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e (M", g) connected oriented pseudo-Riemannian mnfd, signature (p, q)
o 7: P =50(M)— M the SO, ,-principal bundle of positively oriented orthonormal frames.

TM = SO(M) x50, R" =n_®n.,
Def. (M", g) is called time-oriented (resp. space-oriented) if n_ (resp. 1. ) is oriented.

e time-oriented: if and only if HY(M;Zs) > wi(n_) =0

e space-oriented: if and only if H(M;Zs) > wi(n,) =0

e oriented: if and only if HY(M;Zs) > wi(M) = wi(TM) = wy(n_) +wi(ny) =0
Examples: = Trivial line bundle M = S' xR, w;(M) =0,

= Torus T? =S x St w(T?) =0
+ Mobius strip S = S xgR — S!, G = Zy, wi(S) #0

w1:0

Remark: Since HY(M;Zs) = Hom(my(M); Zs) = if M is simply-connected then it is oriented



e Cl,,=ClURM) =2 @R/ <zx®@x — (z,2) - 1>
o Clyy=Cl),+Cly,
e Spin, , = {x1- - w91 € Cfg’q x; € RPY (x5, 25) = £1} C Cfg’q

e Ad : Spin,, , — SO, ; double covering

Def. A Spin, -structure (shortly spin structure) on (M", g)
e a Spin, -principal bundle 7 : @Q = Spin(M) — M over M,

e a Zy-cover A : Spin(M) — SO(M) of w: SO(M) — M, such that:

Spin(M) x Spin,, ,— Spin(M)
AxAd| iA T
SO(M) x SO, ,—SO(M)*— M

e If such a pair (QQ, \) exists, we shall call (M", g) a pseudo-Riemannian spin manifold.

e if the manifold is time-oriented and space-oriented, then a Spin™-structure is a reduction Q™
of the SO (n, k)-principal bundle P* of positively time- and space-oriented orthonormal frames,

onto the spin group Spin™ (n, k) = Ad~'(SO*(n, k)), with Q* — P being the double covering.



Obstructions

e (M, g) oriented pseudo-Riemannian manifold [Karoubi‘68, Baum‘81]

3 spin structure & wan-)+wang) =0 (%)

& wp(M) = wiln-) — wilns) (%)

Remark: If () or (#*) holds, = set of spin structures on (M, g) <= elements in H(M: Zs).

... a bit more special cases:

e (M, g) time-oriented + space oriented pseudo-Riemannian manifold

3 spin structure & wo(M) =0

e (M, g) oriented Riemannian manifold

d spin structure & wo(M) =0

e (M, J) compact (almost) complex mnfd. Then, ¢1(M) := c1(TM, J) = wo(T M) (mod 2)

J spin structure & ¢(M) is even in H*(M;Z).



Examples

CP' =SUy /Uy, CPJ, =SUy/ Uz, CP? =805/ Uy, Fi2=SUs/Timax, G2 /T, - - -

° = wp=wy =0

CP2:SU3 /Uy CP?—point
e Riemannian, Lorentzian, Gs/Us,... = w; =0 but wy #0

e parallelizable mnfds (e.g. Lie groups), etc
Classification results
e special structures often imply existence of a spin structure, e.g. Go-mndfs, nearly-Kahler

mnfds, Einstein-Sasaki mnfds, 3-Sasakian mnfds = spin
|Friedrich-Kath-Moroianu-Semmelmann ‘97, Boyer-Galicki ‘90]

(but: also the spin structure defines the special structure, sometimes!)
e classification of spin symmetric spaces [Cahen-Gutt-Trautman ‘90

e classification of spin pseudo-symmetric spaces & non-symmetric cyclic Riemannian mnfds
(G/L,g) |Gadea-Gonzalez-Davila-Oubifa ‘15]

Gyy (X, V]m Z) =0, YVXY,ZemT,G/K
& type 71 7> (Vanhecke-Tricceri classification)

e What new we can say? = Classification of spin flag manifolds



Invariant spin structures

Def. A spin structure @ : ) — M on a homogeneous pseudo-Riemannian manifold (M =
G/L,g) is called G-invariant if the natural action of G on the bundle 7w : P — M of positively
oriented orthonormal frames, can be extended to an action on the Spin, , = Spin(q)-principal
bundle 7 : Q — M. Similarly for spin™ structures.

e Fix (M = G/L, g) oriented homogeneous pseudo-Riemannian manifold with a reductive de-
composition g = [+ q.
e Ad : Spin(q) — SO(q).

Thm. [Cahen-Gutt ‘91] (a) Given a lift of the isotropy representation onto the spin group Spin(q),
i.e. a homomorphism ¢ : L. — Spin(q) which makes the following diagram commutative, then
M admits a G-invariant spin structure given by () = G x5 Spin(q).

_ Spin(q)

77,

L—45S0(q)
(b) Conversely, if G is simply-connected and (M = G/L,g) has a spin structure, then 9

lifts to Spin(q), i.e. the spin structure is G-invariant. Hence in this case there is a one-to-one
correspondence between the set of spin structures on (M = G/L, g) and the set of lifts of ¥
onto Spin(q).



Metaplectic structures

o (V =R?*" w) symplectic vector space

e Sp(V) = Sp,,(R) := Aut(V,w) the symplectic group.

e Sp,(R) is a connected Lie group, with 71(Sp,,(R)) = Z.

e Metaplectic group Mp,,(R) is the unique connected (double) covering of Sp,,(R)

o (M?",w) symplectic manifold, Sp(M) — M is the Sp,(IR)-principal bundle of symplectic

frames

Def. A metaplectic structure on a symplectic manifold (M?",w) is a Mp,,(R)-equivariant lift
of the symplectic frame bundle Sp(M) — M with respect to the double covering p : Mp, R —
Sp,R.

o (M?" w) symplectic manifold
3 metaplectic structure & we(M)=0
& (M) is even

Remark: Then, the set of metaplectic structures on (M?", w)<=> elements in H'(M;Zs).



