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• (Mn, g) connected oriented pseudo-Riemannian mnfd, signature (p, q)
• π : P = SO(M)→M the SOp,q-principal bundle of positively oriented orthonormal frames.

TM = SO(M)×SOp,q
Rn = η− ⊕ η+,

Def. (Mn, g) is called time-oriented (resp. space-oriented) if η− (resp. η+) is oriented.

• time-oriented: if and only if H1(M ;Z2) 3 w1(η−) = 0

• space-oriented: if and only if H1(M ;Z2) 3 w1(η+) = 0

• oriented: if and only if H1(M ;Z2) 3 w1(M) := w1(TM) = w1(η−) + w1(η+) = 0

Examples: ⇒ Trivial line bundle M = S1×R, w1(M) = 0,
⇒ Torus T2 = S1× S1, w1(T2) = 0
; Möbius strip S = S1×GR→ S1, G = Z2, w1(S) 6= 0

w1 6= 0 w1 = 0

Remark: Since H1(M ;Z2) ∼= Hom(π1(M);Z2) ⇒ if M is simply-connected then it is oriented
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• C`p,q = C`(Rp,q) = ∑∞
r=0

⊗rRp,q/ < x⊗ x− 〈x, x〉 · 1 >
• C`p,q = C`0

p,q + C`1
p,q

• Spinp,q := {x1 · · · x2k ∈ C`0
p,q : xj ∈ Rp,q, 〈xj, xj〉 = ±1} ⊂ C`0

p,q

• Ad : Spinp,q → SOp,q double covering

Def. A Spinp,q-structure (shortly spin structure) on (Mn, g)

• a Spinp,q-principal bundle π̃ : Q = Spin(M)→M over M ,

• a Z2-cover Λ : Spin(M)→ SO(M) of π : SO(M)→M , such that:

Spin(M)× Spinp,q
Λ×Ad

��

// Spin(M)
π̃

$$
Λ
��

SO(M)× SOp,q
// SO(M) π //M

• If such a pair (Q,Λ) exists, we shall call (Mn, g) a pseudo-Riemannian spin manifold.

• if the manifold is time-oriented and space-oriented, then a Spin+-structure is a reduction Q+

of the SO+(n, k)-principal bundle P+ of positively time- and space-oriented orthonormal frames,
onto the spin group Spin+(n, k) = Ad−1(SO+(n, k)), with Q+ → P+ being the double covering.
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Obstructions

• (M, g) oriented pseudo-Riemannian manifold [Karoubi‘68,Baum‘81]

∃ spin structure ⇔ w2(η−) + w2(η+) = 0 (∗)

⇔ w2(M) = w1(η−) ^ w1(η+) (∗∗)

Remark: If (∗) or (∗∗) holds, =⇒ set of spin structures on (M, g)⇐⇒ elements in H1(M ;Z2).
. . . a bit more special cases:

• (M, g) time-oriented + space oriented pseudo-Riemannian manifold

∃ spin structure ⇔ w2(M) = 0
• (M, g) oriented Riemannian manifold

∃ spin structure ⇔ w2(M) = 0

• (M,J) compact (almost) complex mnfd. Then, c1(M) := c1(TM, J) = w2(TM) (mod 2)

∃ spin structure ⇔ c1(M) is even in H2(M ;Z).
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Examples

•

CP 1 = SU2 /U1, CP 3
irr = SU4 /U3, CP 3 = SO5 /U2, F1,2 = SU3 /Tmax, G2 /Tmax, . . .︸ ︷︷ ︸

⇒ w1 = w2 = 0

•
CP 2=SU3 /U2

Riemannian,
CP 2−point

Lorentzian, G2 /U2, . . . ⇒ w1 = 0 but w2 6= 0

• parallelizable mnfds (e.g. Lie groups), etc

Classification results

• special structures often imply existence of a spin structure, e.g. G2-mndfs, nearly-Kähler
mnfds, Einstein-Sasaki mnfds, 3-Sasakian mnfds ⇒ spin
[Friedrich-Kath-Moroianu-Semmelmann ‘97, Boyer-Galicki ‘90]

(but: also the spin structure defines the special structure, sometimes!)

• classification of spin symmetric spaces [Cahen-Gutt-Trautman ‘90]

• classification of spin pseudo-symmetric spaces & non-symmetric cyclic Riemannian mnfds
(G/L, g) [Gadea-González-Dávila-Oubiña ‘15]

SX,Y,Z〈[X, Y ]m, Z〉 = 0, ∀ X, Y, Z ∈ m ∼= ToG/K

⇔ type T1 ⊕ T2 (Vanhecke-Tricceri classification)

• What new we can say? =⇒ Classification of spin flag manifolds
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Invariant spin structures

Def. A spin structure π̃ : Q → M on a homogeneous pseudo-Riemannian manifold (M =
G/L, g) is called G-invariant if the natural action of G on the bundle π : P →M of positively
oriented orthonormal frames, can be extended to an action on the Spinp,q ≡ Spin(q)-principal
bundle π̃ : Q→M . Similarly for spin+ structures.

• Fix (M = G/L, g) oriented homogeneous pseudo-Riemannian manifold with a reductive de-
composition g = l + q.
• Ad : Spin(q)→ SO(q).

Thm. [Cahen-Gutt ‘91] (a) Given a lift of the isotropy representation onto the spin group Spin(q),
i.e. a homomorphism ϑ̃ : L → Spin(q) which makes the following diagram commutative, then
M admits a G-invariant spin structure given by Q = G×ϑ̃ Spin(q).

Spin(q)
λ
��

L

ϑ̃
;;

ϑ
// SO(q)

(b) Conversely, if G is simply-connected and (M = G/L, g) has a spin structure, then ϑ

lifts to Spin(q), i.e. the spin structure is G-invariant. Hence in this case there is a one-to-one
correspondence between the set of spin structures on (M = G/L, g) and the set of lifts of ϑ
onto Spin(q).
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Metaplectic structures

• (V = R2n, ω) symplectic vector space
• Sp(V ) = Spn(R) := Aut(V, ω) the symplectic group.
• Spn(R) is a connected Lie group, with π1(Spn(R)) = Z.
• Metaplectic group Mpn(R) is the unique connected (double) covering of Spn(R)
• (M2n, ω) symplectic manifold, Sp(M) → M is the Spn(R)-principal bundle of symplectic
frames

Def. A metaplectic structure on a symplectic manifold (M2n, ω) is a Mpn(R)-equivariant lift
of the symplectic frame bundle Sp(M) → M with respect to the double covering ρ : MpnR →
SpnR.

