Positive energy representations of Hilbert loop algebras

Timothée Marquis (joint with Karl-Hermann Neeb)

FAU Erlangen-Nuernberg

March 2016

Plan

Problematic and motivation

Lie algebra reformulation

Locally finite Lie algebras

Locally affine Lie algebras

Problematic: Positive energy representations

▶ *G* Lie group with Lie algebra $\mathfrak{g} = \mathbb{L}(G)$. $\alpha \colon \mathbb{R} \to \operatorname{Aut}(G) \colon t \mapsto \alpha_t$ continuous \mathbb{R} -action on G.

Problematic: Positive energy representations

- ▶ G Lie group with Lie algebra $\mathfrak{g} = \mathbb{L}(G)$.
 - $\alpha \colon \mathbb{R} \to \operatorname{Aut}(G) \colon t \mapsto \alpha_t \text{ continuous } \mathbb{R}\text{-action on } G.$
- ▶ π : $G \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H} . $d\pi$: $\mathfrak{g} \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\infty})$ derived representation, $D := \frac{d}{dt}|_{t=0}\mathbb{L}(\alpha_t) \in \operatorname{der}\mathfrak{g}$.

Problematic: Positive energy representations

- ▶ G Lie group with Lie algebra $\mathfrak{g} = \mathbb{L}(G)$.
 - $\alpha \colon \mathbb{R} \to \operatorname{Aut}(G) \colon t \mapsto \alpha_t \text{ continuous } \mathbb{R}\text{-action on } G.$
- ▶ π : $G \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H} . $d\pi$: $\mathfrak{g} \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\infty})$ derived representation, $D := \frac{d}{dt}|_{t=0}\mathbb{L}(\alpha_t) \in \operatorname{der}\mathfrak{g}$.
- (π, \mathcal{H}) is a **positive energy representation (PER)** if the spectrum of the *Hamiltonian H* := $-i\mathrm{d}\pi(D)$ is bounded from below.

Problematic: Positive energy representations

- ▶ G Lie group with Lie algebra $\mathfrak{g} = \mathbb{L}(G)$.
 - $\alpha \colon \mathbb{R} \to \operatorname{Aut}(G) \colon t \mapsto \alpha_t \text{ continuous } \mathbb{R}\text{-action on } G.$
- ▶ $\pi \colon G \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H} . $d\pi \colon \mathfrak{g} \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\infty})$ derived representation, $D := \frac{d}{dt}|_{t=0}\mathbb{L}(\alpha_t) \in \operatorname{der}\mathfrak{g}$.
- (π, \mathcal{H}) is a **positive energy representation (PER)** if the spectrum of the *Hamiltonian H* := $-i\mathrm{d}\pi(D)$ is bounded from below.

<u>Problem:</u> Determine the irreducible PER (π, \mathcal{H}) of $G \rtimes_{\alpha} \mathbb{R}$.

Problematic: Positive energy representations

- ▶ G Lie group with Lie algebra $\mathfrak{g} = \mathbb{L}(G)$.
 - $\alpha \colon \mathbb{R} \to \operatorname{Aut}(G) \colon t \mapsto \alpha_t \text{ continuous } \mathbb{R}\text{-action on } G.$
- ▶ $\pi \colon G \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H} . $\mathrm{d}\pi \colon \mathfrak{g} \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\infty})$ derived representation, $D := \frac{d}{dt}|_{t=0}\mathbb{L}(\alpha_t) \in \mathrm{der}\,\mathfrak{g}$.
- (π, \mathcal{H}) is a **positive energy representation (PER)** if the spectrum of the *Hamiltonian* $H := -i\mathrm{d}\pi(D)$ is bounded from below.

Problem: Determine the irreducible PER (π, \mathcal{H}) of $G \rtimes_{\alpha} \mathbb{R}$.

Motivation

▶ Problem \approx "Given a Lie group G and $d \in \mathfrak{g} = \mathbb{L}(G)$, determine all unitary representations (π, \mathcal{H}) of G for which $\operatorname{Spec}(-i\mathrm{d}\pi(d))$ is bounded from below."

Problematic: Positive energy representations

- ▶ *G* Lie group with Lie algebra $\mathfrak{g} = \mathbb{L}(G)$. $\alpha \colon \mathbb{R} \to \operatorname{Aut}(G) \colon t \mapsto \alpha_t$ continuous \mathbb{R} -action on G.
- ▶ π : $G \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H})$ unitary representation on the Hilbert space \mathcal{H} . $d\pi$: $\mathfrak{g} \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\infty})$ derived representation, $D := \frac{d}{dt}|_{t=0}\mathbb{L}(\alpha_t) \in \operatorname{der}\mathfrak{g}$.
- (π, \mathcal{H}) is a **positive energy representation (PER)** if the spectrum of the *Hamiltonian H* := $-i\mathrm{d}\pi(D)$ is bounded from below.

