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Plan

There will be three self-contained blocks on fairly classical material:
Compact Hermitian symmetric spaces  quantum groups
Dirac operators  noncommutative differential geometry
Koszul algebras  noncommutative algebraic geometry

At the end I will then talk about a project with Matt Tucker-Simmons
whose ultimate goal is a quantum group version of Parthasarathy’s
formula for the square of the Dirac operator on a symmetric space.
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Quantised symmetric algebras

Let k be a complex simple Lie algebra and V be an irreducible
d-dimensional representation of k.

The Drinfel’d coboundary operator σ : V ⊗C V → V ⊗C V
of Uq(k) defines a quantised symmetric algebra

SV = TV /〈ker(σ + id)〉.
σ has the same eigenvalues ±1 as the tensor flip
v ⊗C w 7→ w ⊗C v , but the eigenvectors are deformed.
Zwicknagl classified the V for which SV has the classical
Hilbert-Poincaré series of a polynomial ring,

∞∑
i=0

dim(SVi)t
i =

∞∑
i=0

(
d − 1 + i
d − 1

)
t i = (1− t)−d .

Example: for k = sl(2,C) only the 2- and the 3-dimensional
irreducible representations work!
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The best manifolds ever

Ar • • · · · • × • · · · • •
Br × ◦ · · · ◦ %9 •
Cr • • · · · • ×ey

Dr

•

× • · · · •

•

×

• • · · · •

•
E6 • • • • ×

•
E7 • • • • • ×

•
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Simple Lie algebras and parabolic subalgebras

g - finite-dimensional complex simple Lie algebra with fixed
Cartan subalgebra h and root system ∆ ⊆ h∗.
∆+ - positive roots, Π = {α1, . . . , αr} - simple roots.

Given S ⊆ Π, define

∆(l) = spanZ(S) ∩∆, ∆(u+) = ∆+ \∆(l),

l = h⊕
⊕
α∈∆(l)

gα, u± =
⊕

α∈∆(u+)

g±α, and p = l⊕ u+.

Them one has

[l, l] ⊆ l, [u±, u±] ⊆ u±, [l, u±] ⊆ u±.

p is the standard parabolic subalgebra associated to S, and l
is its Levi factor while u+ is its nilradical. We put k := [l, l].
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An example

For g = sl(r + 1,C) = Ar , p can be any Lie subalgebra that
contains all upper triangular matrices, for example for r = 3 the
one containing all traceless matrices of the form

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗


Here S = {α1, α3} and we denote this choice by crossing out
the missing α2 in the Dynkin diagram of g,

• × •
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The p of cominuscule type

The following are equivalent:
(i) g/p is a simple p-module (wrt the adjoint action);
(ii) u+ is a simple l-module;
(iii) u+ is an abelian Lie algebra;
(iv) p is maximal, i.e. S = Π \ {αs} for some 1 ≤ s ≤ r , and

moreover αs has coefficient 1 in the highest root of g;
(v) (g, l) is a symmetric pair, i.e. there is an involutive Lie algebra

automorphism of g whose invariants are l.

Note: the highest root is just the highest weight of the adjoint
representation (which is irreducible as g is simple).

Zwicknagl’s list contains exactly these u± as V plus somewhat
mysteriously the first fundamental representation of Cr .
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The compact Hermitian symmetric spaces

If G and P are the Lie groups corresponding to g and p, then
G/P is called a generalised flag manifold.
The subclass characterised on the previous slide are the
irreducible compact Hermitian symmetric spaces.

These admit certain quantisations, e.g. for G/P = CP1 the
standard Podleś sphere. What we are after is a quantisation
not only of the space but of the Kähler metric using Alain
Connes’ framework of spectral triples.
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Clifford algebras

Let k be a commutative ring. To any k-module M equipped
with a symmetric bilinear form

g : M ⊗k M → k

one associates its Clifford algebra

Cl(V , g) := TM/〈m ⊗k m − g(m,m) | m ∈ M〉.
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Spinc-manifolds

Example: k = C∞(X ,C), X some 2d-dimensional manifold,
M := DerC(k), g a Riemannian metric.

The Clifford algebra of X is an Azumaya algebra - its fibre in
each pointi of X is a matrix algebra M2n(C).
A spinor module is a k-module S such that

Cl(M , g) ' Endk(S).

The elements of S are called spinors or spinor fields. A choice
of a spinor module is called a spinc-structure on X .
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The Bass construction

If V is any finitely generated projective module over a
commutative ring k and V ∗ := Homk(V , k) is its dual, then

M := V ⊕ V ∗

carries a canonical nondegenerate symmetric bilinear form g :

g((x , ϕ), (y , ψ)) := ϕ(y) + ψ(x).