• (M2n, ω) symplectic manifold

∃ metaplectic structure ⇔ w2(M) = 0

⇔ c1(M) is even

Remark: Then, the set of metaplectic structures on (M2n, ω)⇐⇒ elements in H1(M ;Z2).
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Compact homogeneous symplectic manifolds

• compact homogeneous symplectic manifold (M2n = G/H, ω)+alomost effective action of G
connected. Then ⇒

• G = G′ ×R, G′ = compact, semisimple, R = solvable =⇒

• M = F ×N, N = flag manifold, N = solvmanifold with symplectic structure

−→ In particular, any simply-connected compact homogeneous symplectic manifold (M =
G/H, ω) is symplectomorphic to a flag manifold.

Prop. Simply-connected compact homogeneous symplectic manifolds admitting a metaplectic
structure, are exhausted by flag manifolds F = G/H of a compact simply-connected semisim-
ple Lie group G such that w2(F ) = 0, or equivalently c1(F ; J) = even, for some ω-compatible
complex structure J .

• This is equivalent to say that the isotropy representation ϑ : H → Sp(m) lifts to Mt(m),
i.e. there exists (unique) homomorphism ϑ̃ : H → Mt(m) such that

Mt(m)
ρ
��

H

ϑ̃
<<

ϑ
// Sp(m)

8



Homogeneous fibrations and spin structures
. . . in the spirit of Borel-Hirzebruch

• Let L ⊂ H ⊂ G be compact & connected subgroups of a compact connected Lie group G.
• π : M = G/L→ F = G/H (homogeneous fibration), base space F = G/H, fibre H/K.
• Fix an AdL-invariant reductive decomposition for M = G/L,

g = l + q = l + (n + m), q := n + m = TeLM.

such that:
• h = l + n is a reductive decomposition of H/L,
• g = h + m = (l + n) + m is a reductive decomposition of F = G/H.
• An AdL-invariant (pseudo-Euclidean) metric gn in n⇒ a (pseudo-Riemannian) invariant metric
in H/L
• An AdH-invariant (pseudo-Euclidean) metric gm in m ⇒ a (pseudo-Riemannian) invariant
metric in the base F = G/H.
⇒ The direct sum metric gq = gn ⊕ gm in q ⇒ an invariant pseudo-Riemannian metric in
M = G/L such that π : G/L→ G/H is a pseudo-Riemannian submersion with totally geodesic
fibres.

9



• N := H/L
i
↪→M := G/L π→ F := G/H

Prop. (i) The bundles i∗(TM) and TN are stably equivalent.
(ii) The Stiefel-Whitney classes of the fiber N = H/L are in the image of the homomorphism
i∗ : H∗(M ;Z2)→ H∗(N ;Z2), induced by the inclusion map i : N = H/L ↪→M = G/L, and
(iii)

w1(TM) = 0, w2(TM) = w2(τN) + π∗(w2(TF )),
Hints:
• τN := G×L n→ G/L is the tangent bundle along the fibres (with fibres, the tangent spaces
n ∼= TeLN of the fibres π−1(x) ∼= H/L := N (x ∈ F )).

TM = G×L q = G×L (n + m) = (G×L n)⊕ (G×L m) := τN ⊕ π∗(TF ).
⇒ TN = H ×L n ∼= i∗(τN), and

(i∗ ◦ π∗)(TF ) = (π ◦ i)∗(TF ) = εdimF ,

εt := trivial real vector bundle of rank t. Thus,
i∗(TM) = εdimF ⊕ TN.

Due to naturality of Stiefel-Whitney classes we get that
wj(i∗(TM)) = i∗(wj(TM)) = wj(TN),

or equivalently, i∗(wj(M)) = wj(N).
Final step:

w2(TM) = w2(τN ⊕ π∗(TF )) = w2(τN) + w1(τN) ^ w1(π∗(TF )) + w2(π∗(TF ))
= w2(τN) + w2(π∗(TF )) = w2(τN) + π∗(w2(TF )).
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Corol. Let N := H/L
i
↪→M := G/L π→ F := G/H, as above. Then:

α) If F = G/H is spin, then M = G/L is spin if and only if N = H/L is spin.

β) If N = H/L is spin, then M = G/L is spin if and only if

w2(G/H) ≡ w2(TF ) ∈ ker π∗ ⊂ H2(F ;Z2),
where π∗ : H2(F ;Z2)→ H2(M ;Z2) is the induced homomorphism by π.

• In particular, if N and F are spin, so is M with respect to any pseudo-Riemannian metric.

Hints: Consider the injection i : N ↪→M . Then i∗(τN) = TN , τN = i∗(TN) and

TM = τN ⊕ π∗TF = i∗(TN)⊕ π∗TF.
Remark: If M is G-spin and N is H-spin, then π∗(w2(TF )) = w2(π∗(TF )) = 0, which in

general does not imply the relation w2(TF ) = 0, i.e. F is not necessarily spin.

Example: Hopf fibration

S1 → S2n+1 = SUn+1 / SUn → CP n = SUn+1 / S(U1×Un).

−→Although the sphere S2n+1 is a spin manifold for any n (its tangent bundle is stably trivial),
CP n is spin only for n = odd.
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Generalized Flag manifolds: F = G/H = GC/P

• G compact, connected, semisimple Lie group
g = h + m = (Z(h) + h′) + m

• T` ⊂ H ⊂ G maximal torus.
• H := centralizer of torus S ⊂ G
• a = Lie(T`) = TeT` = max. abelian subalgebra ⇒ aC is a common CSA
• Set:

a0 := ia, z := Z(h), t := iz ⊂ a0

• Let R, RH be the root systems of (gC, aC), (hC, aC), respectively.
• ΠW = {α1, . . . , αu} fundamental system of RH.
• Extend to a fundamental system Π of R,

Π = ΠW tΠB = {α1, . . . , αu} t {β1, . . . , βv}, ` = u + v.
• Consider the corresponding systems of positive roots R+ and RH

+.

Def.

• ΠB := Π\ΠW = black (simple) roots.

• RF := R\RH = complementary roots.

• hC = Z(hC)⊕ hCss = tC ⊕ (h′)C, where

=⇒ (h′)C = g(RH) = a′ + ∑
α∈RH

gα, a′ := ∑
α∈ΠW

CHα ⊂ aC.