<u>Problem:</u> Determine the irreducible PER (π, \mathcal{H}) of $G \rtimes_{\alpha} \mathbb{R}$.

- ▶ Problem \approx "Given a Lie group G and $d \in \mathfrak{g} = \mathbb{L}(G)$, determine all unitary representations (π, \mathcal{H}) of G for which $\operatorname{Spec}(-i\mathrm{d}\pi(d))$ is bounded from below."
- → related to semibounded unitary representations (see [Neeb 2015, arXiv:1510.08695] for a recent survey).

Quadratic split Lie algebras

▶ A complex Lie algebra $\mathfrak g$ is **split** if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak h \subseteq \mathfrak g$ (a *Cartan subalgebra*).

Quadratic split Lie algebras

- ▶ A complex Lie algebra $\mathfrak g$ is **split** if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak h \subseteq \mathfrak g$ (a *Cartan subalgebra*).
- ▶ Then $\mathfrak g$ has a root space decomposition $\mathfrak g=\mathfrak h\oplus\bigoplus_{\alpha\in\Delta}\mathfrak g_\alpha$, where

$$\begin{split} \forall \alpha \in \mathfrak{h}^*, \ \mathfrak{g}_\alpha := \left\{ x \in \mathfrak{g} \mid [h,x] = \alpha(h)x \ \forall h \in \mathfrak{h} \right\} \quad \text{root space}, \\ \Delta := \Delta(\mathfrak{g},\mathfrak{h}) := \left\{ \alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}_\alpha \neq \{0\} \right\} \quad \text{root system}. \end{split}$$

Quadratic split Lie algebras

- ▶ A complex Lie algebra $\mathfrak g$ is **split** if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak h \subseteq \mathfrak g$ (a *Cartan subalgebra*).
- ▶ Then $\mathfrak g$ has a root space decomposition $\mathfrak g=\mathfrak h\oplus\bigoplus_{\alpha\in\Delta}\mathfrak g_\alpha$, where

$$\begin{split} \forall \alpha \in \mathfrak{h}^*, \ \mathfrak{g}_\alpha := \{x \in \mathfrak{g} \mid [h,x] = \alpha(h)x \ \forall h \in \mathfrak{h}\} \quad \text{root space}, \\ \Delta := \Delta(\mathfrak{g},\mathfrak{h}) := \{\alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}_\alpha \neq \{0\}\} \quad \text{root system}. \end{split}$$

▶ A root $\alpha \in \Delta$ is **integrable** if $\mathfrak{g}_{\pm \alpha} = \mathbb{C} x_{\pm \alpha}$, $\alpha([x_{\alpha}, x_{-\alpha}]) \neq 0$, and ad $x_{\pm \alpha}$ is locally nilpotent. Set $\Delta_i := \{\alpha \in \Delta \mid \alpha \text{ integrable}\}$. For $\alpha \in \Delta_i$, the unique $\alpha^{\vee} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ with $\alpha(\alpha^{\vee}) = 2$ is the **coroot** of α . NB: $\mathfrak{g}_{-\alpha} + \mathbb{C} \alpha^{\vee} + \mathfrak{g}_{\alpha} \cong \mathfrak{sl}_2(\mathbb{C})$ for all $\alpha \in \Delta_i$.

Quadratic split Lie algebras

- ► A complex Lie algebra $\mathfrak g$ is **split** if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak h \subseteq \mathfrak g$ (a *Cartan subalgebra*).
- ▶ Then $\mathfrak g$ has a root space decomposition $\mathfrak g=\mathfrak h\oplus\bigoplus_{\alpha\in\Delta}\mathfrak g_\alpha$, where

$$\begin{split} \forall \alpha \in \mathfrak{h}^*, \ \mathfrak{g}_\alpha := \{x \in \mathfrak{g} \mid [h,x] = \alpha(h)x \ \forall h \in \mathfrak{h}\} \quad \text{root space}, \\ \Delta := \Delta(\mathfrak{g},\mathfrak{h}) := \{\alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}_\alpha \neq \{0\}\} \quad \text{root system}. \end{split}$$

