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1. What is an associoid ?

Motivation. A torsor (or: pregroup, groud, heap,...) is a set M together with a ternary
product map M3 →M , (x, y, z) 7→ (xyz) satisfying the identity of para-associativity

(PA) (xy(zuv)) = (x(uzy)v) = ((xyz)uv)

and the idempotent law

(IP) (xxy) = y, (wzz) = w .

Example. Every group (G, e, ·) is a torsor with (xyz) := xy−1z. And conversely, every
torsor is of this form! So “torsors are for groups what affine spaces are for vector spaces”.

Definition. A semi-associoid is a set M together with a partially defined ternary product
map

M3 ⊃ D →M, (x, y, z) 7→ (xyz)

satisfying the identity (PA) (in the sense that, if one term is defined, then so are the other
two, and equality holds); if it satisfies moreover (IP), then it is called an associoid.

The family of associoids. According to the nature of the domain D ⊂M3 of definition
of the product map of the associoid, the following more or less classical associative objects
(categories, in fact) are defined:

semi-associoid ⊃ associoid
∪ ∪

semi-pregroupoid ⊃ pregroupoid
∪

∪ (left or right) principal equivalence relation (prev)
∪

semi-torsor (semi-pregroup) ⊃ torsor (pregroup)

Explanation: the domain D is defined in terms of two equivalence relations a, b on M ,
which are given by the fibers of two projections “target” and “domain”:

M/a ← M → M/b ,

whereas for left or right prev’s, just one of the two projections suffices to define D:

(semi-)pregroupoid : D = M ×a M ×b M = (a×M) ∩ (M × b)
∩

left (or right) prev : D = a×M (or: M × b)
∩

semi-torsor : D = M3(i.e., everywhere defined)

Then the following compatibility condition is required:

(C) (x, y) ∈ a, (y, z) ∈ b ⇒ (z, (xyz)) ∈ a, (x, (xyz)) ∈ b.

Then the notion of (left or right) prev is an abstract-algebraic version of the one of
principal bundle, stripped off the usual topological conditions. The notion of pregroupoid
has been introduced by Anders Kock, and Peter Johnstone has observed that a groupoid
is the same thing as a pregroupoid together with some fixed bisection, called the set of
units.
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2. The associative geometry of an associoid

(Bi)sections and local (bi)sections. Let P(Ω) be the power set of Ω. For a fixed
equivalence relation a on Ω, we say that x ∈ P(Ω) is a (local) section of a, and we write
a⊤x (resp a⊤locx), if x contains exactly (resp. at most) one element from each equivalence
class. If a, b are two equivalence relations, then x ∈ P(Ω) is a (local) bisection if it is a
(local) section both of a and of b. Spaces of (local) (bi) sections are denoted by

Ua, U loc
a , Uab = Ua ∩ Ub, U loc

ab = U loc
a ∩ U loc

b .

Theorem. Assume (Ω, a, b, [ ]) is a pregroupoid. Let a, b the natural equivalence rela-
tions induced on P(Ω) by a, b. Then

(1) P(Ω) carries a natural semitorsor structure,
(2) Uab carries a natural torsor structure,
(3) (P(Ω),a,b) carries a natural semi-pregroupoid structure,
(4) U loc

ab carries a natural pregroupoid structure.

The ternary maps defining these structures are all given by the following formula:

(xyz)ab :=

{
ω ∈ Ω

∣∣∣ ∃ξ ∈ x,∃η ∈ y, ∃ζ ∈ z :
η ∼a ξ, η ∼b ζ, ω = [ξηζ]

}
.

The transversal case: pair pregroupoid, and binary relations. We say that two
equivalence relations are transversal, a⊤b, if each equivalence class of a is a section of b,
and vice versa. Lemma: this situation is set-theoretically isomorphic to a direct product
Ω = Ω1×Ω2, with a, b given by the fibers of the two projections. In this case (Ω, a, b, [ ])
is a purely set-theoretic object, called a pair pregroupoid, and we get the following special
case of the preceding result: the structures described in the theorem correspond to

(1) P(Ω) = R(Ω2,Ω1) binary relations with semitorsor structure X ◦ Y −1 ◦ Z,
(2) Uab = the torsor of global bijections Ω2 → Ω1 with fg−1h,
(3) (P(Ω),a,b) = semi-pregroupoid of relations keeping track of domain and image,
(4) U loc

ab = the pregroupoid of local bijections.

