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Talk based on

@ A heat flow for special metrics
joint with H. Weill (Miinchen)

@ Energy functionals and soliton equations for Go-forms
joint with H. Weil (Miinchen)

e A spinorial energy functional: critical points and gradient flow
joint with B. Ammann (Regensburg) and H. Wei (Miinchen)
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M" C*-manifold (compact, spin, simply-connected, n > 4)

g Riemannian metric
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Leitmotiv

M" C*-manifold (compact, spin, simply-connected, n > 4)

g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?
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g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?

Theorem (Hamilton)

(M3, g) compact with positive Ricci curvature

= g can be deformed into a metric of positive constant sectional
curvature.
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M" C>°-manifold (compact, spin, simply-connected, n > 4)

g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?

Theorem (Hamilton)

(M3, g) compact with positive Ricci curvature

= g can be deformed into a metric of positive constant sectional
curvature.

Local question

Is there a natural direction for deforming g towards a special
metric?
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Curvature decomposition

Rough classification scheme

Riemannian curvature Ré = Z8 @ W&
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Curvature decomposition

Rough classification scheme

Riemannian curvature Ré = Z8 @ W&

o W& =0 < g is conformally flat
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Curvature decomposition

Rough classification scheme

Riemannian curvature R = 78 ® Weé
o W& =0 < g is conformally flat
o Z8 =0 < g Ricci-flat
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Curvature decomposition

Rough classification scheme

Riemannian curvature R = 78 ® Weé
o W& =0 < g is conformally flat
o Z8 =0 < g Ricci-flat

78 = U8 @ 78 and Z& = 0 < g is Einstein
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Curvature decomposition

Rough classification scheme

Riemannian curvature R = 78 ® Weé
o W& =0 < g is conformally flat
0 78 =0 g Ricci-flat

78 = U8 @ 78 and Z& = 0 < g is Einstein

Theorem (Kuiper)

(M", g) compact, simply-connected and conformally flat

= (M", g) conformally equivalent to (5", ground)
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Generalised Bieberbach theorem

Theorem (Cheeger-Gromoll, Fischer-Wolf)
(M, g) compact and Ricci-flat

— There exists a finite Riemannian cover TX x M — M with M
compact, simply-connected and Ricci-flat.
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Generalised Bieberbach theorem

Theorem (Cheeger-Gromoll, Fischer-Wolf)

(M, g) compact and Ricci-flat

— There exists a finite Riemannian cover TX x M — M with M
compact, simply-connected and Ricci-flat.

Corollary

Any homogeneous Ricci-flat metric is flat.
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Generalised Bieberbach theorem

Theorem (Cheeger-Gromoll, Fischer-Wolf)

(M, g) compact and Ricci-flat

— There exists a finite Riemannian cover TX x M — M with M
compact, simply-connected and Ricci-flat.

Corollary

Any homogeneous Ricci-flat metric is flat.

Existence of compact simply-connected (irreducible) Ricci-flat
manifolds?
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Berger's list (Ricci-flat case)

dimM | Hol(M,g) | geometry examples
n SO(n) generic ?
2m SU(m) Calabi-Yau Yau
4k Sp(k) hyperkahler | Beauville-Mukai
8 Spin(7) Spin(7) Joyce
7 Go Go Joyce
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Berger's list (Ricci-flat case)

dimM | Hol(M,g) | geometry examples
n SO(n) generic ?
2m SU(m) Calabi-Yau Yau
4k Sp(k) hyperkahler | Beauville-Mukai
8 Spin(7) Spin(7) Joyce
7 Go Go Joyce

@ approach special holonomy from variational point of view
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Berger's list (Ricci-flat case)

dimM | Hol(M,g) | geometry examples
n SO(n) generic ?
2m SU(m) Calabi-Yau Yau
4k Sp(k) hyperkahler | Beauville-Mukai
8 Spin(7) Spin(7) Joyce
7 Go Go Joyce

