

$$\frac{d}{dt} P(t) = -2P(t) \text{Ric}_t, \quad P(0) = I,$$

where $\text{Ric}_t := \text{Ric}(g(t))(e) : n \longrightarrow n$
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:

$$\frac{d}{dt} P(t) = -2P(t) \text{Ric}_t, \quad P(0) = I,$$

where $\text{Ric}_t := \text{Ric}(g(t))(e) : n \rightarrow n$ is the Ricci operator.
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:

$$\frac{d}{dt} P(t) = -2P(t) \text{Ric}_t, \quad P(0) = I,$$

where $\text{Ric}_t := \text{Ric}(g(t))(e) : n \to n$ is the Ricci operator.

A starting metric g_0 will be called **Ricci flow diagonal** if the Ricci flow solution $g(t)$ is **diagonal**
If \(P(t) \) is the positive definite operators of \((\mathbb{n}, \langle \cdot, \cdot \rangle_0)\)

\[
\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,
\]

then the Ricci flow equation determines the following ODE for \(P(t) \):

\[
\frac{d}{dt} P(t) = -2P(t) \text{Ric}_t, \quad P(0) = I,
\]

where \(\text{Ric}_t := \text{Ric}(g(t))(e) : \mathbb{n} \rightarrow \mathbb{n} \) is the Ricci operator.

A starting metric \(g_0 \) will be called **Ricci flow diagonal** if the Ricci flow solution \(g(t) \) is **diagonal** in the sense that \(P(t) \) is diagonal when written in some fixed orthonormal basis of \((\mathbb{n}, \langle \cdot, \cdot \rangle_0)\).
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:

$$\frac{d}{dt} P(t) = -2P(t) \text{Ric}_t, \quad P(0) = I,$$

where $\text{Ric}_t := \text{Ric}(g(t))(e) : n \rightarrow n$ is the Ricci operator.

A starting metric g_0 will be called **Ricci flow diagonal** if the Ricci flow solution $g(t)$ is **diagonal** in the sense that $P(t)$ is diagonal when written in some fixed orthonormal basis of $(n, \langle \cdot, \cdot \rangle_0)$. Equivalently the same for Ric_t.
If $P(t)$ is the positive definite operators of $(n,\langle\cdot,\cdot\rangle_0)$

$$\langle\cdot,\cdot\rangle_t = \langle P(t)\cdot,\cdot\rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:

$$\frac{d}{dt}P(t) = -2P(t)\text{Ric}_t, \quad P(0) = I,$$

where $\text{Ric}_t := \text{Ric}(g(t))(e) : n \longrightarrow n$ is the Ricci operator.

A starting metric g_0 will be called **Ricci flow diagonal** if the Ricci flow solution $g(t)$ is **diagonal** in the sense that $P(t)$ is diagonal when written in some fixed orthonormal basis of $(n,\langle\cdot,\cdot\rangle_0)$. Equivalently the same for Ric_t or the commutativity of the family of symmetric operators $P(t)$.
If $P(t)$ is the positive definite operators of $(n, \langle \cdot, \cdot \rangle_0)$

$$\langle \cdot, \cdot \rangle_t = \langle P(t) \cdot, \cdot \rangle_0,$$

then the Ricci flow equation determines the following ODE for $P(t)$:

$$\frac{d}{dt} P(t) = -2P(t) \text{Ric}_t, \quad P(0) = I,$$

where $\text{Ric}_t := \text{Ric}(g(t))(e) : n \rightarrow n$ is the Ricci operator.

A starting metric g_0 will be called **Ricci flow diagonal** if the Ricci flow solution $g(t)$ is *diagonal* in the sense that $P(t)$ is diagonal when written in some fixed orthonormal basis of $(n, \langle \cdot, \cdot \rangle_0)$. Equivalently the same for Ric_t or the commutativity of the family of symmetric operators $P(t)$.

Stably Ricci diagonal basis \Rightarrow Ricci diagonal.
More examples:
More examples: Algebraic Ricci solitons.
More examples: Algebraic Ricci solitons.

If \(\{X_1, \ldots, X_n\} \) is an orthonormal basis of eigenvectors of \(\text{Ric}_0 \),
More examples: Algebraic Ricci solitons.

If \(\{X_1, \ldots, X_n\} \) is an orthonormal basis of eigenvectors of \(\text{Ric}_0 \) with respective eigenvalues \(r_1, \ldots, r_n \),
More examples: Algebraic Ricci solitons.

If \(\{X_1, \ldots, X_n\} \) is an orthonormal basis of eigenvectors of \(\text{Ric}_0 \) with respective eigenvalues \(r_1, \ldots, r_n \),

\[
P(t) = d \left((-2ct + 1)^{r_1/c}, \ldots, (-2ct + 1)^{r_n/c} \right).
\]
More examples: Algebraic Ricci solitons.

If \(\{X_1, \ldots, X_n\} \) is an orthonormal basis of eigenvectors of \(\operatorname{Ric}_0 \) with respective eigenvalues \(r_1, \ldots, r_n \),

\[
P(t) = d \left((-2ct + 1)^{r_1/c}, \ldots, (-2ct + 1)^{r_n/c} \right).
\]

(Payne, Williams)
THANK YOU!