→ Then h = it+h′ is the standard compact real form of the complex reductive Lie algebra hC.
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• Let Λβi (or simply by Λi) be the fundamental weights associated to the black simple roots
βi ∈ ΠB.

• In terms of the splitting Π = ΠW tΠB

(Λi|βj) := 2(Λi, βj)
(βj, βj)

= δij, (Λi|αk) = 0.

Lemma. The fundamental weights (Λ1, · · · ,Λv) associated with the black simple roots ΠB,
form a basis of the space t∗ ∼= t

Def. By painting black in the Dynkin diagram of G the nodes corresponding to the black
roots from ΠB we get the painted Dynkin diagram (PDD) of the flag manifold F = G/H.

• The PDD graphically represents the splitting Π = ΠW t ΠB. The subdiagram generated
by the white nodes, i.e. the simple roots in ΠW, defines the semisimple part H′ of H.

Example. Let G = E7 and consider the painted Dynkin diagram
sα1 c sα3 c c sα6

s
α7

 = E7(2, 4, 5).

• It defines the flag manifold F = E7 / SU3× SU2×U4
1, with ΠW = {α2, α4, α5} and ΠB =

{α1, α3, α6, α7}, respectively. Hence dim t = 4 = rnkRT = b2(F ).
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• Roots from RF = R+
F t (−R+

F) determine the complexified tangent space (ToF )C = mC

mC := m10 + m01 = ∑
α∈R+

F

CEα + ∑
α∈R−

F

CEα, with m10 = m01, m01 = m10.

• This defines an (integrable) invariant complex structure J

JoE±α = ±iE±α, ∀α ∈ R+
F ,

=⇒ We identify F = G/H = GC/P, where H = P ∩G, P ⊂ GC parabolic subgroup

pΠW := aC + ∑
α∈RH∪R+

F

gα = aC + ∑
α∈RH

gα + ∑
α∈R+

F

gα

= hC + n+.

=⇒ B+ ⊂ GC the Borel subgroup corresponding to the maximal solvable subalgebra

b+ := aC + ∑
α∈R+

gα = aC + g(R+) ⊂ gC.

=⇒ ΠW = ∅ and ΠW = Π define the spaces b+ and gC, respectively.

Prop. [Borel-Hirzebruch ‘51,Alekseevsky ‘76] There is a 1-1 bijective correspondence between,

• Invariant complex structures on a flag manifold F = G/H = GC/P

• extensions of a fixed fundamental system ΠW of the subalgebra hC to a fundamental system
Π of the Lie algebra gC.

• papabolic subalgebras pΠW = hC + n+ with reductive part hC
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T -roots and applications

t := iz ⊂ a0 where z := Z(h)
= {X ∈ a0 : αi(X) = 0, for all αi ∈ ΠW}.

=⇒ Consider the linear restriction map

κ : a∗ → t∗, α 7→ α|t
• Then: RH = {α ∈ R, κ(α) = 0}.

Def.
RT := the restriction of RF on t = κ(RF) = κ(R).

Elements in RT are called T -roots. Notice that: v := ](ΠB) = rnkRT .

Thm. [Siebenthal ‘64,Alekseevsky ‘76]
There exists an 1-1 correspondence between t-roots and complex irreducible H-submodules fξ of
mC. This correspondence is given by

RT 3 ξ ↔ fξ := ∑
α∈RF:κ(α)=ξ

CEα.

• Moreover, there is a natural 1-1 correspondence between positive T -roots ξ ∈ R+
T = κ(R+

F)
and real pairwise inequivalent irreducible H-submodules mξ ⊂ m, given by

R+
T 3 ξ ←→ mξ := (fξ + f−ξ) ∩m = (fξ + f−ξ)τ .

• Moreover, dimC fξ = dimRmξ = dξ where dξ := ](κ−1(ξ)) is the cardinality of κ−1(ξ).
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Invariant pseudo-Riemannian metrics

Corol. Any G-invariant pseudo-Riemannian metric g on a flag manifold F = G/H is defined by
an AdH-invariant pseudo-Euclidean metric on m, given by

go :=
d:=R+

T∑
i=1

xξiBξi, (Bξi := −B|mi
),

where xξi 6= 0 are real numbers, for any i = 1, . . . , d := R+
T .

The signature of the metric g is (2N−, 2N+), where

N− := ∑
ξi∈R+

T :xξi<0
dξi, N+ := ∑

ξi∈R+
T :xξi>0

dξi.

• In particular, the metric g is Riemannian if all xξi > 0, and no metric is Lorentzian.
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How we deduce that a flag manifold has a spin structure or not?
. . . by computing the first Chern class for an invariant complex structure

• Consider the weight lattice associated to R, that is
P = {Λ ∈ a∗0 : < Λ|α >∈ Z, ∀α ∈ R} = spanZ(Λ1, · · · ,Λ`) ⊂ a∗0.

• Then set
PT := {λ ∈ P , (λ, α) = 0, ∀ α ∈ RH}

Lemma. The T -weight lattice PT is generated by the fundamental weights Λ1, · · · ,Λv cor-
responding to the black simple roots ΠB = Π\ΠW.

Classical result: The group of characters X (T`) = Hom(T`,T1) = X (B+) of the maximal
torus T` ⊂ H ⊂ G is identified (when G is simply-connected) with the weight lattice P ⊂ a∗0,
via the map

P 3 λ 7→ χλ ∈ X (T`) = X (B+), with χλ(expX) = exp(iλ(X)
2π

), ∀X ∈ a0.

Extension: The following map is an isomorphism:
PT 3 λ 7→ χλ ∈ X (H) := Hom(H,T1).

• In particular, since P = HC ·N+ any character χ = χλ : H→ T1 has a natural extension to
a character of the parabolic subgroup χC

λ : P→ C∗ and we get

PT 3 λ 7→ χC
λ ∈ X (P)
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Line bundles and circle bundles

• For any T -weight λ ∈ PT we assign a 1-dimensional P-module Cλ, where P acts on Cλ by
the associated holomorphic character χC

λ ∈ X (P).
• We define the line bundle

Lλ = GC ×P Cλ = (GC × Cλ)/ ∼

(g, z) ∼ (gp, χC
λ (p−1)z), (g, z) ∈ GC × Cλ, p ∈ P.