@ approach special holonomy from variational point of view

o study (negative) gradient flow of the functional
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds

o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M

Frederik Witt A variational principle for spinors



Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds
o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M
o Q reduces P = Pqp,, (7) = M to PG, — M which extends to
Pso(7y — M, hence induces metric go
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds
o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M
o Q reduces P = Pqp,, (7) = M to PG, — M which extends to
Pso(7y — M, hence induces metric go

o V&2 reduces to Pg, & VEQ =0 dQ2 =0, d*,, Q=0
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds
o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M
o Q reduces P = Pqp,, (7) = M to PG, — M which extends to
Pso(7y — M, hence induces metric go

o V&2 reduces to Pg, & VEQ =0 dQ2 =0, d*,, Q=0

e choice of a metric g, € GL4.(7)/SO(7)
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds
o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M
o Q reduces P = Pqp,, (7) = M to PG, — M which extends to
Pso(7y — M, hence induces metric go

o V&2 reduces to Pg, & VEQ =0 dQ2 =0, d*,, Q=0

e choice of a metric g, € GL4.(7)/SO(7)
o choice of a unit spinor ¢, € S” = Spin(7)/Gy C T
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds
o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M
o Q reduces P = Pqp,, (7) = M to PG, — M which extends to
Pso(7y — M, hence induces metric go

o V&2 reduces to Pg, & VEQ =0 dQ2 =0, d*,, Q=0

e choice of a metric g, € GL4.(7)/SO(7)
o choice of a unit spinor ¢, € S” = Spin(7)/Gy C T
@ V&2 reduces to Pg, < V&8¢ =0
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Spinors and Ricci-flat metrics

(M, g) spin and ¢ € [(XyM) with V&¢p =0
= g Ricci-flat and has special holonomy
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Spinors and Ricci-flat metrics

(M, g) spin and ¢ € [(XyM) with V&¢p =0
= g Ricci-flat and has special holonomy

Proposition (Wang)

dimM | Hol(M,g) | geometry | dim || spinors

2m SU(m) | Calabi-Yau 2
4k Sp(k) hyperkahler k+1
8 Spin(7) Spin(7) 1
7 Ga G 1

Frederik Witt A variational principle for spinors



The &E-functional

Spin structure P — P is a 2-fold cover of GL (n)-frame bundle
P — M such that fibrewise 0 — Zy — GL4(n) — GL4(n) — 0
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The &E-functional

Spin structure P — P is a 2-fold cover of GL (n)-frame bundle
P — M such that fibrewise 0 — Zy — GL4(n) — GL4(n) — 0

Universal spinor bundle

TM = P Xgpin(n) Zn — @2 T*M — M

F=T(EM)={(g,¢)| ¢ € (EgM)} — M := {metrics on M}
N ={(g,¢) € Fl¢ e (gM), |¢] =1} = M
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The &E-functional

Spin structure P — P is a 2-fold cover of GL (n)-frame bundle
P — M such that fibrewise 0 — Zy — GL4(n) — GL4(n) — 0

Universal spinor bundle

M = P Xgpin(n) Zn — OLT*M — M
F=T(EM)={(g,¢)|¢ (M)} - M := {metrics on M}
N=A{(g,9) e Flp e (M), |¢| =1} - M

The energy functional

E:N =R, (g,9¢)— %/ |VEB|2dvE
M
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Critical points

Theorem (dim M > 3)
° (g, ¢) is critical & V&p =0
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Critical points

Theorem (dim M > 3)
° (g, ¢) is critical & V&p =0

o Killing spinors (V¢ = AX - ¢) are solitons, i.e. critical subject
to [y, dv& =1.
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Critical points

Theorem (dim M > 3)

° (g, ¢) is critical & V&p =0

o Killing spinors (V¢ = AX - ¢) are solitons, i.e. critical subject
to [y, dv& =1.

Theorem (surface case)

— %fM ]Dg¢]2dvg — (1 —ym)
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Critical points

Theorem (dim M > 3)

° (g, ¢) is critical & V&p =0

o Killing spinors (V¢ = AX - ¢) are solitons, i.e. critical subject
to [y, dv& =1.

Theorem (surface case)

— %fM ]Dg¢]2dvg — (1 —ym)

P&y =0, vym=0
@ trichotomy of absolute minimisers ¢ V&p =0, vy =1
DEG =0, yu > 2
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Critical points

Theorem (dim M > 3)

° (g, ¢) is critical & V&p =0

o Killing spinors (V¢ = AX - ¢) are solitons, i.e. critical subject
to [y, dv& =1.