Compact homogeneous symplectic manifolds

e compact homogeneous symplectic manifold (M?" = G /H,w)-+alomost effective action of G
connected. Then =

o G=G"x R, G =compact, semisimple, R = solvable —

e M =F x N, N =flag manifold, N = solvmanifold with symplectic structure

— In particular, any simply-connected compact homogeneous symplectic manifold (M =

G /H,w) is symplectomorphic to a flag manifold.

Prop. Simply-connected compact homogeneous symplectic manifolds admitting a metaplectic
structure, are exhausted by flag manifolds /' = G/H of a compact simply-connected semisim-
ple Lie group G such that wy(F') = 0, or equivalently ¢;(F; J) = even, for some w-compatible
complex structure J.

e This is equivalent to say that the isotropy representation ¥/ : H — Sp(m) lifts to Mt(m),
i.e. there exists (unique) homomorphism ¥ : H — Mt(m) such that

Mt (m)
P,
(

HﬁSp m)



Homogeneous fibrations and spin structures

.. in the spirit of Borel-Hirzebruch

e Let L. C H C GG be compact & connected subgroups of a compact connected Lie group G.
erm:M=G/L— F=G/H (homogeneous fibration), base space F' = G/H, fibre H/ K.
e Fix an Adz-invariant reductive decomposition for M = G/ L,

g=l+g=I+mn+m), g=n+m="T, M.

such that:

e h = [+ nis a reductive decomposition of H/L,

eg="Hh+m=([+n)+mis a reductive decomposition of ' = G/H.

e An Adz-invariant (pseudo-Euclidean) metric g, in n = a (pseudo-Riemannian) invariant metric
in H/L

e An Adpy-invariant (pseudo-Euclidean) metric gy, in m = a (pseudo-Riemannian) invariant
metric in the base F' = G/H.

= The direct sum metric gg = gn ® gm in @ = an invariant pseudo-Riemannian metric in
M = G/L such that 7 : G/L — G/H is a pseudo-Riemannian submersion with totally geodesic

fibres.



o N =H/LS M =G/LSF:=G/H

Prop. (i) The bundles i*(T'M) and T'N are stably equivalent.

( i he Stiefel-Whitney classes of the fiber N = H/L are in the image of the homomorphism
i*: H*(M;Zo) — H*(N;Zs), induced by the inclusion mapi: N = H/L — M = G/L, and
(

|||)
w1 (TM) =0, wo(TM)=ws(rn)+ 7 (we(TF)),
Hints:
e 7y .= G X n — G/L is the tangent bundle along the fibres (with fibres, the tangent spaces

n =T, N of the fibres 771(z) = H/L .= N (z € F)).
TM=Gxrq=Gxr(n+m)=(Gxyn)®(Gxym)=17ydr (TF).
= TN = H x;n = i*(7yn), and
(i* o m*)(TF) = (m 0d)*(TF) = ™ ¥
¢! := trivial real vector bundle of rank ¢. Thus,
(TM) =™ g TN,
Due to naturality of Stiefel-Whitney classes we get that
wy(i*(TM)) = i*(w,(TM)) = w;(TN),
or equivalently, *(w;(M)) = w;(N).
Final step:

wo(TM) = wy(ry @7 (TF)) = wa(rn) + wi(7n) — wi(7"(TF)) + wy(m"(T'F))
= wy(Tn) + wo (™ (TF)) = wo(rn) + 7 (wo(TF)).



Corol. Let N .= H/L < M = G/L = F := G/H, as above. Then:
«) If F'=G/H is spin, then M = G/L is spin if and only if N = H/L is spin.

B) If N = H/L is spin, then M = G/L is spin if and only if
wy(G/H) = wo(TF) € kern* C H*(F: Zsy),
where 7 : H?(F;Zy) — H?(M;Zs) is the induced homomorphism by 7.

e |n particular, if NV and I are spin, so is M with respect to any pseudo-Riemannian metric.

Hints: Consider the injection i : N < M. Then i*(ty) = TN, 75 = i,(T'N) and
TM =1y & #*TF = i,(TN) & *TF.
Remark: If M is G-spin and N is H-spin, then 7*(wo(TF')) = wo(n*(TF)) = 0, which in
general does not imply the relation wo(T'F') = 0, i.e. F' is not necessarily spin.
Example: Hopf fibration
sl — s = SU, 1 /SU, = CP" = SU,+1 /S(U; x Uy,).

——Although the sphere S***! is a spin manifold for any n (its tangent bundle is stably trivial),

CP" is spin only for n = odd.