• We also introduce the homogeneous circle bundle associated with the character χ : H→ T1,

Fχ = G/Hχ → F = G/H, Hχ := ker(χ)

Prop. Let F = G/H = GC/P be a flag manifold endowed with a complex structure asso-
ciated to a splitting Π = ΠW tΠB. Then, ∃ 1-1 correspondence between

• elements λ ∈ PT = spanZ{Λ1, . . . ,Λv} of the T -weight lattice

• real characters χ = χλ : H→ T1 (up to congugation),

• complex characters χC
λ : P→ C∗ (up to conjugation),

• holomorphic line bundles Lλ := GC ×P Cλ → F = GC/P (up to conjugation)

• and homogeneous circle bundles Fχ := G/Hχ → F = G/H (up to conjugation).
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Prop. There is a natural isomorphism

τ : t∗ → Λ2
cl(m∗)H ∼= H2(m∗)H ' H2(F,R)

between the space t∗ and the space Λ2
cl(m∗)H of AdH-invariant closed real 2-forms on m (iden-

tified with the space of closed G-invariant real 2-forms on F ), given by

a∗0 ⊃ t∗ 3 ξ 7→ ωξ := i
2πdξ = i

2π
∑
α∈RF

+(ξ|α)ωα ∧ ω−α ∈ Λ2
cl(m∗)H.

• τ (PT ) ∼= H2(F,Z). Thus second Betti number of F equals to b2(F ) = dim t = v = rnkRT .

• In particular, the following maps are isomorphisms

PT 3 λ 7→ Lλ ∈ P ic(F ) := H1(GC/P,C∗) 3 Lλ
c1−→ c1(Lλ) ∈ H2(F,Z).

• The first Chern class c1(Lξj) of the holomorphic line bundle Lξj is the cohomology class of
the associated curvature two-form

ωξj = i

2π
dξj = i

2π
∑

α∈R+
F

(ξj|α)ωα ∧ ω−α ∈ Λ2(m∗)H = Ω2
cl(F ).
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The first Chern class

• Let P+ ⊂ P be the subset of strictly positive dominant weights, and consider the 1-forms

σG = 1
2

∑
α∈R+

α, σH = 1
2

∑
α∈R+

H

α.

Recall that σG = ∑`
i=1 Λi ∈ P+.

• We define the Koszul form associated to the flag manifold (F = GC/P = G/H, J), by

σJ := 2(σG − σH) = ∑
α∈R+

F

α.

=⇒ The first Chern class c1(J) ∈ H2(F ;Z) of the invariant complex structure J in F ,
associated with the decomposition Π = ΠWtΠB, is represented by the closed invariant 2-form
γJ := ωσJ , i.e. the Chern form of the complex manifold (F, J).

Thm. [Alekseevsky ‘76,Alekseevsky-Perelomov ‘86] The Koszul form is a linear combination
of the fundamental weights Λ1, · · · ,Λv associated to the black roots, with positive integers
coefficients, given as follows:

σJ =
v∑
j=1

kjΛj =
v∑
j=1

(2 + bj)Λj ∈ P+
T , where kj = 2(σJ , βj)

(βj, βj)
, bj = −2(2σH, βj)

(βj, βj)
­ 0.

Def. The integers kj ∈ Z+ are called Koszul numbers associated to the complex structure J
on F = GC/P = G/H. They form the vector ~k := (k1, . . . , kv) ∈ Zv

+, which we shall call the
Koszul vector associated to J .
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Invariant spin structures

Thm. A flag manifold F = G/H = GC/P admits a G-invariant spin or metaplectic structure,
if and only is the first Chern class c1(J) of an invariant complex structure J on F is even, that
is all Koszul numbers are even. If this is the case, then such a structure will be unique.

Example Consider the manifold of full flags F = G/T` = GC/B+.

• The Weyl group acts transitively on Weyl chambers =⇒ ∃ unique (up to conjugation)
invariant complex structure J .

• The canonical line bundle ΛnTF corresponds to the dominant weight ∑α∈R+ α = 2σG =
2(Λ1 + · · · + Λ`).

• hence all the Koszul numbers equal to 2 and F admits a unique spin structure.

Corol. The divisibility by two of the Koszul numbers of an invariant complex structure J on
a (pseudo-Riemannian) flag manifold F = G/H = GC/P, does not depend on the complex
structure.
Corol. On a spin or metaplectic flag manifold F = G/H = GC/P with a fixed invariant
complex structure J , there is a unique isomorphism class of holomorphic line bundles L such that
L⊗2 = KF .
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The computation of Koszul numbers-classical flag manifolds
Classical flag manifolds

• Flag manifolds of the groups An = SUn+1,Bn = SO2n+1,Cn = Spn,Dn = SO2n fall into four
classes:

A(~n) = SUn+1 /Un0
1 × S(Un1× · · · × Uns),

~n = (n0, n1, · · · , ns),
∑
nj = n + 1, n0 ­ 0, nj > 1;

B(~n) = SO2n+1 /Un0
1 ×Un1× · · · × Uns× SO2r+1,

~n = ∑
nj + r, n0 ­ 0, nj > 1, r ­ 0;

C(~n) = Spn /Un0
1 ×Un1× · · · × Uns× Spr,

~n = ∑
nj + r, n0 ­ 0, nj > 1, r ­ 0;

D(~n) = SO2n /Un0
1 ×Un1× · · · × Uns× SO2r,

~n = ∑
nj + r, n0 ­ 0, n0 ­ 0, nj > 1, r 6= 1,

with ~n = (n0, n1, · · · , ns, r) for the groups Bn,Cn and Dn.
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The Koszul vector of classical flag manifolds

Example: Consider the flag manifold F = SO9 /U2
1× SU2× SU2 = SO9 /U2×U2

d t d> t
• It is ΠB = {α2, α4} and ΠW = R+

H = {α1, α3}.
⇒ 2σH = α1 + α3. Since 2σSO9 = 7α1 + 12α2 + 15α3 + 16α4, we conclude that

σJ0 = 6α1 + 12α2 + 14α3 + 16α4.

• By the Cartan matrix of SO9 we finally get σJ0 = 4Λ2 + 4Λ4. Thus F admits a unique spin
structure.