Theorem (surface case)

— %fM ]Dg¢]2dvg — (1 —ym)

PEG =0, =0
@ trichotomy of absolute minimisers ¢ V&p =0, vy =1

DEG =0, ~m =2
@ saddle points exist for vy > 1
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Sketch of the proof of Theorem A

Py

SO(go) D .D SO(g1) Compare Pso(go) and Pso(gl)
.D along g+ = tgo + (1 — t)gu:
P

Yy
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Sketch of the proof of Theorem A

Py

SO(go) D .D SO(g1) Compare Pso(go) and Pso(gl)
.D along g+ = tgo + (1 — t)gu:
P

D gt(va W) = gO(AtVa W) v
g Y (VA:) ™ : SO(go) — SO(gt)
M
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Sketch of the proof of Theorem A

Py

SO(go) D .D SO(g1) Compare Pso(go) and Pso(gl)
.D along g+ = tgo + (1 — t)gu:
P

D gt(v,w) = go(Arv, w) ~
T ()™ : SO(g0) — SO(g)
M This lifts to P.
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Sketch of the proof of Theorem A

Bourguignon-Gauduchon distribution

M(Zg,M)
M(ZgM)

F 5, / Pg1 ®o

81

Parallel transport Pg, ¢ along g;
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Sketch of the proof of Theorem A

Bourguignon-Gauduchon distribution

[(Xg M)
M(XgM)
P
F e / g1¢0
Parallel transport Pg, ¢ along g;
81
80
horizontal distribution
M Te)F ZT(O*T*M) & T(X M)
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Sketch of the proof of Theorem A

@ J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de
Dirac et variations de métriques
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Sketch of the proof of Theorem A

@ J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de
Dirac et variations de métriques

e C. Béar, P. Gauduchon and A. Moroianu, Generalized cylinders
in semi-Riemannian and Spin geometry
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Sketch of the proof of Theorem A

@ J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de
Dirac et variations de métriques

e C. Béar, P. Gauduchon and A. Moroianu, Generalized cylinders
in semi-Riemannian and Spin geometry

Lemma

negative L2-gradient Q = (Q1, Q2) = —grad £ : N' — TN given by

Qi(g, ¢) = —3|VEP2g — Ldivg Ty s + 3(VEG ® VEG)
Q:(g, ¢) = —VE*VEG + |VEQ[2¢
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Sketch of the proof of Theorem A

@ J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de
Dirac et variations de métriques

e C. Béar, P. Gauduchon and A. Moroianu, Generalized cylinders
in semi-Riemannian and Spin geometry

Lemma

negative L2-gradient Q = (Q1, Q2) = —grad £ : N' — TN given by

Qi(g, ¢) = —3|VEP2g — Ldivg Ty s + 3(VEG ® VEG)
Q:(g, ¢) = —VE*VEG + |VEQ[2¢

M. Wang, Preserving parallel spinors under metric deformations
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The spinor flow

The flow equation

Oi(gt, 1) = Q(gt, ¢t), (8o, P0) = (g, 9) €N (SF)
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The spinor flow

The flow equation

Oi(gt, 1) = Q(gt, ¢t), (8o, P0) = (g, 9) €N (SF)

natural a'?fo(M)—action
= Symbol of Dy, 4)@ only negative semi-definite. Still:
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The spinor flow

The flow equation

Oi(gt, 1) = Q(gt, ¢t), (8o, P0) = (g, 9) €N (SF)

natural a'?fo(M)—action
= Symbol of Dy, 4)@ only negative semi-definite. Still:

Theorem B (Short-time existence and uniqueness)

For all (g, ¢) € N there exists a uniquely determined smooth
family (gt, ¢¢) € N for t € [0, €] such that (SF) holds.
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Sketch of the proof of Thm B

DeTurck’s trick

° QX(& b) = Q(g,d) + Lx(g’(ﬁ)(g, ¢) strictly elliptic for
suitable vector field X(g, ¢)
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Sketch of the proof of Thm B

