20N
Seminar -
Sophus Lie
CASTLE RAUISCHHOLZHAUSEN
S MAY 2931 2014




@ \What you should expect in this talk

O spin(9)

© After Spin(9): Rosenfeld projective planes
e Applications

© Conclusion



@ \What you should expect in this talk



Spin(9) and almost complex structures on 16-dimensional manifolds.

Spheres with more than 7 vector fields: all the fault of Spin(9).

Spin(9) geometry of the octonionic Hopf fibration.

Canonical Differential Forms, Rosenfeld Planes, and a Matryoshka in
Octonionic Geometry.
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Spin(9) and almost complex structures on 16-dimensional manifolds.

Spheres with more than 7 vector fields: all the fault of Spin(9).

Spin(9) geometry of the octonionic Hopf fibration.

Canonical Differential Forms, Rosenfeld Planes, and a Matryoshka in
Octonionic Geometry.



Further references

E Robert Bryant.
Remarks on Spinors in Low Dimensions.

@ Thomas Friedrich.
Weak Spin(9)-Structures on 16-dimensional Riemannian Manifolds.

@ Andrei Moroianu, Uwe Semmelmann.
Clifford structures on Riemannian manifolds.


http://www.math.duke.edu/~bryant/Spinors.pdf

Main aim of the talk
Convince you that Spin(9) is beautiful.

Method
o Introduce Spin(9) little brother: Sp(2) - Sp(1)
o Show you that Spin(9) is involved in many curious phenomena

Relatives
Construction of relevant differential forms associated with the groups

| N

Spin(9), Spin(10), Spin(12), Spin(16)

appearing as structure and holonomy group in the exceptional symmetric

spaces
FII EIIL EVI, EVIII

1 A
Cayley plane —/ p Rosenfeld planes




o

o Why and what
o Quaternionic analogy
o Curiosities about Spin(9)



© Spin(9)
o Why and what



Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

N

Sp(n) - Sp
(G,
@ 9



Berger's list and Spin(9) refutation

Holonomy of simply connected, irreducible, nonsymmetric?

@

Simply connected, complete, Jholonomy Spin(9)
=

(s >0), RI(flat), OH? =2 (s <0)

oP? =

Spln(9)

[Alekseevsky, Funct. Anal. Prilozhen 1968].




First Spin(9) definition

Definition
Spin(9) is the Lie group which has been excluded from a list.




First Spin(9) definition

Definition

Spin(9) is the Lie g '!I which : Y




What is Spin(9)?

Definition
Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D) 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].




What is Spin(9)?

Definition

Spin(9) € SO(16) is the group of symmetries of the Hopf fibration

S7
@2 D) 515 — 58 = @Pl [Gluck-Warner-Ziller, L’Enseignement Math. 1986].

Spin(9)
[+] A8(R16) = /\? + . .. [Friedrich, Asian Journ. Math 2001].

o Spin(9) is the stabilizer in SO(16) of any element of A$

[Brown-Gray, Diff. Geom. in honor of K. Yano 1972].

Definition
Spin(9) is the stabilizer in SO(16) of the 8-form

Pspin(9) = [@ o pivdl

[Berger, Ann. Ec. Norm. Sup. 1972].




© Spin(9)

o Quaternionic analogy



The closest relative: the quaternionic group Sp(2) - Sp(1)

Analogy 1
Spin(9) and Sp(2) - Sp(1) are the symmetry groups of the Hopf fibrations:

st — op? S" — HP?




The closest relative: the quaternionic group Sp(2) - Sp(1)

Analogy 1
Spin(9) and Sp(2) - Sp(1) are the symmetry groups of the Hopf fibrations:

st — op? S" — HP?

Analogy 2
o Spin(9) is the stabilizer in SO(16) of the 8-form

Pgrin(g) = fvdl
Spin(9) /(O)Pl pPivi
@ Sp(2) - Sp(1) is the stabilizer in SO(8) of the 4-form

Q= pl* 14 dl
HPL




Two alternative constructions for the quaternionic form €2

Sum of squares: classical

Q= w,2 + w3 + w%, where wy,w, wk are orthogonal local Kahler forms




Two alternative constructions for the quaternionic form €2
Sum of squares: classical

Q= w,2 + w3 + w2K, where wy,w, wk are orthogonal local Kahler forms

v
Sum of squares: involutions

Q =m(0), where

C T2(@) = Za<[3 eiﬂ
o © = (6,p) matrix of Kahler forms of J,g3 = Z, 0 Zg

o Iy,...,Ts self-adjoint anti-commuting involutions in R&:

Ti,...,Is €S0(8), ZI:=7Zn, Z2=1d, T,0Zs=-Ig01,

o




The five involutions of Sp(2) - Sp(1) as 8 x 8 matrices




Nine involutions for Spin(9)

Analogy 3

¢Spin(9) = ’7'4(@), where

o t° +p€@'ft7 + 74(©)t5 +I5,€6'ft3 + 18(©)t characteristic polynomial
of ©

0 © = (6,p3) matrix of Kahler forms of J,g3 = Z, 0 Zg

o Iy,..., Iy self-adjoint anti-commuting involutions in R16:

Ti,..., Ty €SO(16), It =71, I2=1d, ZT,0Zsz=-Ig01,

[MP-Piccinni, Ann. Glob. Anal. Geom. 2012].




The nine involutions of Spin(9) as 16 x 16 matrices




Spin(9) and Sp(2) - Sp(1) as structure groups

Analogy 4

o A Spin(9)-structure on M is a rank 9 vector subbundle
span{Zi,...,Zo} C End(M)
o A Sp(2) - Sp(1)-structure on M8 is a rank 5 vector subbundle

span{Zi,...,Zs} C End(M)




Spin(9) and Sp(2) - Sp(1) as structure groups

Analogy 4

o A Spin(9)-structure on M is a rank 9 vector subbundle
span{Zi,...,Zo} C End(M)
o A Sp(2) - Sp(1)-structure on M8 [is a rank 5 vector subbundle

span{Zy,...,Zs} C End(M;\

Due to the dual role Sp-Spin of
Sp(1) = Spin(3) and Sp(2) = Spin(5)




© Spin(9)

o Curiosities about Spin(9)



{Ja/B’ =7,0 1-/3}1§a</3§9 generates 5]3111(9)

o There are 36 Kahler forms 0,5 for 1 <a < <9
o There are 84 Kahler forms 0,3, for 1 <a < <9

Remark

50(16) = A2 (R¥) = [ A3y @ A3, = spin(9) @ NS,

generated by 0,3 —J K generated by 6

afy




Matryoshka-like structure

Nestedness

The family of complex structures {J,3}1<a<pg<9 is compatible with the
inclusion of Lie algebras

spin(7)a C spin(8) C spin(9)
in the sense that

5pin(7)A = Span{Jalg}zgngSg
- Span{Jag}lgngSg = 5pin(8)
- span{Ja5}1§a<5§g = 5pin(9)




Spheres with more than 7 vector fields: Blame Spin(9)!

o Spheres S™~1 € R™ admit 1, 3 or 7 linearly independent vector fields
according to whether p=1, 2 or 3 in

m = (2k + 1)2P
o In the general case
m = (2k + 1)2P169 withg>0 and p=0,1,2,3

the maximum number of vector fields is

= 2P -1 +( 8q \
C, H, O contribution —J Spin(9) contribution



No Sl-subfibration

Similarly to the quaternionic Hopf fibration, one would expect several
S1-subfibrations for the octonionic Hopf fibration on S® C Q2.

Any global vector field on S® which is tangent to the fibers of the
octonionic Hopf fibration S1®> — S2 has at least one zero.
[Ornea-MP-Piccinni-Vuletescu, Transformation Groups, 2013]

[Loo-Verjovsky, Topology, 1992]




© After Spin(9): Rosenfeld projective planes
o Why and what
@ Spin(10)
@ Spin(12) and Spin(16)



© After Spin(9): Rosenfeld projective planes
o Why and what



Rosenfeld projective planes

o What are the Rosenfeld projective planes?



Rosenfeld projective planes

o What are the Rosenfeld projective planes?
an ley
=FII, dimFII =16

pIane
F 4

. 2 _
Cayley plane: OP = Spin(9)




Rosenfeld projective planes

o What are the Rosenfeld projective planes?
Cayley plane

Fa =FII, dimFII =16

. 2 _
Cayley plane: OP< = Spin(9)

EIll, dimEIIl = 32

EVI, dimEVI =64

EVIII, dimEVIII =128




Rosenfeld projective planes

o What are the Rosenfeld projective planes?