Generalized Flag manifolds: F' = G/H = G*/P

e (7 compact, connected, semisimple Lie group
| g=h-+m=(Z(b) +b)+m
e T' ¢ H C (G maximal torus.
e /1 := centralizer of torus S C G
e a = Lie(T) = T,T" = max. abelian subalgebra = a® is a common CSA
o Set:
ap:=1a, 3:=2(h), t:=13C ag

o Let R, Ry be the root systems of (g€, a®), (h%, a®), respectively.
o [y = {ai,...,a,} fundamental system of Ryy.
e Extend to a fundamental system II of R,

IM=IIwuUIlg ={ay,...,a} U{B,.... 5y}, {=u+v.

e Consider the corresponding systems of positive roots R* and Ry ™.
Def.

e IIp :=II\Ily = black (simple) roots.

e Rp := R\Rpy = complementary roots.
o h°=Z(h"%) @by, =" @ (1), where

— ) =gRp)=d+ ¥ g, o« = ¥ CH,ca"

— Then ) = it+ b’ is the standard compact real form of the complex reductive Lie algebra h*.



o Let Ag (or simply by A;) be the fundamental weights associated to the black simple roots
B; € 1.

e In terms of the splitting II = Iy U IIp

(AZ|B) = Il — 52", (/\Z‘Oé]{;) = 0.
BB
Lemma. The fundamental weights (Aq, -+, A,) associated with the black simple roots Ilz,

form a basis of the space t* = t

Def. By painting black in the Dynkin diagram of G the nodes corresponding to the black
roots from Ilp we get the painted Dynkin diagram (PDD) of the flag manifold F' = G//H.

e The PDD graphically represents the splitting II = Ilyw U IIg. The subdiagram generated
by the white nodes, i.e. the simple roots in Iy, defines the semisimple part H' of H.

Example. Let G = E7 and consider the painted Dynkin diagram
aq a3 (075

ot

(0% } = E7(2,4, 5).

e |t defines the flag manifold F' = E; /SU3z x SUy X U, with Ty = 9, ay, a5} and Ilg =
1

{aq, as, ag, ar}, respectively. Hence dimt = 4 = rnk Ry = by(F).



e Roots from Rr = Ry LI (—Ry) determine the complexified tangent space (7,F)* = m®

01 10

mt=mP+m”= ¥ CE,+ > CE,, with m0=m" ml=m

aceRY a€Rp
e This defines an (integrable) invariant complex structure J
J,Eiq = *iEy,, Vo€ Rf,
— We identify ' = G'//H = G*/P, where H =P NG, P C G parabolic subgroup

pi, =a"+ Y g = a4 X got ¥ ga
acRyURS a€Ry acRy
= hC+n+.

—> B, C GC the Borel subgroup corresponding to the maximal solvable subalgebra
_|_

bt =at+ ¥ go=a"+gR") cg"
acR*
— IIw = 0 and Iy = II define the spaces b™ and g*, respectively.

Prop. [Borel-Hirzebruch ‘51, Alekseevsky ‘76] There is a 1-1 bijective correspondence between,
e Invariant complex structures on a flag manifold F' = G'/H = G¢/P

e extensions of a fixed fundamental system Iy of the subalgebra h© to a fundamental system
IT of the Lie algebra g*.

e papabolic subalgebras pr1,, = H% + n_ with reductive part h©



T'-roots and applications

t = i3 C agwherej = Z(h)
— {X € ap: OQ(X) = O, for all o, € HW}

—> Consider the linear restriction map
Koa' =t a— aly
e Then: Ry = {a € R, k(a) = 0}.
Def.
Ry := the restriction of Rp on t = k(Rp) = k(R).
Elements in Ry are called 7-roots. Notice that: v := f(I1g) = rnkRy.

Thm. [Siebenthal ‘64, Alekseevsky ‘76]
There exists an 1-1 correspondence between t-roots and complex irreducible H-submodules f¢ of

mC. This correspondence is given by

Rro>¢& & feoo= RZ()g(CEa.
cochpkla)=

e Moreover, there is a natural 1-1 correspondence between positive T-roots £ € R} = k(Ry)
and real pairwise inequivalent irreducible H-submodules m¢ C m, given by

Ry3¢& +— mg:=(fe+feo)nm=(fe+f).

e Moreover, dimc f¢ = dimg m¢ = dg¢ where d¢ := f(k~1(£)) is the cardinality of x~1().



Invariant pseudo-Riemannian metrics
Corol. Any G-invariant pseudo-Riemannian metric g on a flag manifold F' = (G/H is defined by
an Adg-invariant pseudo-Euclidean metric on m, given by

d:=R*%
Go ‘= 221 LIZ‘&.B@, (B&- = _B|mi)7
1=

where x¢, # 0 are real numbers, for any i = 1,...,d := RF.
The signature of the metric g is (2N_, 2N ), where
N_ = 2: d&,_ﬁu,?z }: d&.
§ERT e, <0 §ERT e, >0

e In particular, the metric g is Riemannian if all x¢, > 0, and no metric is Lorentzian.



How we deduce that a flag manifold has a spin structure or not?

... by computing the first Chern class for an invariant complex structure

e Consider the weight lattice associated to R, that is
P={Aecqy : <Ala>€Z, Va € R} =spany(Ay,--- ,Ay) C ap.
e Then set
Pr={AeP, (N\a)=0, Vaec Ry}

Lemma. The T-weight lattice Py is generated by the fundamental weights Ay, --- , Ay cor-
responding to the black simple roots IIg = IT\Ily.

Classical result: The group of characters X(T') = Hom(T',T!) = X(B,) of the maximal
torus T' C H C G is identified (when G is simply-connected) with the weight lattice P C a,
via the map

INX)

7

P3 A xy € X(T) =X(By), with y)(expX) = exp(

), VX € ap.