DeTurck’s trick

° QX(& b) = Q(g,d) + Lx(g’(ﬁ)(g, ¢) strictly elliptic for
suitable vector field X(g, ¢)

o given (go, $o) € N put Xo(g, ¢) = —2(Jg,8)"*
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Sketch of the proof of Thm B

DeTurck’s trick

° QX(& b) = Q(g,d) + Lx(g’(ﬁ)(g, ¢) strictly elliptic for
suitable vector field X(g, ¢)

o given (go, $0) € N put Xo(g, ¢) = —2(3g8)*
@ parabolic theory gives solution to

8t(§t,¢~5t) = ao(ét,qgt), (5’07950) = (&0, %0) (SDF)
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Sketch of the proof of Thm B

DeTurck’s trick

° (NQX(& b) = Q(g, ¢) + Lx(g’(ﬁ)(g, ¢) strictly elliptic for
suitable vector field X(g, ¢)

o given (go, $0) € N put Xo(g, ¢) = —2(3g8)*
@ parabolic theory gives solution to

8t(§t,¢;t) = éo(ét,qgt), (§07950) = (g0,¢0) (SDF)

solve dtf (gtaﬁbt) of = (g, ¢¢) = f*(gt7¢t) solves (SF)
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Further functionals

Einstein-Hilbert functional

S: M =R, g»—)/scalgdvg
M
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Further functionals

Einstein-Hilbert functional

S: M =R, g»—)/scalgdvg
M

Gradient flow of S implies backwards heat equation in scalg, !
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Further functionals

Einstein-Hilbert functional

S: M —=R, g»—)/scalgdvg
M

Gradient flow of S implies backwards heat equation in scalg, !

Es-functional

&(g,0)=CE(g,¢)+s-5(g), seR
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Further functionals

Einstein-Hilbert functional

S: M —=R, g»—)/scalgdvg
M

Gradient flow of S implies backwards heat equation in scalg, !

Es-functional

&(g,0)=CE(g,¢)+s-5(g), seR

° 63 strongly elliptic at (go, o) < s € (3, —ﬁ)
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Further functionals

Einstein-Hilbert functional

S: M —=R, g»—)/scalgdvg
M

Gradient flow of S implies backwards heat equation in scalg, !

Es-functional

&(g,0)=CE(g,¢)+s-5(g), seR

° 63 strongly elliptic at (go, o) < s € (3, —ﬁ)
o £1/%(g,0) = 3 [y |DEo dve
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Premoduli spaces

Theorem C (Smoothness of the critical set)

M simply-connected, (g, ¢) critical and irreducible

= Crit(€) is smooth at (g, ¢) and a);l(O) is a smooth slice for
/D\i?fo(M)—action on Crit(€).
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Premoduli spaces

Theorem C (Smoothness of the critical set)

M simply-connected, (g, ¢) critical and irreducible
= Crit(€) is smooth at (g, ¢) and a))%l(O) is a smooth slice for
/D\i?fo(M)—action on Crit(€).

If dimM = 4,6, 7 (or 8)
= &£ Morse-Bott
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Premoduli spaces

Theorem C (Smoothness of the critical set)

M simply-connected, (g, ¢) critical and irreducible
= Crit(€) is smooth at (g, ¢) and (5)%1(0) is a smooth slice for
E?fb(M)—action on Crit(€).

If dimM = 4,6, 7 (or 8)
= &£ Morse-Bott

@ index theory (Wang's stability theorem)
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Premoduli spaces

Theorem C (Smoothness of the critical set)

M simply-connected, (g, ¢) critical and irreducible
= Crit(&) is smooth at (g, ¢) and (Af))%l(O) is a smooth slice for
Biffo(M)—action on Crit(€).

If dimM =4,6,7 (or 8)
= &£ Morse-Bott

@ index theory (Wang's stability theorem)

@ R. Goto, Moduli spaces of topological calibrations, Calabi-Yau,
hyper-Kahler, Go and Spin(7) structures

(cf. also J. Nordstrom)

Frederik Witt A variational principle for spinors



Premoduli spaces

Theorem C (Smoothness of the critical set)

M simply-connected, (g, ¢) critical and irreducible
= Crit(&) is smooth at (g, ¢) and (Af))%l(O) is a smooth slice for
Biffo(M)—action on Crit(€).