Thm. The Koszul vector ~k := (k1, · · · , kv) ∈ Zv+ associated to the standard complex structure
J0 on a flag manifold G(~n) of classical type, is given by

A(~n) : ~k = (2, · · · , 2, 1 + n1, n1 + n2, · · · , ns−1 + ns),
B(~n) : ~k = (2, · · · , 2, 1 + n1, n1 + n2, · · · , ns−1 + ns, ns + 2r),
C(~n) : ~k = (2, · · · , 2, 1 + n1, n1 + n2, · · · , ns−1 + ns, ns + 2r + 1),
D(~n) : ~k = (2, · · · , 2, 1 + n1, n1 + n2, · · · , ns−1 + ns, ns + 2r − 1).

If r = 0, then the last Koszul number (over the end black root) is 2ns for B(~n), ns + 1 for C(~n)
and 2(ns − 1) for D(~n).
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Hence we conclude that (the same conclusions apply also for G-metaplectic structures):

Thm. (classification of spin or metaplectic structures)

α) The flag manifold A(~n) with n0 > 0 is G-spin if and only if all the numbers n1, . . . , ns are
odd. If n0 = 0, then A(~n) is G-spin, if and only if the numbers n1, . . . , ns have the same
parity, i.e. they are all odd or all even.

β) The flag manifold B(~n) with n0 > 0 and r > 0 does not admit a (G-invariant) spin
structure. If n0 > 0 and r = 0, then B(~n) is G-spin, if and only if all the numbers
n1, . . . , ns are odd. If n0 = 0 and r > 0, then B(~n) is G-spin if and only if all the numbers
n1, . . . , ns are even. Finally, for n0 = 0 = r, the flag manifold B(~n) is G-spin if and only
if all the numbers n1, . . . , ns have the same parity.

γ) The flag manifold C(~n) with n0 > 0 is G-spin, if and only if all the numbers n1, . . . , ns
are odd, independently of r. The same holds if n0 = 0.

δ) The flag manifold D(~n) with n0 > 0 is G-spin, if and only if all the numbers n1, . . . , ns
are odd, independently of r. If n0 = 0 and r > 0, then D(~n) is G-spin, if and only if all the
numbers n1, . . . , ns are odd. Finally, for n0 = 0 = r, the flag manifold D(~n) is G-spin, if
and only if the numbers n1, . . . , ns have the same parity.
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Table 1. Spin or metaplectic classical flag manifolds with b2 = 1, 2.

F = G/H with b2(F ) = 1 conditions d kαio ∈ Z+ G-spin (⇔)
SUn / S(Up×Un−p) n ­ 2, 1 ¬ p ¬ n− 1 1 (n) n even ­ 2
Spn /Un n ­ 3 1 (n+ 1) n odd ­ 3
SO2n / SO2× SO2n−2 n ­ 4 1 (2n− 2) ∀ n ­ 4
SO2n /Un n ­ 3 1 (2n− 4) ∀ n ­ 3
SO2n+1 /Up× SO2(n−p)+1 n ­ 2, 2 ¬ p < n 2 (2n− p) p even ­ 2
SO2n+1 /Un (special case) n ­ 2 2 (2n) ∀ n ­ 2
Spn /Up× Spn−p n ­ 3, 1 ¬ p ¬ n− 1 2 (2n− p+ 1) p odd ­ 1
Spn /U1× Spn−1 =: CP 2n−1 n ­ 3 2 (2n) ∀ n ­ 3
SO2n /Up× SO2(n−p) n ­ 4, 2 ¬ p ¬ n− 2 2 (2n− p− 1) p odd ­ 2
F = G/H with b2(F ) = 2 conditions d ~k ∈ Z2

+ G-spin (⇔)
SUn /U1× S(Up−1×Un−p) n ­ 3, 2 ¬ p ¬ n− 2 3 (p, n− 1) n odd & p even
SU3 /T2 (special case) - 3 (2, 2) yes
SUn / S(Up×Uq×Un−p−q) n ­ 5, 2 ¬ p ¬ n− 2 3 (p+ q, n− p) p, q, n same parity

4 ¬ p+ q ¬ n
SO5 /T2 (special case) - 4 (2, 2) yes
SO2n+1 /U1×Un−1 n ­ 3 5 (n, 2(n− 1)) n even
SO2n+1 /Up×Un−p n ­ 4, 2 ¬ p ¬ n 6 (n, 2(n− p)) n even
SO2n+1 /Up×Uq× SO2(n−p−q)+1 n ­ 4, 2 ¬ p ¬ n− 1 6 (p+ q, 2n− 2p− q) p & q even

4 ¬ p+ q ¬ n− 1
Spn /Up×Un−p n ­ 3, 1 ¬ p ¬ n− 1 4 (n, n− p+ 1) n even & p odd
Sp3 /T2 (special case) - 4 (2, 2) yes
Spn /U1×U1× Spn−2 n ­ 3 6 (2, 2(n− 1)) ∀ n ­ 3
Spn /Up×Uq× Spn−p−q n ­ 3, 1 ¬ p ¬ n− 3 6 (p+ q, 2n− 2p− q + 1) p & q odd

3 ¬ p+ q ¬ n− 1
SO2n /U1×Un−1 n ­ 4 3 (n, 2(n− 2)) n even
SO2n /U1×U1× SO2(n−2) n ­ 4 4 (2, 2(n− 2)) ∀ n ­ 4
SO2n /Up×Un−p n ­ 4, 2 ¬ p ¬ n− 2 4 (n, 2(n− p− 1)) n even
SO2n /U1×Up× SO2(n−p−1) n ­ 4, 2 ¬ p ¬ n− 3 5 (1 + p, 2n− p− 3) p odd
SO2n /Up×Uq× SO2(n−p−q) n ­ 5, 2 ¬ p ¬ n− 4 6 (p+ q, 2n− 2p− q − 1) p & q odd

4 ¬ p+ q ¬ n− 2
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Spin structures on exceptional flag manifolds

• Given an exceptional Lie group G ∈ {G2,F4,E6,E7, E8} with root system R and a basis of
simple roots Π = {α1, . . . , α`}, we shall denote by

G(α1, . . . , αu) ≡ G(1, . . . ,u)
to denote the exceptional flag manifold F = G/H where the semisimple part h′ of the stability
subalgebra h = TeH corresponds to the simple roots ΠW := {α1, . . . , αu}.
• The remaining v := ` − u nodes in the Dynkin diagram Γ(Π) of G have been painted black
such that h = u(1)⊕ · · · ⊕ u(1)⊕ h′.
• There are 101 non-isomorphic flag manifolds F = G/H corresponding to a simple exceptional
Lie group G.
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G F = G/H b2(F ) d = ](R+
T ) σJ

