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Leitmotiv

Mn C∞-manifold (compact, spin, simply-connected, n ≥ 4)
g Riemannian metric

Global question

Can g be deformed into a special metric (i.e. existence)?

Theorem (Hamilton)

(M3, g) compact with positive Ricci curvature
⇒ g can be deformed into a metric of positive constant sectional
curvature.

Local question
Is there a natural direction for deforming g towards a special
metric?
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Curvature decomposition

Rough classification scheme

Riemannian curvature Rg = Z̃ g ⊕W g

W g = 0 ⇔ g is conformally flat
Z̃ g = 0 ⇔ g Ricci-flat

Z̃ g = Ug ⊕ Z g and Z g = 0 ⇔ g is Einstein

Theorem (Kuiper)

(Mn, g) compact, simply-connected and conformally flat
⇒ (Mn, g) conformally equivalent to (Sn, ground )
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Generalised Bieberbach theorem

Theorem (Cheeger-Gromoll, Fischer-Wolf)

(M, g) compact and Ricci-flat
⇒ There exists a finite Riemannian cover T k × M̃ → M with M̃
compact, simply-connected and Ricci-flat.

Corollary
Any homogeneous Ricci-flat metric is flat.

Existence of compact simply-connected (irreducible) Ricci-flat
manifolds?
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Berger’s list (Ricci-flat case)

dimM Hol(M, g) geometry examples
n SO(n) generic ?
2m SU(m) Calabi-Yau Yau
4k Sp(k) hyperkähler Beauville-Mukai
8 Spin(7) Spin(7) Joyce
7 G2 G2 Joyce

Goal
approach special holonomy from variational point of view

study (negative) gradient flow of the functional
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Metrics of special holonomy

special holonomy ↔ closed forms of special algebraic type

G2-manifolds

(M7,Ω) G2-manifold, Ωp ∈ O = GL+(7)/G2 ⊂ Λ3T ∗pM

Ω reduces P = PGL+(7) → M to PG2 → M which extends to
PSO(7) → M, hence induces metric gΩ

∇gΩ reduces to PG2 ⇔ ∇gΩΩ = 0 ⇔ dΩ = 0, d ?gΩ
Ω = 0

choice of a metric gp ∈ GL+(7)/SO(7)

choice of a unit spinor φp ∈ S7 ∼= Spin(7)/G2 ⊂ ΣR
7

∇gΩ reduces to PG2 ⇔ ∇gΩφ = 0
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Spinors and Ricci-flat metrics

(M, g) spin and φ ∈ Γ(ΣgM) with ∇gφ = 0
⇒ g Ricci-flat and has special holonomy

Proposition (Wang)

dimM Hol(M, g) geometry dim ‖ spinors
2m SU(m) Calabi–Yau 2
4k Sp(k) hyperkähler k+1
8 Spin(7) Spin(7) 1
7 G2 G2 1
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The E-functional

Spin structure P̃ → P is a 2-fold cover of GL+(n)-frame bundle
P → M such that fibrewise 0→ Z2 → G̃L+(n)→ GL+(n)→ 0

Universal spinor bundle

ΣM = P̃ ×Spin(n) Σn → �2
+T
∗M → M

F = Γ(ΣM) = {(g , φ) |φ ∈ Γ(ΣgM)} →M := {metrics on M}
N = {(g , φ) ∈ F |φ ∈ Γ(ΣgM), |φ| = 1} →M

The energy functional

E : N → R, (g , φ) 7→ 1
2

∫
M
|∇gφ|2gdvg
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Critical points

Theorem (dimM ≥ 3)

(g , φ) is critical ⇔ ∇gφ = 0

Killing spinors (∇g
Xφ = λX · φ) are solitons, i.e. critical subject

to
∫
M dvg = 1.

Theorem (surface case)

E = 1
2

∫
M |D

gφ|2dvg − π(1− γM)

trichotomy of absolute minimisers


Pgφ = 0, γM = 0
∇gφ = 0, γM = 1
Dgφ = 0, γM ≥ 2

saddle points exist for γM ≥ 1
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Sketch of the proof of Theorem A

M

P

SO(g0) SO(g1)

Px

Py

x
y

Compare PSO(g0) and PSO(g1)

along gt = tg0 + (1− t)g1:
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Sketch of the proof of Theorem A

M

P

SO(g0) SO(g1)

Px

Py

x
y

Compare PSO(g0) and PSO(g1)

along gt = tg0 + (1− t)g1:

gt(v ,w) = g0(Atv ,w)  