Cayley plane
T,
Cayley plane: OQP? = =TFII, dimFII=16
Spin(9)

p (C ® Q)P? Be = EIII, dimEII = 32
:':; Sp1n(10) u(1) ’ N
= )
()
=
g He Q)P — E7 —EVI, dimEVI= 64
'g: (He®0) Spin(12) - Sp(1) A
© y
L
7 (0@ 0)P? = _Bs  _pyin, dimBvin =128
© Spin(16)* ’ B




Rosenfeld projective planes

o Focus on EIII

2 _ EG o . o
(C®Q)P? = Spin(10) U(D) ~ EII, dimEII = 32




What is Spin(n)?

o SO(2): multiplication by a unitary complex number in R? = C

@ SO(3): conjugation by a unitary quaternion in R3 = Im H
@ SO(4): conjugation by 2 unitary quaternions in R* = H




What is Spin(n)?

o SO(2): multiplication by a unitary complex number in R? = C
@ SO(3): conjugation by a unitary quaternion in R3 = Im H
@ SO(4): conjugation by 2 unitary quaternions in R* = H

| N

...Wwe can say that. ..

The action of the above Lie groups SO(n) on R”, for n=2,...,4, can be
described in terms of multiplication in some algebra embedding R” as a
subspace.




What is Spin(n)?

Roughly. . .
o SO(2): multiplication by a unitary complex number in R? = C
@ SO(3): conjugation by a unitary quaternion in R3 = Im H
@ SO(4): conjugation by 2 unitary quaternions in R* = H

| N

...Wwe can say that. ..

The action of the above Lie groups SO(n) on R”, for n=2,...,4, can be
described in terms of multiplication in some algebra embedding R” as a
subspace.

| \

Motivation for Clifford algebras

Spin(n) is the generalization of the above fact to every n. The algebra
embedding the group Spin(n) and the vector space R" is called the
Clifford algebra.




© After Spin(9): Rosenfeld projective planes

@ Spin(10)



A basis for spin(10)

o spin(10) = le{spin(9),u(1)} C su(16), where u(1) is generated by

i1dg 0
0 —ilds




A basis for spin(10)

o spin(10) = le{spin(9),u(1)} C su(16), where u(1) is generated by

i1dg 0
0 —ilds

o spin(9) is generated by {J19, ..., Jgo}, because J,z = [Jg9, Jao]/2




A basis for spin(10)

o spin(10) = le{spin(9),u(1)} C su(16), where u(1) is generated by

i Idg 0
0. —ilds

o spin(9) is /generated by {J19, ..., Jgo}, because J,z = [Jg9, Jao]/2

~(ildg 0 Idg 0
~ 0 ildg 0 —Idg




A basis for spin(10)

o spin(10) = le{spin(9),u(1)} C su(16), where u(1) is generated by

LGP
0. iids

o spin(9) is /generated by {J19, ..., Jgo}, because J,z = [Jg9, Jao]/2

s O
-

=)

def

%7

Pid; O
0. ild8

To is a complex structure, not an involution. It acts on the first factor of}

C ® O? by complex multiplication.




A basis for spin(10)

o spin(10) = le{spin(9),u(1)} C su(16), where u(1) is generated by

i Idg 0
0. —ilds

o spin(9) is /generated by {J19, ..., Jgo}, because J,z = [Jg9, Jao]/2

Idg 0
T—

%)

def

(=)
_[fitds o
N0 ildg

Proposition

spin(10) = span{Jag = Za © Zg}o<a<p<9




Canonical Spin(10)-form

o Denote by JV the basis {Jog = Zn © Zg}o<a<p<o of spin(10)
o Denote by @V its associated skew-symmetric 10 x 10 matrix of
Kahler forms:
O" = (0ap)o<a<pzo

Canonical Spin(10) form: 8-form in R32

The fourth coefficient 74(©N) of the characteristic polynomial of @V is a
canonical 8-form associated with the representation Spin(10) C SU(16):

¢Spin(10) = Z (ealaz NBazay — boy0s Aoy +0ayaq N 0042043)2

0<ai<ap<az<as<9

v




®gpin(10) generates HO(EIII)

Cohomology of EIIL

R(db, dg]
* 2 _ ) 2 8
H((Co0)P) = (suitable relations) d € H dg € H




®gpin(10) generates HO(EIII)

Cohomology of EIIL

R
_R[dy, d] d € H?, dg € H®
(suitable relations) 7

I'm the Kahler form

I'm Hermitian symmetric

H*((C®O)P? ) =
I\




®gpin(10) generates HO(EIII)