Extension: The following map is an isomorphism:
Pr 3> A=y € X(H) = Hom(H, T1).

e In particular, since P = H® . N, any character x = x) : H — T has a natural extension to
a character of the parabolic subgroup X§ : P — C* and we get

Pro A= x§ € X(P)



Line bundles and circle bundles

e For any T-weight A € Pr we assign a 1-dimensional P-module C,, where P acts on C, by
the associated holomorphic character x§ € X (P).
e We define the line bundle

,C)\ = GC Xp (C)\ = (GC X (C)\)/ ~

(g,2) ~ (gp, xS(p™1)2), (g9,2) € GEXC,y, peP.

e We also introduce the homogeneous circle bundle associated with the character y : H — T1,
F.=G/H,— F=_G/H, H, = ker(x)

Prop. Let F = (/H = G®/P be a flag manifold endowed with a complex structure asso-
ciated to a splitting Il = I'lyyy L IIg. Then, 3 1-1 correspondence between

e elements A\ € Pr = spany{Ay,..., Ay} of the T-weight lattice

e real characters x = ) : H — T (up to congugation),

e complex characters ng : P — C* (up to conjugation),

e holomorphic line bundles £, := G€ xp Cy, — F = G¢/P (up to conjugation)

e and homogeneous circle bundles F, := G/H, — F = (G/H (up to conjugation).



Prop. There is a natural isomorphism
7ot = AL (m)E = ()P ~ H2(F,R)

between the space t* and the space A% (m*)™ of Ady-invariant closed real 2-forms on m (iden-
tified with the space of closed G-invariant real 2-forms on F'), given by

af Dt 2 & we = 1d€ = o= Taer+ (Ela)w® Aw™ € AZ(m*)H.
o 7(Pr) = H?(F,Z). Thus second Betti number of F' equals to bo(F') = dimt = v = rnkR7.

e In particular, the following maps are isomorphisms
Pr o A Ly € Pic(F) .= HY(GY/P,C*) 3 Ly - (L)) € H*(F,Z).

e The first Chern class c1(L¢,) of the holomorphic line bundle L¢ is the cohomology class of
the associated curvature two-form
7: —Q *
o X (Gla)w AwT € AX(m") = Q4 (F).

[
U= g =g



The first Chern class

e Let P C P be the subset of strictly positive dominant weights, and consider the 1-forms

1 1
og=- Y @ OH== ) OQ.
2 acR* 2 acRY;

Recall that o = =t A; € PT.
e We define the Koszul form associated to the flag manifold (F = G*/P = G//H, J), by

ol =20c—0y)= ¥ «
aceRf
— The first Chern class c¢(J) € H?*(F;Z) of the invariant complex structure .J in F,
associated with the decomposition I = Ilyy LII1g, is represented by the closed invariant 2-form
V. = Wy, i.e. the Chern form of the complex manifold (F, .J).

Thm. [Alekseevsky ‘76, Alekseevsky-Perelomov ‘86] The Koszul form is a linear combination
of the fundamental weights Aj,---, A, associated to the black roots, with positive integers
coefficients, given as follows:

2(0”, B))  2(20m, 5)

o’ = Ev:k'/\': EV: 24+ b))\, € PS, where ki=—"—"" p= )
= J’=1( i € P B8 (85, Bj)

Def. The integers k; € Z_ are called Koszul numbers associated to the complex structure J
on F = GC/P = G/H. They form the vector k := (ki,..., ky) € ZY., which we shall call the

= 0.

Koszul vector associated to J.



Invariant spin structures

Thm. A flag manifold F = (¢/H = G*/P admits a G-invariant spin or metaplectic structure,
if and only is the first Chern class ¢;(J) of an invariant complex structure J on F is even, that
is all Koszul numbers are even. If this is the case, then such a structure will be unique.

Example Consider the manifold of full flags F = G//T' = G*/B,.

e The Weyl group acts transitively on Weyl chambers = 3 unique (up to conjugation)
invariant complex structure J.

e The canonical line bundle A"T'F' corresponds to the dominant weight > cp+ @ = 204 =
2001+ -+ A\y).

e hence all the Koszul numbers equal to 2 and F' admits a unique spin structure.

Corol. The divisibility by two of the Koszul numbers of an invariant complex structure J on
a (pseudo-Riemannian) flag manifold F = (¢/H = G%/P, does not depend on the complex
structure.

Corol. On a spin or metaplectic flag manifold F = G/H = G%/P with a fixed invariant
complex structure .J, there is a unique isomorphism class of holomorphic line bundles £ such that

L£8? = Kp.



The computation of Koszul numbers-classical flag manifolds

e Flag manifolds of the groups A,, = SU,, 11, B

classes:

A(n)

n

B(7)

n

S|

C(7)

n

S|

D(#)

n

with 77 = (no, ny, .-

Classical flag manifolds

= 509,41, C,, = Sp,,, Dy, = SO9,, fall into four
SUpi1 /U x S(Up, X -+ x Uy, ),

(ng,m1, -+ ,ng), Zn]—n—i—l ny = 0,n; > 1;

SOQn+1 /U?O X Un1 X oo
Ynj+r, ng =

- X Uy, X SO9;41,
O,n; >1r= O

Sp,, / UT® x Uy, x -+ x Uy, X Sp,,
>nj+r,ng=0,n;>1,1r=0;

SOQn/U?O X Un1 X -
>nj+r ng=0,ny =

><U XSOQT,
Onj>1r7£1

ns, 1) for the groups B,,, C,, and D,,.



The Koszul vector of classical flag manifolds

Example: Consider the flag manifold ' = SOg / U% x SUy x SUy = SOy / Uy x Uy

oO—e—0—9
o Itis IIg = {9, a4} and Tl = Ry; = {aq, az}.
= 201 = a1 + as. Since 2050, = Ty + 12a9 + 153 + 164, we conclude that

ol = 6y + 12a0 + 143 4 16ay4.
e By the Cartan matrix of SOg we finally get 0/ = 4Ay + 4A4. Thus F admits a unique spin
structure.