- ▶ A root $\alpha \in \Delta$ is **integrable** if $\mathfrak{g}_{\pm \alpha} = \mathbb{C} x_{\pm \alpha}$, $\alpha([x_{\alpha}, x_{-\alpha}]) \neq 0$, and ad $x_{\pm \alpha}$ is locally nilpotent. Set $\Delta_i := \{\alpha \in \Delta \mid \alpha \text{ integrable}\}$. For $\alpha \in \Delta_i$, the unique $\alpha^{\vee} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ with $\alpha(\alpha^{\vee}) = 2$ is the **coroot** of α . NB: $\mathfrak{g}_{-\alpha} + \mathbb{C} \alpha^{\vee} + \mathfrak{g}_{\alpha} \cong \mathfrak{sl}_2(\mathbb{C})$ for all $\alpha \in \Delta_i$.
- ▶ $W := W(\mathfrak{g}, \mathfrak{h}) := \langle r_{\alpha} \colon \mathfrak{h}^* \to \mathfrak{h}^* : \lambda \mapsto \lambda \langle \lambda, \alpha^{\vee} \rangle \alpha^{\vee} \mid \alpha \in \Delta_i \rangle \leq \mathrm{GL}(\mathfrak{h}^*)$ is the **Weyl group** of \mathfrak{g} .

Quadratic split Lie algebras

- ► A complex Lie algebra $\mathfrak g$ is **split** if there is a maximal abelian, ad-diagonalisable subalgebra $\mathfrak h \subseteq \mathfrak g$ (a *Cartan subalgebra*).
- ▶ Then $\mathfrak g$ has a root space decomposition $\mathfrak g=\mathfrak h\oplus\bigoplus_{\alpha\in\Delta}\mathfrak g_\alpha$, where

$$\begin{split} \forall \alpha \in \mathfrak{h}^*, \ \mathfrak{g}_\alpha := \{x \in \mathfrak{g} \mid [h,x] = \alpha(h)x \ \forall h \in \mathfrak{h}\} \quad \text{root space}, \\ \Delta := \Delta(\mathfrak{g},\mathfrak{h}) := \{\alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}_\alpha \neq \{0\}\} \quad \text{root system}. \end{split}$$

- ▶ A root $\alpha \in \Delta$ is **integrable** if $\mathfrak{g}_{\pm \alpha} = \mathbb{C} x_{\pm \alpha}$, $\alpha([x_{\alpha}, x_{-\alpha}]) \neq 0$, and ad $x_{\pm \alpha}$ is locally nilpotent. Set $\Delta_i := \{\alpha \in \Delta \mid \alpha \text{ integrable}\}$. For $\alpha \in \Delta_i$, the unique $\alpha^{\vee} \in [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ with $\alpha(\alpha^{\vee}) = 2$ is the **coroot** of α . NB: $\mathfrak{g}_{-\alpha} + \mathbb{C} \alpha^{\vee} + \mathfrak{g}_{\alpha} \cong \mathfrak{sl}_2(\mathbb{C})$ for all $\alpha \in \Delta_i$.
- ▶ $W := W(\mathfrak{g}, \mathfrak{h}) := \langle r_{\alpha} \colon \mathfrak{h}^* \to \mathfrak{h}^* : \lambda \mapsto \lambda \langle \lambda, \alpha^{\vee} \rangle \alpha^{\vee} \mid \alpha \in \Delta_i \rangle \leq \mathrm{GL}(\mathfrak{h}^*)$ is the **Weyl group** of \mathfrak{g} .
- $\mathfrak g$ is moreover **quadratic** if it possesses a non-degenerate symmetric bilinear form $\kappa\colon \mathfrak g \times \mathfrak g \to \mathbb C$ which is *invariant*: $\kappa([x,y],z) = \kappa(x,[y,z])$.

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- ▶ $\Delta^+ \subseteq \Delta$ a **positive system**: $\Delta = \Delta^+ \cup -\Delta^+$ and the monoid $\mathbb{N}[\Delta^+] := \{\sum_{i=1}^k n_i \alpha_i \mid \alpha_i \in \Delta^+, \ n_i, k \in \mathbb{N}\}$ is free.

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- ▶ $\Delta^+ \subseteq \Delta$ a **positive system**: $\Delta = \Delta^+ \cup -\Delta^+$ and the monoid $\mathbb{N}[\Delta^+] := \{\sum_{i=1}^k n_i \alpha_i \mid \alpha_i \in \Delta^+, n_i, k \in \mathbb{N}\}$ is free.
- ▶ Let $\lambda \in \mathfrak{h}^*$. A \mathfrak{g} -module $V = V^{\lambda}$ is a **highest weight module** (HWM) with highest weight λ if there exists some nonzero $v_{\lambda} \in V$ such that
 - $h \cdot v_{\lambda} = \lambda(h)v_{\lambda} \text{ for all } h \in \mathfrak{h},$
 - $\mathfrak{g}_{\alpha} \cdot \mathsf{v}_{\lambda} = \{0\} \text{ for all } \alpha \in \Delta^+,$
 - $V = \mathcal{U}(\mathfrak{g}) \cdot v_{\lambda}.$