The dg-Lemma

H*( (C ®\\@)P2): Rldp, ds] dy € H?, dRg € H®

(suitable relations) i

I'm the K3hler form

What am 1?7

I'm Hermitian symmetric



®gpin(10) generates HO(EIII)

B — generator in H?(EIII)
B — generator in H8(EIII)

@
(@)
o

Kahler form

HO H2 H4 H6 H8 H10 H12 H14 H16




®gpin(10) generates HO(EIII)

B — generator in H?(EIII)
B — generator in H8(EIII)

3 ®
Spin(10)
2+ Kahler form
1
T T T T T T T T T
H16




How many minutes?



© After Spin(9): Rosenfeld projective planes

@ Spin(12) and Spin(16)



EVI: cohomology ring

The cohomology of

EVI= (H® Q)P? = o2 5o
d

is given by

R[d47 d87 d12]
(suitable relations)

H((H®O)P? ) =

7\47 d87 12 €H45H87H12

I'm the quaternion-Kahler form

I'm quaternion-Kahler



A basis for spin(12) C sp(16)

o Consider the matrices

iIdg 0 J1dg 0 k1dg 0
0 —ildg)’ 0 —jldg)’ 0 —kldg

where i, j, k act as quaternionic multiplication on H ® O?

o Denote by Zy,Z_1,Z_» the i,j, k multiplication

Proposition

| \

spin(12) = span{Jos = Za 0 I} _2<a<p<9

Canonical Spin(12) forms: 8 and 12-form in R%

If ©9 is the matrix of Kihler forms of {J,s5 = Z, 0 Z3}, then 74(©°) and
76(©9) are a canonical 8-form and a canonical 12-form on R%* = H ® 0?
associated to Spin(12).




EVI: cohomology ring

B — generator in H*(EVI)
B — generator in H3(EVI) (r0+20) (ix0529) (5r0+29)

B — generator in H*2(EVI)
76(©°)

Quaternionic form
0+16+12

(+8+12) (4+8+12) (8+8+12) (12+8+12)

0+0+12) (4+0+12) (8+0+12) (12+0+12) (16+0+12) (20+0+12)

(0+24+0) (4+24+0) (8+24+0)

74(9°)

(+16+0) (4+16+0) (8+16+0) (12+16+0) (16+16+0)

(0+8+0)| (4+8+0) (8+8+0) (12+8+0) (16+8+0) (20+8+0) (24+8+0)

©0+0+0) [4+0+0)| (B+0+0) (12+0+0) (16+0+0) (20+0+0) (24+0+0) (28+0+0) (32+0+0)




EVIII: cohomology ring

The cohomology of

is given by

H*((0®0)P?) =

EVIII = (O @
\% (O Spln(%
R[ds, di2, dis, 0'20]?

(suitable relations)

d12 ,di6,d50€ HE,

H12 H16 H20




A basis for spin(16) C s0(128)

o Denote by Zp,Z_1,Z 2,7 3,7 4,7 5,7 ¢ thei,j, k,e,f,g, h
multiplication by the octonion units on the first factor of O ® Q?

Proposition

5pin(16) = span{Jaog = Za 0 I} —6<a<B<9

Canonical Spin(16) forms: 8, 12, 16 and 20-form in R128

If ©F is the matrix of Kahler forms of {J,5 = Z, 0 Z3}, then 74(©F),
76(OF), 78(OF) and 710(OF) are canonical forms associated with the
standard Spin(16) structure on R1?® = O ® Q2.




EVIII: cohomology ring

The cohomology of

E
EVIIL = (0© 0)P* = £ o

is given by

Rl[ds, d12, d1s, d

ds ,dio,die,d5o € HE, H'? H® H?
(suitable relations) }12 16\20

v

I'm 75(©F)
I'm 76(©F)



o

o Back to spheres
o Matryoshka
o Clifford structures



0 Applications
o Back to spheres



More than 7 vector fields on spheres? Spin(9)’s fault. . .

o(m)=2P -1 +( 8q \
C, H, O contribution —J Spin(9) contribution

Maximal system of o(m) = 8,9, 11,15 vector fields on S5, §31 563 g127

‘ Sphere H o(m) ‘ Vector fields ‘ Structures involved ‘
S5 (p=0,g=1) 0+8 Jo, .-, Jao Spin(9)
S(p=1,q9=1) 1+8 iy Jig,. .., Jgo C + Spin(9)