Case of two commuting principal equivalence relations is particularly interesting.
For this, and full details on the things written above, see forthcoming arxiv preprint.

3. The group case. Let Ω = G be a group (not assumed commutative, but written
additively) and A,B two subgroups of G. Define the right equivalence relation x ∼a y
iff A + x = A + y (so equivalence classes are right cosets of A), and the left equivalence
relation x ∼b y iff x + B = y + B (so equivalence classes are left cosets of B), and let
[xyz] = x − y + z (which is the usual torsor law of G, and thus is para-associative and
idempotent). Then (G, a, b, [ ]) is a pregroupoid which we denote by

(1) G/B ← G → A\G.

One should note that the structure of (G,A,B, [ ]) is in fact much richer, and therefore
the geometries Uab have many other interesting features: we have called them “projective
geometry of a group”, see http://arxiv.org/abs/1201.6201. If, moreover, G is commu-
tative, then we get an “associative geometry” in the sense of Kinyon and B., see Journal
of Lie Theory 20 (2) (2010), 215-252 , arXiv : http://arxiv.org/abs/0903.5441.

In the remainder of the talk, I shall present, using the free software geogebra, dynamic
images of the special case Ω = R3, A,B of dimension 2, and taking linear subspaces
instead of all of P(Ω): so we are precisely in the case of a real projective plane.

http://arxiv.org/abs/1201.6201
http://arxiv.org/abs/0903.5441
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Some information on geogebra. Geogebra is free software available at the adress
http://www.geogebra.org/cms/fr/download. On the web you find a lot of pages ex-
plaining everythig you can do with it, so it suffices to say here that it is really worth to
try it out!

Here is another piece of good news (which I forgot to mention in my talk...): it is very
easy to export the images into latex-files! Once you think your image is nice and you
want to incorporate it into your latex-file, click “export to ps-tricks”, then “generate code
PSTricks”, save the generated tex file and copy it into your own file. Before typesetting,
add in the beginning of your file \usepackage{pstricks-add}, und use XeLaTeX for
typesetting.

Commutative and Non-commutative Parallelogram Geometry: an Experimen-
tal Approach. The arxiv preprint having this title (http://arxiv.org/abs/1305.
6851) is a sort of outcome when playing with the possibilites offered by geogebra. Mean-
while, there are some improvements on the mathematical side (if I have some more time,
I will create a V2 of the above mentioned arxiv paper): as observed by A. Kock, identi-
ties (PA) and (IP) together are equivalent to (IP) combined with the following Chasles
relations or cancellation laws:

(Ch) (xy(yuv)) = (xuv), (xyv) = (xyu)uv)

Geometrically, these correspond to prism configurations, which in turn correspond exactly
to Desargues theorem. Thus the following figures, shown during the talk, illustrate in fact
the situation for general Desarguesian projective spaces (see http://arxiv.org/abs/

1206.2222v1 for the case of Moufang planes, which are the most important class of
non-Desarguesian planes). Start by observing this parallelogram:

b
Y

bX

b Z

b W

– it illustrates the torsor R2 with torsor law W = (XY Z) = X − Y + Z. Observe also
that the software performs automatically the “continuous extension” in case the initial
construction brakes down (collinear case!). Next, is the following a parallelogram?
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http://www.geogebra.org/cms/fr/download
http://arxiv.org/abs/1305.6851
http://arxiv.org/abs/1305.6851
http://arxiv.org/abs/1206.2222v1
http://arxiv.org/abs/1206.2222v1
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In any case, it illustrates the formula. W = (((X ∨ Y ) ∧ h) ∨ Z) ∧ (((Z ∨ Y ) ∧ h) ∨X)
What happens here of you replace the two h’s appearing in the formula by two different
lines, say a and b – so W = (((X ∨ Y ) ∧ a) ∨ Z) ∧ (((Z ∨ Y ) ∧ b) ∨X) - ?

a

b

b Y

b
X b

Z

b

b

b
W

And here the same picture, one of the two lines sent to infinity:

b b

bY

b Z

bX

b b

b
W = (XY Z)ab

Two questions arise: why is this associative? and what happens in the collinear case?
Both are answered using Kock’s observation, which leads us to look at the following two
kinds (left and right) of “non-commutative prisms” (there are four “free points”, marked
by letters, and then the figure of 6 points “closes up”):

a

b X

b Y

b
V

b

b W
b

b A
b O

b

b H

b

b F

b