Thm. The Koszul vector k := (k1,- -+, ky) € Z% associated to the standard complex structure
Jo on a flag manifold G(77) of classical type, is given by

|
O

-

2, 14+ ny,ny +ng, -0 Ns1 + M),

2,14+ ny,ny 4+ no, - ng1 + ng, g + 2r),

2, 14+ np,ny +ng, o Ns1 +Ng, g + 27 + 1),
2,14+ ny,ny+ne, - ng_1 +ng,ng + 2r — 1).

" ——
DO
-

\)

-~
.

vawx

S S SL Sy

T T I T[N
I

N——
/N
(N)
~

If » = 0, then the last Koszul number (over the end black root) is 2n, for B(77), ns + 1 for C(1)
and 2(ng — 1) for D(7).



Hence we conclude that (the same conclusions apply also for (G-metaplectic structures):

Thm. (classification of spin or metaplectic structures)

a)

The flag manifold A(77) with ng > 0 is G-spin if and only if all the numbers ny, ..., n, are
odd. If ng = 0, then A(7) is G-spin, if and only if the numbers ny, ..., ns have the same
parity, i.e. they are all odd or all even.

The flag manifold B(77) with ng > 0 and r > 0 does not admit a (G-invariant) spin
structure. If ng > 0 and r = 0, then B(7) is G-spin, if and only if all the numbers
ni,...,ng are odd. If ng = 0 and r > 0, then B(77) is G-spin if and only if all the numbers
ni,...,ns are even. Finally, for ng = 0 = r, the flag manifold B(77) is G-spin if and only
if all the numbers nq,...,ns have the same parity.

The flag manifold C(77) with ng > 0 is G-spin, if and only if all the numbers ny, ..., ng
are odd, independently of . The same holds if ng = 0.

The flag manifold D(7) with ng > 0 is G-spin, if and only if all the numbers ny, ..., ng
are odd, independently of r. If ny = 0 and r > 0, then D(77) is G-spin, if and only if all the
numbers nq, ..., ng are odd. Finally, for ng = 0 = r, the flag manifold D(77) is G-spin, if

and only if the numbers ny, ..., ns have the same parity.



Table 1. Spin or metaplectic classical flag manifolds with by = 1, 2.

F = G/H with by(F) =1 conditions d ko, €74 G-spin (&)
SU, /S(U, x U,,_p) n=>21<p<n—1 1 (n n even > 2
P,/ Un n>3 1 (n+1) n odd > 3
SOy, / SO9 x SO9,,—9 n >4 1 (2n — 2) Vn>4
SO2, / Uy, n >3 1 (2n—4) Vn>3
SO2,41/ Up X SOg0,_p) 41 n>22<p<n 2 (2n—p) p even > 2
SO9,+1 / Uy, (special case) n>=2 2 (2n) Vn>2
Sp,, / Up X Spy,y n=31<p<n—-1 2 (2n—-p+1) podd > 1
Sp,, / Uy x Sp,,_; =: CP?"~1 n>=3 2 (2n) Vn>3
SOa;, / Uy x SOg(;,—p) n>42<p<n—-2 2 (2n—-p-—1) p odd > 2
F = G/H with by(F) = 2 conditions d ke 72 G-spin (<)
SU, /Up x S(Up—1 x Up—p) n>32<p<n—2 3 (pn—1) n odd & p even
SUs /T? (special case) - 3 (2,2 yes
SU, /S(Up x Uy x Up—p—y) n=52<p<n—2 3 (p+qg,n—0pn) P, q,n same parity
dsptgsn
SO5 /T? (special case) - 4 (2,2) yes
SO2p4+1 /U x Upq n =3 5 (n,2(n—1)) n even
SO2p41/ Up x Uyypy n>42<p<n 6 (n,2(n—p)) n even
SO2;11/Up x Uy xSOg0p—p—gy+1 n242<p<n—-1 6 (p+q,2n—2p—q) p & ¢ even
4<ptgsn—1
Spn/UszUn,p n=z3,1<p<n—-1 4 mn—p+1) n even & p odd
Sps /T= (special case) - 4 (2,2) yes
Sp,, / U1 x Uy X Sp,,_9 n =3 6 (2,2(n—1)) Vn>3
Sp,, / Up x Uy X Sp,,_,, nz23,1<p<n—-3 6 (pP+q¢2n—2p—q+1) p& qodd
3<ptgsn—1
SO, /Uy x Up—g n>4 3 (n,2(n—2)) n even
SOs;, / Uy x Uy X SOg(;,—9) n >4 4 (2,2(n—2)) Vn>4
SO2, / Up x Upp n>42<p<n—2 4 n2n—-p-—1)) n even
SOs;, / U1 x Uy X SOg(—p-1) nz42<p<n—-3 5 (1+p2n—p-3) p odd
SOs;, / Up x Uy X SOg(5—p—g) n=52<p<n—4 6 (p+q¢2n—2p—q—1) p& qodd
d<pt+g<sn—2




Spin structures on exceptional flag manifolds

e Given an exceptional Lie group G € {Go, Fy, Eg, E7, Es} with root system R and a basis of
simple roots IT = {ay, ..., a}, we shall denote by

Glag,...,ay) =G(1,...,u)
to denote the exceptional flag manifold /' = G/H where the semisimple part I’ of the stability
subalgebra ) = T.H corresponds to the simple roots 1y = {aq, ..., oy}
e The remaining v := / — u nodes in the Dynkin diagram ['(Il) of G have been painted black
suchthat h =u(l)®--- du(l)dh.
e There are 101 non-isomorphic flag manifolds F' = (G/H corresponding to a simple exceptional

Lie group G



J

G | F=G/H bo(F) | d=4(R}) | o

Go GQ(O) = Gy /TZ 2 6 2(A1 -+ AQ)
Go(1) = Gy / U} 1 3 5A,

Go(2) = G / US 1 2 3A;