(
√
At)−1 : SO(g0)→ SO(gt)

This lifts to P̃ .
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Sketch of the proof of Theorem A

Bourguignon-Gauduchon distribution

M

F

Γ(Σg0M)

Γ(Σg1M)

φ0

Pg1φ0

g0

g1

Parallel transport Pgtφ0 along gt
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Sketch of the proof of Theorem A

Bourguignon-Gauduchon distribution

M

F

Γ(Σg0M)

Γ(Σg1M)

φ0

Pg1φ0

g0

g1

Parallel transport Pgtφ0 along gt

horizontal distribution

T(g ,φ)F ∼= Γ(�2T ∗M)⊕ Γ(ΣgM)
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Sketch of the proof of Theorem A

J.-P. Bourguignon and P. Gauduchon, Spineurs, opérateurs de
Dirac et variations de métriques

C. Bär, P. Gauduchon and A. Moroianu, Generalized cylinders
in semi-Riemannian and Spin geometry

Lemma

negative L2-gradient Q = (Q1,Q2) = −grad E : N → TN given by

Q1(g , φ) = −1
4 |∇

gφ|2gg − 1
4divgTg ,φ + 1

2〈∇
gφ⊗∇gφ〉

Q2(g , φ) = −∇g∗∇gφ+ |∇gφ|2gφ

M.Wang,Preserving parallel spinors under metric deformations
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The spinor flow

The flow equation

∂t(gt , φt) = Q(gt , φt), (g0, φ0) = (g , φ) ∈ N (SF)

natural D̃iff0(M)-action
⇒ Symbol of D(g ,φ)Q only negative semi-definite. Still:

.

Theorem B (Short-time existence and uniqueness)

For all (g , φ) ∈ N there exists a uniquely determined smooth
family (gt , φt) ∈ N for t ∈ [0, ε] such that (SF) holds.
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Sketch of the proof of Thm B

DeTurck’s trick

Q̃X (g , φ) := Q(g , φ) + LX (g ,φ)(g , φ) strictly elliptic for
suitable vector field X (g , φ)

given (g0, φ0) ∈ N put X0(g , φ) = −2(δg0g)]

parabolic theory gives solution to

∂t(g̃t , φ̃t) = Q̃0(g̃t , φ̃t), (g̃0, φ̃0) = (g0, φ0) (SDF)

Back to (DF)

solve d
dt f = −X0(g̃t , φ̃t) ◦ f ⇒ (gt , φt) = f ∗t (g̃t , φ̃t) solves (SF)
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suitable vector field X (g , φ)

given (g0, φ0) ∈ N put X0(g , φ) = −2(δg0g)]

parabolic theory gives solution to

∂t(g̃t , φ̃t) = Q̃0(g̃t , φ̃t), (g̃0, φ̃0) = (g0, φ0) (SDF)

Back to (DF)

solve d
dt f = −X0(g̃t , φ̃t) ◦ f ⇒ (gt , φt) = f ∗t (g̃t , φ̃t) solves (SF)
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Further functionals

Einstein-Hilbert functional

S :M→ R, g 7→
∫

M
scalgdvg

Gradient flow of S implies backwards heat equation in scalgt !

Es -functional

E s(g , φ) = E(g , φ) + s · S(g), s ∈ R

Q̃s
0 strongly elliptic at (g0, φ0) ⇔ s ∈ (1

8 ,−
1

8(n−2) )

E1/8(g , φ) = 1
2

∫
M |D

gφ|2dvg
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Premoduli spaces

Theorem C (Smoothness of the critical set)

M simply-connected, (ḡ , φ̄) critical and irreducible
⇒ Crit(E) is smooth at (ḡ , φ̄) and Q̃−1

X̄ (0) is a smooth slice for

D̃iff0(M)-action on Crit(E).

If dimM = 4, 6, 7 (or 8)
⇒ E Morse-Bott

index theory (Wang’s stability theorem)

R. Goto, Moduli spaces of topological calibrations, Calabi-Yau,
hyper-Kähler, G2 and Spin(7) structures
(cf. also J. Nordström)
Q̃−1

X̄ (0) = Q−1(0) ∩ X̄−1(0)
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Sketch of the proof of Theorem C

Generalised Ebin slice

SEbin ≡ X−1
ḡ (0)

Diff0(M)

Q̃−1
g (0)ker(Dg ) ∩ S

ϕ̄

ḡ

M
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Examples of the flow

Solitons
(g0, φ0) Killing spinor
⇒ Flow dies in finite time, e.g. S7 → pt.