By a result of Bass this always admits a spinor module, namely
the exterior algebra of V ,

Cl(V ⊕ V ∗, g) ' Endk(ΛV ).
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Corollary: Hermitian manifolds are spinc

This applies to Hermitian manifolds X : local coordinates

z1, . . . , zd : X ⊇ U → C

split M = DerC(k) into the (1, 0)- and (0, 1)-components

V = Γ(T 1,0), V ∗ = Γ(T 0,1)

which are locally spanned by

∂

∂z1
, . . . ,

∂

∂zd
respectively

∂

∂z̄1
, . . . ,

∂

∂z̄d
.

The duality is given by the Hermitian metric.
Hence a Hermitian manifold has a canonical spinc-structure
given by the exterior algebra of the holomorphic tangent bundle
which again by the metric is identified with Ω0,•.
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The Dolbeault-Dirac operator

The Dolbeault operator is the projection of Cartan’s d to

∂̄ : Ω0,q → Ω0,q+1.

Using a Hermitian inner product one defines the Hilbert space H
of square-integrable sections of Ω0,• and on H the
Dolbeault-Dirac operator

D = ∂̄ + ∂̄∗.

Noncommutative differential geometry: one can reconstruct the
Hermitian manifold X fully from the spectral triple (k ,H ,D).
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Quadratic algebras

A C-algebra is quadratic if it is finitely generated with defining
relations all homogeneous of degree 2,

A := A(V ,R) := TV /〈R〉, R ⊆ V ⊗C V .

Here V is the vector space spanned by the generators.
Note: A is N-graded and connected, A0 = C. We define

A+ :=
⊕
i>0

Ai .

To any quadratic algebra one assigns its quadratic dual A!

with the same number of generators but orthogonal relations,

A! = A(V ∗,R⊥).

Example: SV ! = ΛV .
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Koszul algebras

Given any quadratic algebra A = A(V ,R), one defines its
Koszul complex. As graded vector space this is

K = A⊗C (A!)∗.

with grading induced by that of A!.
The differential is given by

∂̄ :=
∑
i

Xi ⊗ X i : a ⊗ f 7→
∑
i

aXi ⊗ fX i

where {Xi} is a basis of V and {X i} is the dual basis of V ∗.
A quadratic algebra is a Koszul algebra if the Koszul complex
is acyclic (thus providing a free resolution of the module A/A+).

Ulrich Krähmer (U Glasgow) Quantum Hermitian Symmetric Spaces Seminar Sophus Lie 2014 15 / 18



Spectral triples and differential calculi

Heckenberger-Kolb: Studied covariant differential calculi over
the quantised compact Hermitian symmetric spaces.

Generalising results for CP1 due to Dąbrowski and Sitarz, I
constructed a subspace of Uq(g) spanned by elements
X1, . . . ,Xd that play the analogue of u+, and argued that there
is a quantum Clifford algebra Clq such that

D := ∂̄ + ∂̄∗, ∂̄ :=
∑
i

Xi ⊗ X i ∈ Uq(g)⊗ Clq

defines something.
Further work by Leipzig (Schmüdgen-Wagner), Oslo
(Neshveyev-Tuset), Trieste (Dąbrowski-D’Andrea-Landi et al.)
and others (e.g. O’Buachalla).
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Applying Berenstein-Zwicknagl

Fresh wind: They also embed u+ into Uq(g) in order to generate
Su+ as a twisted quantum Schubert cell.
Example: if G/P = Gr(2, 4), then Su+ are the quantum
2× 2-matrices that can indeed be embedded into Uq(sl(4,C)).

If we define
Clq := EndC(Λu+),

then a quantum Bass construction gives an algebra factorisation

Clq ' Λu− ⊗ Λu+

and viewing the Koszul boundary map as an element in
Uq(g)⊗ Clq produces my old Dolbeault operator.
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The real task

We now know
D2 = ∂̄∂̄∗ + ∂̄∗∂̄

thanks to the identification of ∂̄ with the Koszul boundary.

What we really want is a quantum Parthasarathy formula
that expresses D2 as a linear combination of Casimirs of g and
of l plus a constant term. This would allow one to compute the
spectrum of D and to prove it defines a class in the K-homology
of the quantised function algebras of G/P .
Question: Given a noncommutative polynomial ring, is there a
corresponding partner like u− for u+ , both sitting inside some
quantum group, leading to a corresponding quantum Hermitian
symmetric space?
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