G2 G2(0) = G2 /T2 2 6 2(Λ1 + Λ2)
G2(1) = G2 /Ul

2 1 3 5Λ2
G2(2) = G2 /Us

2 1 2 3Λ1
F4 F4(0) = F4 /T4 4 24 2(Λ1 + Λ2 + Λ3 + Λ4)

F4(1) = F4 /Al
1×T3 3 16 3Λ2 + 2(Λ3 + Λ4)

F4(4) = F4 /As
1×T3 3 13 2(Λ1 + Λ2) + Λ3

F4(1, 2) = F4 /Al
2×T2 2 9 6Λ3 + 2Λ4

F4(1, 4) = F4 /A1×A1×T2 2 8 3Λ2 + 3Λ3
F4(2, 3) = F4 /B2×T2 2 6 5Λ1 + 6Λ4
F4(3, 4) = F4 /As

2×T2 2 6 2Λ1 + 4Λ2
F4(1, 2, 4) = F4 /Al

2×As
1×T 1 4 7Λ3

F4(1, 3, 4) = F4 /As
2×Al

1×T 1 3 5Λ2
F4(1, 2, 3) = F4 /B3×T 1 2 11Λ4
F4(2, 3, 4) = F4 /C3×T 1 2 8Λ1

E6 E6(0) = E6 /T6 6 36 2(Λ1 + · · ·+ Λ6)
E6(1) = E6 /A1×T5 5 25 3Λ2 + 2(Λ3 + · · ·+ Λ6)
E6(3, 5) = E6 /A1×A1×T4 4 17 2Λ1 + 3Λ2 + 4Λ4 + 3Λ6
E6(4, 5) = E6 /A2×T4 4 15 2(Λ1 + Λ2 + 2Λ3 + Λ6)
E6(1, 3, 5) = E6 /A1×A1×A1×T3 3 11 4(Λ2 + Λ4) + 3Λ6
E6(2, 4, 5) = E6 /A2×A1×T3 3 10 3Λ1 + 5Λ3 + 2Λ6
E6(3, 4, 5) = E6 /A3×T3 3 8 2Λ1 + 5(Λ2 + Λ6)
E6(2, 3, 4, 5) = E6 /A4×T2 2 4 6Λ1 + 8Λ6
E6(1, 3, 4, 5) = E6 /A3×A1×T2 2 5 6Λ2 + 5Λ6
E6(1, 2, 4, 5) = E6 /A2×A2×T2 2 6 6Λ3 + 2Λ6
E6(2, 4, 5, 6) = E6 /A2×A1×A1×T2 2 6 3Λ1 + 6Λ3
E6(2, 3, 4, 6) = E6 /D4×T2 2 3 8(Λ1 + Λ5)
E6(1, 2, 4, 5, 6) = E6 /A2×A2×A1×T 1 3 7Λ3
E6(1, 2, 3, 4, 5) = E6 /A5×T 1 2 11Λ6
E6(1, 3, 4, 5, 6) = E6 /A1×A1×T 1 2 9Λ2
E6(2, 3, 4, 5, 6) = E6 /D5×T 1 1 12Λ1
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G F = G/H b2(F ) d = ](R+
T ) σJ

E7 E7(0) = E7 /T7 7 63 2(Λ1 + · · ·+ Λ7)
E7(1) = E7 /A1×T6 6 46 3Λ2 + 2(Λ3 + · · ·+ Λ7)
E7(4, 6) = E7 /A1×A1×T5 5 33 2(Λ1 + Λ2) + 3(Λ3 + Λ7) + 4Λ5
E7(5, 6) = E7 /A2×T5 5 30 2(Λ1 + · · ·+ Λ4 + Λ7)
E7(1, 3, 5) = E7 /A1×A1×A1×T4 [1, 1] 4 23 4Λ2 + 4Λ4 + 3Λ6 + 2Λ7
E7(1, 3, 7) = E7 /A1×A1×A1×T4 [0, 0] 4 24 4Λ2 + 4Λ4 + 2Λ5 + 2Λ6
E7(3, 5, 6) = E7 /A2×A1×T4 4 21 2Λ1 + 3Λ2 + 5Λ4 + 2Λ7
E7(4, 5, 6) = E7 /A3×T4 4 18 2Λ1 + 2Λ2 + 5Λ3 + 5Λ7
E7(1, 2, 3, 4) = E7 /A4×T3 3 10 6Λ5 + 2Λ6 + 6Λ7
E7(1, 2, 3, 5) = E7 /A3×A1×T3 [1, 1] 3 12 6Λ4 + 3Λ6 + 2Λ7
E7(1, 2, 3, 7) = E7 /A3×A1×T3 [0, 0] 3 13 6Λ4 + 2Λ5 + 2Λ6
E7(1, 2, 4, 5) = E7 /A2×A2×T3 3 13 6Λ3 + 4Λ6 + 4Λ7
E7(1, 2, 4, 6) = E7 /A2×A1×A1×T3 3 14 5Λ3 + 4Λ5 + 3Λ7
E7(1, 3, 5, 7) = E7 /(A1)4 × T3 3 16 4Λ2 + 5Λ4 + 3Λ6
E7(3, 4, 5, 7) = E7 /D4×T3 3 9 2Λ1 + 8Λ2 + 8Λ6
E7(1, 2, 3, 4, 5) = E7 /A5×T2 [1, 1] 2 5 7Λ6 + 10Λ7
E7(1, 2, 3, 4, 7) = E7 /A5×T2 [0, 0] 2 6 10Λ5 + 2Λ6
E7(1, 2, 3, 4, 6) = E7 /A4×A1×T2 2 6 7Λ5 + 6Λ7
E7(1, 2, 3, 5, 6) = E7 /A3×A2×T2 2 7 7Λ4 + 2Λ7
E7(1, 2, 3, 5, 7) = E7 /A3×A1×A1×T2 2 8 7Λ4 + 3Λ6
E7(1, 3, 4, 5, 7) = E7 /D4×A1×T2 2 6 9Λ2 + 4Λ6
E7(1, 2, 5, 6, 7) = E7 /A2×A1×A1×T2 2 8 4Λ3 + 5Λ4
E7(1, 3, 5, 6, 7) = E7 /A2×(A1)3 × T2 2 9 4Λ2 + 6Λ4
E7(3, 4, 5, 6, 7) = E7 /D5×T2 2 4 2Λ1 + 12Λ2
E7(1, 2, 3, 4, 5, 6) = E7 /A6×T 1 2 14Λ7
E7(2, 3, 4, 5, 6, 7) = E7 /E6×T 1 1 18Λ1
E7(1, 3, 4, 5, 6, 7) = E7 /D5×A1×T 1 2 13Λ2
E7(1, 2, 4, 5, 6, 7) = E7 /A4×A2×T 1 3 10Λ3
E7(1, 2, 3, 5, 6, 7) = E7 /A3×A2×A1×T 1 4 8Λ4
E7(1, 2, 3, 4, 6, 7) = E7 /A5×A1×T 1 2 12Λ5
E7(1, 2, 3, 4, 5, 7) = E7 /D6×T 1 2 17Λ6
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Thm.
(1) For G = G2 there is a unique G-spin (or G-metaplectic) flag manifold, namely the full flag
G2(0) = G2 /T2.
(2) For G = F4 the associated G-spin (of G-metaplectic) flag manifolds are the cosets defined
by F4(0), F4(1, 2), F4(3, 4), F4(2, 3, 4), and the flag manifolds isomorphic to them. In particular:

• F4(2, 3, 4) = F4 /C3×T is the unique (up to equivalence) flag manifold of G = F4 with
b2(F ) = 1 = rnkRT which admits a G-invariant spin and metaplectic structure.

• There are not exist flag manifolds F = G/H of G = F4 with b2(F ) = 3 = rnkRT carrying
a (G-invariant) spin structure or a metaplectic structure.

(3) For G = E6 the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by
E6(0), E6(4, 5), E6(2, 3, 4, 5), E6(1, 2, 4, 5), E6(2, 3, 4, 6), E6(2, 3, 4, 5, 6), and the flag manifolds
isomorphic to them. In particular,

• E6(4, 5) = E6 /A2×T4 is the unique (up to equivalence) flag manifold of G = E6 with
b2(F ) = 4 = rnkRT which admits a G-invariant spin and metaplectic structure.

• E6(2, 3, 4, 5, 6) = E6 /D5×T is the unique (up to equivalence) flag manifold of G = E6
with b2(F ) = 1 = rnkRT which admits a G-invariant spin and metaplectic structure.

• There are not exist flag manifolds F = G/H of G = E6 with b2(F ) = 3 = rnkRT carrying
a (G-invariant) spin or metaplectic structure.
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Thm.
For G = E7 the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by
E7(0), E7(5, 6), E7(1, 3, 7), E7(1, 2, 3, 4), E7(1, 2, 3, 7), E7(1, 2, 4, 5), E7(3, 4, 5, 7), E7(1, 2, 3, 4, 7),
E7(1, 3, 5, 6, 7), E7(3, 4, 5, 6, 7), E7(1, 2, 3, 4, 5, 6), E7(2, 3, 4, 5, 6, 7), E7(1, 2, 4, 5, 6, 7), E7(1, 2, 3, 5, 6, 7),
E7(1, 2, 3, 4, 6, 7) and the flag manifolds isomorphic to them. In particular,

• E7(5, 6) = E7 /A2×T5 is the unique (up to equivalence) flag manifold of G = E7 with
second Betti number b2(F ) = 5 = rnkRT , which admits aG-invariant spin and metaplectic
structure.

• E7(1, 3, 7) = E7 /A1×A1×A1×T4 is the unique (up to equivalence) flag manifold of
G = E7 with second Betti number b2(F ) = 4 = rnkRT , which admits a G-invariant spin
and metaplectic structure.

• There are not exist flag manifolds F = G/H of G = E7 with b2(F ) = rnkRT = 6,
carrying a (G-invariant) spin or metaplectic structure.
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Thm.
For G = E8 the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined
by E8(0), E8(1, 2), E8(1, 2, 3, 4), E8(1, 2, 4, 5), E8(4, 5, 6, 8), E8(4, 5, 6, 7, 8), E8(1, 2, 3, 4, 5, 6),
E8(1, 2, 3, 4, 6, 7), E8(1, 2, 4, 5, 6, 8), E8(1, 2, 4, 5, 6, 7, 8) and the flag manifolds isomorphic to
them. In particular,

• E8(1, 2) = E8 /A1×T6 is the unique (up to equivalence) flag manifold of G = E8 with
second Betti number b2(F ) = 6 = rnkRT , which admits aG-invariant spin and metaplectic
structure.

• E8(4, 5, 6, 7, 8) = E8 /D5×T3 is the unique (up to equivalence) flag manifold of G = E8
with second Betti number b2(F ) = 3 = rnkRT , which admits a G-invariant spin and
metaplectic structure.

• E8(1, 2, 4, 5, 6, 7, 8) = E8 /D5×A2×T is the unique (up to equivalence) flag manifold of
G = E8 with second Betti number b2(F ) = 1 = rnkRT which admits a G-invariant spin
and metaplectic structure.

• There are not exist flag manifolds F = G/H of G = E8 with b2(F ) = rnkRT = 5, or
b2(F ) = rnkRT = 7, carrying a (G-invariant) spin or metaplectic structure.
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. . . on the calculation of Koszul numbers

α) Consider the natural invariant ordering R+
F = R+\RH

+ induced by the splitting Π = ΠW t
ΠB. Let us denote by J0 the corresponding complex structure. Describe the root system RH and
compute

σH := 1
2

∑
β∈R+

H

β

β) Apply the formula
2(σG − σH) = ∑

γ∈R+
F

γ := σJ0.

In particular, for the exceptional simple Lie groups and with respect to the fixed bases of the
associated roots systems, it is 2σG2 = 6α1 + 10α2,

2σF4 = 16α1 + 30α2 + 42α3 + 22α4,

2σE6 = 16α1 + 30α2 + 42α3 + 30α4 + 16α5 + 22α6,

2σE7 = 27α1 + 52α2 + 75α3 + 96α4 + 66α5 + 34α6 + 49α7,

2σE8 = 58α1 + 114α2 + 168α3 + 220α4 + 270α5 + 182α6 + 92α7 + 136α8.

γ) Use the Cartan matrix C = (ci,j) =
(2(αi,αj)

(αj,αj)
)
associated to the basis Π (and its enumeration),

to express the simple roots in terms of fundamental weights via the formula αi = ∑`
j=1 ci,jΛj.
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C-spaces and spin structures

• C-space is a compact, simply connected, homogeneous complex manifold M = G/L of a com-
pact semisimple Lie group G.
• stability group L is a closed connected subgroup of G whose semisimple part coincides with
the semisimple part of the centralizer of a torus in G.
• Any C-space is the total space of a homogeneous torus bundle M = G/L → F = G/H
over a flag manifold F = G/H.
• In particular, the fiber is a complex torus T2k of real even dimension 2k.