If dimM =4,6,7 (or 8)
= &£ Morse-Bott

@ index theory (Wang's stability theorem)

@ R. Goto, Moduli spaces of topological calibrations, Calabi-Yau,
hyper-Kahler, Go and Spin(7) structures

(cf. also J. Nordstrom)
o 05(0) = @1(0) N X1(0)
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Sketch of the proof of Theorem C

Generalised Ebin slice

ker(D&)N'S Q;1(0)

@
lefo(M
SEbin = Xgl(O)

’ \

Frederik Witt A variational principle for spinors



Examples of the flow

(&0, ¢0) Killing spinor
= Flow dies in finite time, e.g. S” — pt.
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Examples of the flow

(&0, ¢0) Killing spinor
= Flow dies in finite time, e.g. S” — pt.

Homogeneous examples

immortal solutions without convergence
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Examples of the flow

(&0, ¢0) Killing spinor
= Flow dies in finite time, e.g. S — pt.

Homogeneous examples

immortal solutions without convergence

Stability of Dirichlet flow on positive forms

initial condition sufficiently close to a critical point

= (SF) exists for all times and converges modulo diffeomorphisms
to a critical point.
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Metrics of special holonomy

special holonomy <+ closed forms of special algebraic type

Go-manifolds
o (M",Q) Gy-manifold, Q, € O = GL4(7)/G2 C N T;M
o Q reduces P = Pqy,, (7) = M to Pg, — M which extends to
Pso(7y — M, hence induces metric go

o V&2 reduces to Pg, & VEQ =0 dQ2 =0, d*,, Q=0

e choice of a metric g, € GL,(7)/SO(7)
o choice of a unit spinor ¢, € S” = Spin(7)/Gy C T
@ V&2 reduces to Pg, < V&8¢ =0
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Flowing positive forms

Dirichlet functional

D:P(M)=R, Qr %/ QP + [dxg Q2. )dv®
M
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Flowing positive forms

Dirichlet functional

D:P(M)=R, Qr %/ QP + [dxg Q2. )dv®
M

Q critical if and only if dQ2 =0, d %4, Q=0
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Flowing positive forms

Dirichlet functional

D:P(M)=R, Qr %/ QP + [dxg Q2. )dv®
M

Q critical if and only if dQ2 =0, d %4, Q=0

Dirichlet flow

2:Q = Q(Q), Q0)=QeP(M) (DF)
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Flowing positive forms

Dirichlet functional

1
D:P(M)—R, Q3 /M(]dQ@Q + |dogy Q2 )dvE?

Q critical if and only if dQ2 =0, d %4, Q=0

Dirichlet flow

2:Q = Q(Q), Q0)=QeP(M) (DF)

For any Qo € P(M) there exists a uniquely determined smooth
family Q; € P for t € [0, €] such that (DF) holds.
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Longtime existence and convergence?

Theorem D' (Stability)
Q be critical and k > 11/2

= for all € > 0 there is § > 0 su~ch that for any Qo with
Q0 — Q|| k2 < 6, the (DDF) Q(t) with Q(0) = Qo
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Longtime existence and convergence?

Theorem D' (Stability)
Q be critical and k > 11/2

= for all € > 0 there is § > 0 su~ch that for any Qo with
|2 — Q|| yr2 < 6, the (DDF) Q(t) with Q(0) = Qo
o (Longtime existence) exists for all ¢t € [0, o)

Frederik Witt A variational principle for spinors



Longtime existence and convergence?

Theorem D' (Stability)
Q be critical and k > 11/2

= for all € > 0 there is § > 0 su~ch that for any Qo with
10 — Q||\wr2 < 0, the (DDF) Q(t) with Q(0) = Qo
o (Longtime existence) exists for all ¢t € [0, o)
o (A priori estimate) satisfies [|Q(t) — Q|| 2 < € t € [0, 00)
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Longtime existence and convergence?

Theorem D' (Stability)
Q be critical and k > 11/2
= for all € > 0 there is § > 0 su~ch that for any Qo with
10 — Q||\wr2 < 0, the (DDF) Q(t) with Q(0) = Qo
o (Longtime existence) exists for all ¢t € [0, o)
o (A priori estimate) satisfies [|Q(t) — Q|| 2 < € t € [0, 00)

o (Convergence in Wk2) Q(t) — Q. critical as t — oo
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Longtime existence and convergence?