Fy F4(O) =Fy /T4 4 24 2(/\1 + Ao+ As+ A4)
Fy(1) =F, /Al xT3 3 16 3Ao + 2(As + Ay)
F4(4) = F4/A‘i xT3 3 13 2(A1 + AQ) + Aj
Fy(1,2) = Fy / AL xT? 2 9 6A3 + 2A4
F4(1,4) :F4/A1 XA1 XT2 2 38 3A2—|—3A3
Fy(2,3) = Fy /By xT? 2 6 5A1 + 64
F4(3, 4) = F4/A§ x T2 2 6 2A1 + 4A,

Fu(1,2,4) =F4 /AL x A3 xT 1 4 TA3
Fy(1,3,4) =F, /A5 x Al xT 1 3 5A;
F4(1,2,3) :F4/B3 xT 1 2 11A4
Fy(2,3,4) =F, /C3 xT 1 2 8A;

Eo | E6(0) = Eg /10 6 36 2(A1 + -+ Ag)
E6(1) :EG/Al xT° 5 25 3A2+2(A3+"'+A6)
E6(3, 5) = Eg¢ /A1 x Ay xT? 4 17 2A1 + 3A9 + 4A4 + 3Ag
E6(4, 5) = Eg /A2 x T4 4 15 2(A1 + Ao + 2A3 + AG)
E6(1, 3, 5) = E6/A1 X Ay x Ay x T3 3 11 4(/\2 + A4) + 3A¢
E6(2,4,5) = Eg / Ay x Ay xT3 3 10 3A1 + 5A3 + 2A¢
E6(3,4,5) = Eg / A3 xT3 3 8 2A1 + 5(Ag + Ag)
E6(2, 3,4, 5) = Eg/A4 xT? 2 4 6A1 + 8Ag
E6(1, 3,4, 5) = EG/Ag X A1 XT2 2 5 6A2 + 5A6
E6(1,2,4,5) = Eg / Ay x Ay xT? 2 6 6A3 + 2A¢
E6(2,4, D, 6) = E6/A2 X A1 x Ay xT? 2 6 3A1 + 6A3
E6(2,3,4,6) = Eg / Dy x T2 2 3 8(A1 + As)
E6(1,2,4,5,6) :EG/AQXAQXAl xT 1 3 7A3
Eo(1,2,3,4,5) = Eg / A xT 1 2 11Ag
E6(1,3,4, 5, 6) = EG/Al X Al xT 1 2 9A2
E6(2, 3,4, 5, 6) = EG/D5 xT 1 1 12A1




G | F=G/H bo(F) | d=:(R}) | o

E7r | E7(0) = E; /T7 7 63 2(A + -+ Ay)
Ez(1) =E; /A4 xTO 6 46 3Ao +2(As+ -+ 4+ A7)
E7<4, 6) = E7/A1 X Aq xT° 5 33 2(A1 + Ag) + 3(A3 + A7) + 4A5
E7(5,6) = By / Ay xT? 5 30 2001 + -+ M+ Ay)
E7<1,3,5) = E7/A1 X A1 x Ay xT? [1,1] 4 23 4ANo + 4AN4 + 3Ag + 277
E7(1, 3, 7) = E7/A1 x A1 x Ay x T4 [O, O] 4 24 4Ng + 4N4 + 2A5 + 2A¢
E7(3, 5, 6) = B / Ag x Ay x T4 4 21 2A1 + 3A9 + 5A4 + 275
E7(4, D, 6) = E7/A3 x T4 4 18 2A1 + 2A9 + 5A3 + 5A7
E7(1, 2,3, 4) = E- / Ay xT3 3 10 6A5 + 2Ag + 6A7
E7(1,2,3,5) =E; /Ag x Ay xT3 [1,1] 3 12 6A4 + 3Ag + 2A7
E7(1,2,3,7) = E7 /A3 x Ay xT3 [0, 0] 3 13 6A4 + 2A5 + 2A¢
E7<1, 2,4, 5) = E7/A2 X A2 XT3 3 13 6A3 + 4A6 + 4A7
E7(1,2,4,6) = E7 / Ay x Ay x Ay xT3 3 14 5A3 + 4A5 + 3A7
E7(1,3,5,7) = B7 /(A))* x T3 3 16 AAs 4+ 5A4 + 3Ag
E7(3,4,5,7) = E; /Dy xT3 3 9 2A1 + 8Ay + 8Ag
E:(1,2,3,4,5) = By / A5 xT2 [1, 1] 2 5 TAg + 1077
E7(1,2,3,4,7) = E7 / A5 xT? [0,0] 2 6 10A5 + 2A¢
E7<1,2,3,4,6) :E7/A4><A1 xT? 2 6 7A5+6A7
E7(1,2,3,5,6) = E7 / Ag x Ay xT? 2 7 TAy + 277
E7<1,2,3,5,7) :E7/A3><A1 XA1 xT? 2 8 7A4—|—3A6
E7(1,3,4,5,7) = E7 /Dy x Ay xT? 2 6 9As + 4A¢
E7(1,2,5,6,7) :E7/A2XA1 XA1 x T2 2 8 4/\3—1—5/\4
E7(1,3,5,6,7) = E7 / Ay x (A1)? x T? 2 9 4A9 + 6A4
E7(3,4,5,6,7) = E; / D x T? 2 4 2A1 + 12A,
E7<1, 2, 3, 4, 0, 6) = E7/A6 xT 1 2 14A7
E7<2, 3,4, 5, 6, 7) = E7/E6 xT 1 1 18A1
E7(1,3,4, 5,6, 7) = E7/D5 X A1 xT 1 2 13A2
E7(1,2,4,5,6,7) :E7/A4><A2 xT 1 3 10/\3
E7<1,2,3,5,6,7) :E7/A3XA2XA1 xT 1 4 8A4
E7(1,2,3,4,6,7) = E7 / A5 x A; xT 1 2 12A5
E7(1,2,3,4,5,7) = E; /D xT 1 2 17Aq




Thm.