Well-know fact: Given a C-space M = G/L the following are equivalent:

• L = C(S), i.e. M = G/L is a flag manifold,

• second Betti number of G/L is non-zero,

• the Euler characteristic of G/L is non-zero,

• Hence, non-Kählerian C-spaces may admit Lorentzian metric and complex structure with zero
first Chern class ⇒

such spaces may give examples of homogeneous Calabi-Yau structures with torsion
[Fino-Grantcharov ‘04, Grantcharov ‘11]
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• Consider a reductive decomposition

g = h + m = (Z(h) + h′) + m,

associated with a flag manifold F = G/H of G.
• We decompose

Z(h) = t0 + t1

into a direct sum of a (commutative) subalgebra t1 of even dimension 2k and a complement t0
which generates a closed toral subgroup T0 of H, such that

rnkG = dimT0 + rnkH ′, and rnkL = dimT1 + rnkH ′.

• Then, the homogeneous manifold M = G/L = G/T0 ·H ′ is a C-space and any C-space has
such a form.
• Notice that L ⊂ H is normal subgroup of H. In particular, H ′ (the semi-simple part of H)
coincides with the simi-simple part of L.
Lemma. Any complex structure in t1 together with an invariant complex structure JF in F =
G/H = G/T1 ·L defines an invariant complex structure JM inM = G/L = G/T0 ·H ′ such that
π : M = G/L → F = G/H is a holomorphic fibration with respect to the complex structures
JM and JF . The fiber has the form H/L = (T1 · L)/(T0 ·H ′) ∼= T1.
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• Consider a homogeneous torus bundle π : M = G/L→ F = G/H

g = l + q = (h′ + t0) + (t1 + m), q := (t1 + m) ∼= TeLM.

• Let JF be an invariant complex structure in F and JM its extension to an invariant complex
structure in M , defined by adding a complex structure Jt1 in t1. Then
Prop. The invariant Chern from γJM ∈ Ω2(M) of the complex structure JM is the pull back
of the invariant Chern form γJF ∈ Ω2(F ) associated to the complex structure JF on F , i.e.
γJM = π∗γJF .

Corol. Given a C-space M = G/L over flag manifold F = G/H, then

• w2(TM) = π∗(w2(TF ))

• M is spin if and only if w2(TF ) belongs to the kernel of π∗ : H2(F ;Z2)→ H2(M ;Z2).

• If F is G-spin, then so is M .

Hints: Notice that
TM = G×L q = (G×L t1)⊕ π∗(TF )
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Thm. There are 45 non-biholomorphic C-spaces M = G/L fibered over a spin flag manifold
F = G/H of an exceptional Lie group G ∈ {G2,F4,E6,E7,E8}, and any such space carries a
unique G-invariant spin structure. The associated fibrations are given as follows:

T2 ↪→ G2 −→ G2 /T2 T6 ↪→ E7 /T −→ E7 /T7

T4 ↪→ F4 −→ F4 /T4 T4 ↪→ E7 /T3 −→ E7 /T7

T2 ↪→ F4 /T2 −→ F4 /T4 T2 ↪→ E7 /T5 −→ E7 /T7

T2 ↪→ F4 /Al
2 −→ F4 /Al

2×T2 T4 ↪→ E7 /A2×T −→ E7 /A2×T5

T2 ↪→ F4 /As
2 −→ F4 /As

2×T2 T2 ↪→ E7 /A2×T3 −→ E7 /A2×T5

T6 ↪→ E6 −→ E6 /T6 T4 ↪→ E7 /(A1)3 ∗−→ E7 /(A1)3 × T4

T4 ↪→ E6 /T2 −→ E6 /T6 T2 ↪→ E7 /(A1)3 × T2 ∗−→ E7 /(A1)3 × T4

T2 ↪→ E6 /T4 −→ E6 /T6 T2 ↪→ E7 /A4×T −→ E7 /A4×T3

T4 ↪→ E6 /A2 −→ E6 /A2×T4 T2 ↪→ E7 /A3×A1×T ∗−→ E7 /A3×A1×T3

T2 ↪→ E6 /A2×T2 −→ E6 /A2×T4 T2 ↪→ E7 /A2×A2×T −→ E7 /A2×A2×T3

T2 ↪→ E6 /A4 −→ E6 /A4×T2 T2 ↪→ E7 /D4×T −→ E7 /D4×T3

T2 ↪→ E6 /A2×A2 −→ E6 /A2×A2×T2 T2 ↪→ E7 /A5 −→ E7 /A5×T2

T2 ↪→ E6 /D4 −→ E6 /D4×T3 T2 ↪→ E7 /A2×(A1)3 ∗−→ E7 /A2×(A1)3 × T2

T2 ↪→ E7 /D5 −→ E7 /D5×T2

T8 ↪→ E8 −→ E8 /T8 T4 ↪→ E8 /D4 −→ E8 /D4×T4

T6 ↪→ E8 /T2 −→ E8 /T8 T2 ↪→ E8 /D4×T2 −→ E8 /D4×T4

T4 ↪→ E8 /T4 −→ E8 /T8 T4 ↪→ E8 /A2×A2 −→ E8 /A2×A2×T4

T2 ↪→ E8 /T6 −→ E8 /T8 T2 ↪→ E8 /A2×A2×T2 −→ E8 /A2×A2×T4

T6 ↪→ E8 /A2 −→ E8 /A2×T6 T2 ↪→ E8 /D5×T1 −→ E8 /D5×T3

T4 ↪→ E8 /A2×T2 −→ E8 /A2×T6 T2 ↪→ E8 /A6 −→ E8 /A6×T2

T2 ↪→ E8 /A2×T4 −→ E8 /A2×T6 T2 ↪→ E8 /A4×A2 −→ E8 /A4×A2×T2

T4 ↪→ E8 /A4 −→ E8 /A4×T4 T2 ↪→ E8 /D4×A2 −→ E8 /D4×A2×T2

T2 ↪→ E8 /A4×T2 −→ E8 /A4×T4 T2 ↪→ E8 /E6 −→ E8 /E6×T2

36