S8 (p=2,q=1) 3+8 i j ke Jig, ..., Jgo H + Spin(9)
S (p=3,g=1) 7+8 ijo ke foog by, Jig,..., Jgg O + Spin(9)




but Spin(10), Spin(12) and Spin(16) are co-conspirators

0-+8qg Spin

(9) contribution
1+8q Spin(10) contribution

(

(

o(m) = .
34 8q Spin

7+ 8q Spin(16) contribution

12) contribution

M

Maximal system of o(m) = 8,9, 11, 15 vector fields on S1° S31 563 5127
‘ Sphere H a(m) ‘ Vector fields ‘ Structures involved ‘
S (p=0,g=1) 0+38 J19,- -+, Jgo Spin(9)
SBl(p=1q9=1) 1+8 Joo, 19, -+ - Jso Spin(10)
563 (p=2,9=1) 3+8 J(,g)g, J(,l)g, Jog, 19, - - -, Jsg Spin(12)
S (p=3,q=1) 7+8 Jieyor -+ Ji—1)9, Jo9, 1o, - - Jgo Spin(16)
v




0 Applications

o Matryoshka



The dolls. . .
o Recall that the Spin(9) family

J' = {Jag}r<a<pzo
contains the Spin(8) and Spin(7)a subfamilies
JP = {Japhrza<pzs,  J° = {Japlaza<pss

o Using the first factor multiplication in C ® 0%, H® 02, O ® O? we
obtain the larger families

IV = {Uugtocacp<o, I = {Jas}-2<a<p<0, I¥ = {Jap}—6<a<p<o




... and their Matryoshka

The Lie group inclusions
Spin(7)a C Spin(8) C Spin(9) C Spin(10) C Spin(12) C Spin(16)
are preserved by the spinor inclusions

SPctPctl N R




... and their Matryoshka

The Lie group inclusions
Spin(7)a C Spin(8) C Spin(9) C Spin(10) C Spin(12) C Spin(16)
are preserved by the spinor inclusions

e P e e e g = RRER




INOR details
50(16) = A2(R¥®) = A2, & A2, = spin(9) @ A2,

Eenerated by J© =" .




INOR details

50(16) = A?(R'Y) = A%, @ A2, = spin(9) @ A3,

generated by J' = {Z,, 0 Zg} -/

Add Zy to obtain JN = {Z,, 0 Z5}o<a<p<o and

spanJV = spin(10) C s0(32)

Add Z_1,Z_> to obtain JO = {Z, 0 T} 2<a<p<g and

spanJ© = spin(12) C s0(64)

Add T_s, ...,T_3 to obtain JR = {Z, 0 I} _s<a<p<e and

spanJR = spin(16) C s0(128)




INOR details

50(16) | = A2 (R) = A3 @ A2, = spin(9) ® A3,

generated by J' = {Z,, 0 Zg} -/

Add T to obtain JN = {Zo 0 Ig}o<a<p<9 and

spanJN = spin(10) C s0(32)

Add Z_1,Z_, to obtain JO = {Za 0Zg}—2<a<p<9 and

spanJ© = spin(12) C s0(64)

Add T _,...,Z 3 to obtain JR = {Z, 0Zg}_6<a<p<9 and

spanJR = C 50(128)




0 Applications

o Clifford structures



Even Clifford structures

A rank r even Clifford structure on a Riemannian manifold M" is:
@ a rank r oriented Euclidean vector bundle E over M
@ an algebra bundle morphism ¢ : Clg(E) — End(TM) such that
#(A’E) C End™ (TM)
Rank of E Mm" n
R _ _ _F
9 OP* =FII = spi—rf(g) 16
B _ _ E
10 (C® Q)P =EIII = m 32
2 _ _ E
12 (He O)P —EVI—WM 64
16 (0®0)P? =EVIIl = ot 128

[Moroianu-Semmelmann, Adv. Math. 2011]




Explicit even Clifford structures on Rosenfeld planes

( Holonomy representation)

k_/—{Local endomorphisms}
Vector bundle




Explicit even Clifford structures on Rosenfeld planes

( Holonomy representation)

Spin(9) k_/—{ Local endomorphisms}

Local {Z, ... 719” Vector bundle
K_/_{E = span{Zy,... ,Ig}}




Explicit even Clifford structures on Rosenfeld planes

[Holonomy representation]