(1) For G = Gg there is a unique G-spin (or G-metaplectic) flag manifold, namely the full flag
Go(0) = G /T

(2) For G = F4 the associated G-spin (of G-metaplectic) flag manifolds are the cosets defined
by F4(0), F4(1,2), F4(3,4), F4(2,3,4), and the flag manifolds isomorphic to them. In particular:

o [4(2,3,4) = Fy/C3 xT is the unique (up to equivalence) flag manifold of G = F, with
bo(F') =1 = rnk Ry which admits a G-invariant spin and metaplectic structure.

e There are not exist flag manifolds F' = G/H of G = Fy with bo(F') = 3 = rnk Ry carrying
a (G-invariant) spin structure or a metaplectic structure.

(3) For G = Eg the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by
Eo(0), Eg(4,5), Eg(2,3,4,5), Eg(1,2,4,5), Be(2,3,4,6), Eg(2,3,4,5,6), and the flag manifolds
isomorphic to them. In particular,

o [(4,5) = Eg /Ay xT?* is the unique (up to equivalence) flag manifold of G = Eg with
ba(F') = 4 = rnk Ry which admits a G-invariant spin and metaplectic structure.

o F4(2,3,4,5,6) = Eg /D5 xT is the unique (up to equivalence) flag manifold of G = Eg
with bo(F') = 1 = rnk Ry which admits a G-invariant spin and metaplectic structure.

e There are not exist flag manifolds F' = G/ H of G = Eg with by(F') = 3 = rnk Ry carrying
a (G-invariant) spin or metaplectic structure.



Thm.

For G = E7 the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined by

E?(O)' E7<57 6>1 E7(17 37 7)' E7(17 27 37 4)1 E7<17 27 37 7)' E7(17 27 47 5)! E7(37 47 57 7>1 E7(17 27 37 47 7)1
F-(1,3,5,6,7), E7(3,4,5,6,7), E7(1,2,3,4,5,6), E7(2,3,4,5,6,7), E7(1,2,4,5,6,7), E7(1,2,3,5,6,7)
F-(1,2,3,4,6,7) and the flag manifolds isomorphic to them. In particular,

o [7(5,6) = E; /Ay xT° is the unique (up to equivalence) flag manifold of G = E; with
second Betti number bo( F') = 5 = rnk Ry, which admits a G-invariant spin and metaplectic
structure.

o £,(1,3,7) = Er/A; x Ay x Ay xT?* is the unique (up to equivalence) flag manifold of
G = E; with second Betti number by(F') = 4 = rnk Ry, which admits a G-invariant spin
and metaplectic structure.

e There are not exist flag manifolds F' = G/H of G = E7 with by(F) = mmk Ry = 6,
carrying a (G-invariant) spin or metaplectic structure.



Thm.

For G = Eg the associated G-spin (or G-metaplectic) flag manifolds are the cosets defined
by Es(0), Es(1,2), Es(1,2,3,4), Es(1,2,4,5), Es(4,5,6,8), Es(4,5,6,7,8), Es(1,2,3,4,5,6),
Fs(1,2,3,4,6,7), Es(1,2,4,5,6,8), Es(1,2,4,5,6,7,8) and the flag manifolds isomorphic to
them. In particular,

o [5(1,2) = Eg /Ay xTY is the unique (up to equivalence) flag manifold of G = Eg with
second Betti number bo( F') = 6 = rnk Ry, which admits a G-invariant spin and metaplectic
structure.

o [5(4,5,6,7,8) = Eg /Dy xT? is the unique (up to equivalence) flag manifold of G = Eg
with second Betti number by(F') = 3 = rnk Ry, which admits a G-invariant spin and
metaplectic structure.

o [g(1,2,4,5,6,7,8) = Eg /D5 x Ay xT is the unique (up to equivalence) flag manifold of
G = Eg with second Betti number by(F') = 1 = rnk Ry which admits a G-invariant spin
and metaplectic structure.

e There are not exist flag manifolds F' = G/H of G = Eg with bo(F) = rnk Ry = 5, or
bo(F') =k Ry = 7, carrying a (G-invariant) spin or metaplectic structure.



. on the calculation of Koszul numbers

) Consider the natural invariant ordering Ri: = R™\Ry " induced by the splitting IT = TTyy L
IIg. Let us denote by Jj the corresponding complex structure. Describe the root system Rj; and
compute

266%5

3) Apply the formula
Aog —on)= X v:=0".

In particular, for the exceptional simple Lie groups and with respect to the fixed bases of the
associated roots systems, it is 20q, = 61 + 10ax,

20p, = 161 + 30 + 423 + 22014,

20, = 16aq + 30as + A2as + 30y + 165 + 2204,

20, = 27aq + 529 + 7Hag + 96ay + 66as + 34 + 49ar7,

20, = O58aq + 114 + 168az + 2204 + 27005 + 1820 + 92a7 + 136as.