Theorem D' (Stability)

Q be critical and k > 11/2

= for all € > 0 there is § > 0 such that for any Qo with
10 — Q||\wr2 < 0, the (DDF) Q(t) with Q(0) = Qo
o (Longtime existence) exists for all ¢t € [0, o)
o (A priori estimate) satisfies [|Q(t) — Q|| 2 < € t € [0, 00)

o (Convergence in Wk2) Q(t) — Q. critical as t — oo

Corollary

For initial conditions sufficiently C*-close to Q the Dirichlet flow
exists for all times and converges modulo diffeomorphisms to a
critical positive form.
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Sketch of the proof of Theorem D’

Let Q € P(M) and Lq := DQ@X (symmetric for Q = Q).
o (Linear stability) L5 <0
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Sketch of the proof of Theorem D’

Let Q € P(M) and Lq := DQ@X (symmetric for Q = Q).
o (Linear stability) L5 <0
o (Integrability) M = @51(0) smooth near Q.
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Sketch of the proof of Theorem D’

Let Q € P(M) and Lq := DQ@X (symmetric for Q = Q).
o (Linear stability) L5 <0
o (Integrability) M = @51(0) smooth near Q.
o (Coercivity) (~L5<2, )2 > C||Q||W$,2 ~ 190z
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Sketch of the proof of Theorem D’

1st step: Implicit function theorem (uses coercivity)

Qo sufficiently close to Q
= existence on [0, 1] of Q;, a priori estimate for ||Q(t) — Q|| yyx.2
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Sketch of the proof of Theorem D’

1st step: Implicit function theorem (uses coercivity)

Qo sufficiently close to Q
= existence on [0, 1] of Q;, a priori estimate for ||Q(t) — Q|| yyx.2

2nd step: Remainder term analysis (uses integrability)

o (Orthogonal projection) Q sufficiently W*2-close to Q
= w = Q- Q € (ToM)Le2 for unique ' € M
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Sketch of the proof of Theorem D’

1st step: Implicit function theorem (uses coercivity)

Qo sufficiently close to Q
= existence on [0, 1] of Q;, a priori estimate for ||Q(t) — Q|| yyx.2

2nd step: Remainder term analysis (uses integrability)

o (Orthogonal projection) Q sufficiently W*2-close to Q
= w = Q- Q € (ToM)Le2 for unique ' € M

o (Remainder term estimate) Ry (w') = Qq(Q) — Lo’
For k > 0 there exists € > 0 such that

1 = Qllwwe < €= [|Re(w)lliz < &llLaw|l 2.
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Sketch of the proof of Theorem D’

For a solution Q(t) of (DDF) with [|Q(t) — Q|| 2 < € consider

Q(t) = Qa(Sx(1))
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Sketch of the proof of Theorem D’

For a solution Q(t) of (DDF) with [|Q(t) — Q|| 2 < € consider

Q(t) = Qa(Sx(1))

3rd step: Exponential decay of Q(t) (uses linear stability)

o Let \; first eigenvalue > 0 of —Lg. 2nd step =
F2QMIE < —FR)IE
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For a solution Q(t) of (DDF) with [|Q(t) — Q|| 2 < € consider

Q(t) = Qa(Sx(1))

3rd step: Exponential decay of Q(t) (uses linear stability)

o Let \; first eigenvalue > 0 of —Lg. 2nd step =
F2QMIE < —FR)IE

e Gronwall's lemma and parabolic regularity
= Q1) < Ce™™
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Sketch of the proof of Theorem D’

For a solution Q(t) of (DDF) with [|Q(t) — Q|| 2 < € consider

Q(t) = Qa(Sx(1))

3rd step: Exponential decay of Q(t) (uses linear stability)

o Let \; first eigenvalue > 0 of —Lg. 2nd step =
F3lQ()IZ < QD)

e Gronwall's lemma and parabolic regularity
= |Q(D)13ke < Ce™
o 1st step = Q(t) = Qo + [; Q(t)dt — Qoo € M
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