Homogeneous examples
immortal solutions without convergence

Stability of Dirichlet flow on positive forms
initial condition sufficiently close to a critical point
⇒ (SF) exists for all times and converges modulo diffeomorphisms
to a critical point.
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Metrics of special holonomy

special holonomy ↔ closed forms of special algebraic type

G2-manifolds

(M7,Ω) G2-manifold, Ωp ∈ O = GL+(7)/G2 ⊂ Λ3T ∗pM
Ω reduces P = PGL+(7) → M to PG2 → M which extends to
PSO(7) → M, hence induces metric gΩ

∇gΩ reduces to PG2 ⇔ ∇gΩΩ = 0 ⇔ dΩ = 0, d ?gΩ
Ω = 0

choice of a metric gp ∈ GL+(7)/SO(7)

choice of a unit spinor φp ∈ S7 ∼= Spin(7)/G2 ⊂ ΣR
7

∇gΩ reduces to PG2 ⇔ ∇gΩφ = 0
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Flowing positive forms

Dirichlet functional

D : P(M)→ R, Ω 7→ 1
2

∫
M

(|dΩ|2gΩ
+ |d ?gΩ

Ω|2gΩ
)dvgΩ

Theorem A’
Ω critical if and only if dΩ = 0, d ?gΩ

Ω = 0

Dirichlet flow

∂tΩ = Q(Ω), Ω(0) = Ω0 ∈ P(M) (DF)

Theorem B’
For any Ω0 ∈ P(M) there exists a uniquely determined smooth
family Ωt ∈ P for t ∈ [0, ε] such that (DF) holds.
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Longtime existence and convergence?

Theorem D’ (Stability)

Ω̄ be critical and k > 11/2
⇒ for all ε > 0 there is δ > 0 such that for any Ω0 with
‖Ω0 − Ω̄‖W k,2 < δ, the (DDF) Ω̃(t) with Ω̃(0) = Ω0

(Longtime existence) exists for all t ∈ [0,∞)

(A priori estimate) satisfies ‖Ω̃(t)− Ω̄‖W k,2 < ε, t ∈ [0,∞)

(Convergence in W k,2) Ω̃(t)→ Ω∞ critical as t →∞

Corollary

For initial conditions sufficiently C∞-close to Ω̄ the Dirichlet flow
exists for all times and converges modulo diffeomorphisms to a
critical positive form.
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Sketch of the proof of Theorem D’

Key facts

Let Ω ∈ P(M) and LΩ := DΩQ̃X̄ (symmetric for Ω = Ω̄).
(Linear stability) LΩ̄ ≤ 0

(Integrability)M = Q̃−1
Ω̄

(0) smooth near Ω̄.

(Coercivity) 〈−LΩ̄Ω̇, Ω̇〉L2
Ω̄
≥ C‖Ω̇‖W 1,2

Ω̄

− ‖Ω̇‖L2
Ω̄
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Sketch of the proof of Theorem D’

1st step: Implicit function theorem (uses coercivity)

Ω0 sufficiently close to Ω̄

⇒ existence on [0, 1] of Ω̃t , a priori estimate for ‖Ω̃(t)− Ω̄‖W k,2

2nd step: Remainder term analysis (uses integrability)

(Orthogonal projection) Ω sufficiently W k,2-close to Ω̄

⇒ ω′ := Ω− Ω′ ∈ (TΩ′M)⊥L2 for unique Ω′ ∈M

(Remainder term estimate) RΩ′(ω′) = Q̃Ω̄(Ω)− LΩ′ω′

For κ > 0 there exists ε > 0 such that

‖Ω− Ω̄‖W k,2 < ε⇒ ‖RΩ′(ω′)‖L2 ≤ κ‖LΩ′ω′‖L2 .
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Sketch of the proof of Theorem D’

For a solution Ω̃(t) of (DDF) with ‖Ω̃(t)− Ω̄‖W k,2 < ε consider

Q̃(t) = Q̃Ω̄(Ω̃(t))

3rd step: Exponential decay of Q̃(t) (uses linear stability)

Let λ1 first eigenvalue > 0 of −LΩ̄. 2nd step ⇒
d
dt

1
2‖Q̃(t)‖2L2 ≤ −λ1

2 ‖Q̃(t)‖2L2

Gronwall’s lemma and parabolic regularity
⇒ ‖Q̃(t)‖2W k,2 ≤ Ce−λt

1st step ⇒ Ω̃(t) = Ω̃0 +
∫ t
0 Q̃(t)dt → Ω̃∞ ∈M
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