7) Use the Cartan matrix C = (¢; ) = (W) associated to the basis IT (and its enumeration),

to express the simple roots in terms of fundamental weights via the formula a; = Z§:1 ci i\



C-spaces and spin structures

e C-space is a compact, simply connected, homogeneous complex manifold M = G /L of a com-
pact semisimple Lie group G.

e stability group L is a closed connected subgroup of G whose semisimple part coincides with
the semisimple part of the centralizer of a torus in G.

e Any C-space is the total space of a homogeneous torus bundle M = G/L — F =G/H
over a flag manifold ' = G/H.

e In particular, the fiber is a complex torus T?* of real even dimension 2k.

Well-know fact: Given a C-space M = G/ L the following are equivalent:

o L =C(Y), ie. M =G/L is a flag manifold,
e second Betti number of GG/L is non-zero,

e the Euler characteristic of G/L is non-zero,

e Hence, non-Kahlerian C-spaces may admit Lorentzian metric and complex structure with zero
first Chern class =
such spaces may give examples of homogeneous Calabi-Yau structures with torsion

[Fino-Grantcharov ‘04, Grantcharov ‘11]



e Consider a reductive decomposition

g=b+m=(Z(h) +b')+m,

associated with a flag manifold F' = G/H of G.
e We decompose

Z(b)=t+t

into a direct sum of a (commutative) subalgebra t; of even dimension 2k and a complement t;
which generates a closed toral subgroup Ty of H, such that

mk G = dim Ty +mk H', and mkL =dim7} +mk H'.

e Then, the homogeneous manifold M = G/L = G /Ty - H' is a C-space and any C-space has
such a form.

e Notice that L. C H is normal subgroup of H. In particular, H' (the semi-simple part of H)
coincides with the simi-simple part of L.

Lemma. Any complex structure in t; together with an invariant complex structure Jr in F' =
G/H = G/T,- L defines an invariant complex structure Jy; in M = G /L = G /Ty- H' such that
m: M =G/L —- F = G/H is a holomorphic fibration with respect to the complex structures
Jyr and Jp. The fiber has the form H/L = (T - L)/(Ty - H') = T1.



e Consider a homogeneous torus bundle 7 : M = G/L — F =G/H

g=l+q=0"+t)+t+m), q:=( +m) =T M.

e Let Jr be an invariant complex structure in F' and J); its extension to an invariant complex
structure in M, defined by adding a complex structure Jy, in t;. Then
Prop. The invariant Chern from v, € Q*(M) of the complex structure Jy; is the pull back

of the invariant Chern form ~; € Q?(F) associated to the complex structure Jp on F, i.e.
71]]\4’ - ﬂ-*nyF

Corol. Given a C-space M = GG/ L over flag manifold F' = G/H, then
o wo(TM)=7r"(wo(TF))
e M is spin if and only if wo(TF) belongs to the kernel of 7* : H?(F'; Zo) — H*(M: Zs).
e If I'is GG-spin, then so is M.

Hints: Notice that
TM =G XL q= (G XLtl)EBﬂ'*(TF)



Thm. There are 45 non-biholomorphic C-spaces M = G/L fibered over a spin flag manifold
F'= G//H of an exceptional Lie group G € {Go, Fy, K¢, E7, Eg}, and any such space carries a

unique G-invariant spin structure. The associated fibrations are given as follows:

T2 — Gy — Gy /T? ™ — E;/T —  E;/T7

T — Ty —  Fy/T¢ ™ — E;/T° — B /T7

T2 <  Fy/T? —  Fy/T* T2 < E;/T° — B JT7

T2 —  Fy/Al —  Fy /AL xT? T < E;/A;xT — By /Ay xT°

T2 <«  Fy4/AS —  Fy /A xT? T2 «—  E7/AyxT? —  BE7 /Ay xT?

0 —  Eg —  Eg /T ™ —  E;/(A)3 s E7/(A1)? x T

T —  E¢/T? —  Eg/TO T2 —  E7/(A1)3 x T? = BEr /(A1) x T4

T2 <« E¢/T¢ —  Eg/TO T2 — By /Ay xT — B /Ay xT3

T4 — E6/A2 — EG/AQ XT4 T2 — E7/A3><A1 xT L> E7/A3><A1 XT3

T2 — EG/AQ XT2 — E6/A2 XT4 T2 — E7/A2XA2 xT — E7/A2XA2 XT3

T2 <  Eg/A4 —  Bg/AyxT? T2 <«  E;/DyxT —  BE;/DyxT3

T2 — E6/A2XA2 — EG/AQXAQ x T2 T2 — E7/A5 — E7/A5 x T2

T2 — E6/D4 — EG/D4 ><T3 T2 — E7/A2 X(A1)3 L> E7/A2 X(A1)3 X
T? — E7/D5 — E7/D5 xT?

T — Eg — Eg /T8 T+ — Eg / D4 — Eg / D4 xT*

TO — Eg /T2 — Esg /T8 T2 — Eg / Dy x T2 — Eg / Dy x T4

T < Eg/T¢ —  Eg/T® T*  —  Eg/Asx A — By /Ay x Ay xT*

T2 — Eg/T6 — Eg/TS T2 — Eg/AQXAQ XT2 — Eg/AQXAQ XT4

TO — Eg/AQ — Eg/A2 xTO T2 — Eg/D5 x Tt — Eg/D5 xT3

¢ <«  Eg/AyxT? — Eg/AyxTO T2 <  Eg/Ag —  Bg/AgxT?

T2 — E8/A2 XT4 — Eg/AQ XT6 T2 — E8/A4XA2 — Eg/A4XA2 XT2

T —  Eg/A4 —  Eg /Ay xT* T2 <  Eg/Dyx Ay — By /Dy x Ay xT?

T2 <  Eg/A;xT? — Eg/AyxT? T2 <« Eg/Eg —  Eg/Eg xT?