Spin(9) k_/—{Local endomorphisms]

Local {Zy,... 7I9}J Vector bundle
k_/_{E = span{Zy,... ,Ig}j

Rank of E | E | ¢ Rz
9 span{Zx,...,Zo} | Za NZg = Jop = Ln 0L 02 16
10 span{Zo, ..., Zo} | Za AZg— Jop =TaoIs | (CRO)P? | 32
12 span{Z_2,...,Zo} | Za AZg = Jap =TaoZs | (H® Q)P? | 64
16 span{Z_s,...,Zo} | Za NI+ Jop =To0Zs5 | (O@ Q)P? | 128




© Conclusion



Wrapping up

Spin(9) is the octonionic version of the quaternionic group Sp(2) - Sp(1). J

Spin(9) is the reason why there are more than 7 vector fields on spheres. J

The Spin(9) form on R'® = Q2 can be extended to C ® 0?, H ® 0? and
O ® Q?, to obtain explicit generators for the cohomology of particular
symmetric spaces called Rosenfeld planes.

Between the Spin(n) groups, Spin(10), Spin(12) and Spin(16) are more
equal than others to Spin(9).







Homology interpretation

Interpretation in terms of the homology of the Rosenfeld planes of the
canonical differential forms living in




Extending

Following
{Zo}1<a<o € End(0?) = {Zo}o<a<o € End(C® Q%) — ...
what happens extending the Pauli matrices
T1,T, T3 € End(C?) — {Io, ..., T3} € End(C ® C?)

and the

Ty, ..., Is € End(H?) — {Zo,...,Zs} € End(C® H?) — ...




Subordinated structures

Can we write formulas as in
2 2 2
Q ES w, + CUJ =+ UJK

for our Spin(9), ..., Spin(16) canonical 8-forms in terms of compatible
quaternonic structures?




Minimal formal definition of Spin(n)

o Cl(n) = Clifford algebra = algebra generated by vectors v € R” such
that
vov=—fv?-1

o a = canonical involution of Cl(n):

a(v) = —v for vectors v € R"
o Clp(n) = +1-eigenspace of a.
o || - || = norm of Cl(n) = extension of || - || to Cl(n).
°

Spin(n) = {x € Clp(n)|xR"x~! ¢ R"and||x| = 1}




Details for ®gpinio) = [op: PV dl

° z/, = volume form on the octonionic lines / = {(x, mx)} or
={(0,y)} in O2.
o p;: O — | = projection on /.
o pfv; = 8-form in 0? = RS,
o The integral over OP! can be computed over @ with polar
coordinates.

o The formula arise from distinguished 8-planes in the
Spin(9)-geometry — (forthcoming) calibrations.



Berger and calibrations

Berger appears to know about the fact that ®g;,(g) is a calibration on
@Pz already in 1970 [Berger, L’Enseignement Math. 1970] and more eXp|ICIt|y in 1972
[Berger, Ann. Ec. Norm. Sup. 1972, Theorem 6.3], Vel’y early With reSpeCt to the

forthcoming calibration theory.




ADATTARE E SPOSTARE
Do we have at least ... minutes left?



First attempt

Since Spin(10) € SU(16), we would like to imitate Spin(9) C SO(16),
and look for Ty, . . ., Iy self-adjoint, anti-commuting involutions in C1°.




First attempt

Remark
Since Spin(10) € SU(16), we would like to imitate Spin(9) C SO(16),
and look for Ty, . . ., Iy self-adjoint, anti-commuting involutions in C1°.

Would-be proposition

Spin(10) C SU(16) is generated by 10 self-adjoint, anti-commuting
involutions Zy, . .., Zg.




First attempt

Since Spin(10) € SU(16), we would like to imitate Spin(9) C SO(16),
and look for Ty, . . ., Iy self-adjoint, anti-commuting involutions in C1°. )

Would-be proposition

Spin(10) € SU(16) is gdhef:
involutions Zy, . .., Zg.

, anti-commuting




First attempt

Since Spin(10) € SU(16), we would like to imitate Spin(9) C SO(16),
and look for Ty, . . ., Iy self-adjoint, anti-commuting involutions in C1°.

Would-be proposition

Spin(10) € SU(16) is gdhef:
involutions Zy, . .., Zg.

, anti-commuting

Proposition
C'® with its standard Hermitian scalar product does not admit any family
of 10 self-adjoint, anti-commuting involutions Zy, . .., Zg.
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