- \blacktriangleright (g, h, κ) a quadratic split Lie algebra.
- $ightharpoonup \Delta^+ \subset \Delta$ a positive system: $\Delta = \Delta^+ \cup -\Delta^+$ and the monoid $\mathbb{N}[\Delta^+] := \{ \sum_{i=1}^k n_i \alpha_i \mid \alpha_i \in \Delta^+, n_i, k \in \mathbb{N} \}$ is free.
- ▶ Let $\lambda \in \mathfrak{h}^*$. A g-module $V = V^{\lambda}$ is a highest weight module (HWM) with highest weight λ if there exists some nonzero $v_{\lambda} \in V$ such that
 - $h \cdot v_{\lambda} = \lambda(h)v_{\lambda} \text{ for all } h \in \mathfrak{h},$
 - $ightharpoonup \mathfrak{g}_{\alpha} \cdot v_{\lambda} = \{0\} \text{ for all } \alpha \in \Delta^{+}$
 - $V = \mathcal{U}(\mathfrak{q}) \cdot v_{\lambda}$.
- ▶ For $\mu \in \mathfrak{h}^*$, $V_{\mu} := \{ v \in V \mid h \cdot v = \mu(h)v \ \forall h \in \mathfrak{h} \}$ weight space. $\mathcal{P}_{\lambda} := \{ \mu \in \mathfrak{h}^* \mid V_{\mu} \neq \{0\} \}$ set of weights.

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- ▶ $\Delta^+ \subseteq \Delta$ a **positive system**: $\Delta = \Delta^+ \cup -\Delta^+$ and the monoid $\mathbb{N}[\Delta^+] := \{\sum_{i=1}^k n_i \alpha_i \mid \alpha_i \in \Delta^+, n_i, k \in \mathbb{N}\}$ is free.
- ▶ Let $\lambda \in \mathfrak{h}^*$. A \mathfrak{g} -module $V = V^{\lambda}$ is a **highest weight module** (HWM) with highest weight λ if there exists some nonzero $v_{\lambda} \in V$ such that
 - ▶ $h \cdot v_{\lambda} = \lambda(h)v_{\lambda}$ for all $h \in \mathfrak{h}$,
 - $\mathfrak{g}_{\alpha} \cdot \nu_{\lambda} = \{0\}$ for all $\alpha \in \Delta^+$,
 - $V = \mathcal{U}(\mathfrak{g}) \cdot v_{\lambda}.$
- ▶ For $\mu \in \mathfrak{h}^*$, $V_{\mu} := \{ v \in V \mid h \cdot v = \mu(h)v \ \forall h \in \mathfrak{h} \}$ weight space. $\mathcal{P}_{\lambda} := \{ \mu \in \mathfrak{h}^* \mid V_{\mu} \neq \{0\} \}$ set of weights.
- ▶ We assume the property (Weight): $\mathcal{P}_{\lambda} = \operatorname{Conv}(W.\lambda) \cap (\lambda + \mathbb{Z}[\Delta])$.

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- $ightharpoonup \Delta^+ \subseteq \Delta$ a positive system.
- ▶ Let $\lambda \in \mathfrak{h}^*$ and $V = V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ .
- ▶ We assume the property (Weight): $\mathcal{P}_{\lambda} = \operatorname{Conv}(W.\lambda) \cap (\lambda + \mathbb{Z}[\Delta])$.

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- ▶ $\Delta^+ \subseteq \Delta$ a positive system.
- ▶ Let $\lambda \in \mathfrak{h}^*$ and $V = V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ .
- ▶ We assume the property (Weight): $\mathcal{P}_{\lambda} = \operatorname{Conv}(W.\lambda) \cap (\lambda + \mathbb{Z}[\Delta])$.

Positive energy

- ▶ Consider the highest weight representation ρ_{λ} : $\mathfrak{g} \to \operatorname{End}(V^{\lambda})$.
- Let $D \in \text{der}(\mathfrak{g})$ be a *skew-symmetric* derivation: $\kappa(Dx,y) = -\kappa(x,Dy)$. Assume D is *diagonal*: $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$.

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- ▶ $\Delta^+ \subseteq \Delta$ a positive system.
- ▶ Let $\lambda \in \mathfrak{h}^*$ and $V = V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ .
- ▶ We assume the property (Weight): $\mathcal{P}_{\lambda} = \operatorname{Conv}(W.\lambda) \cap (\lambda + \mathbb{Z}[\Delta])$.

Positive energy

- ▶ Consider the highest weight representation ρ_{λ} : $\mathfrak{g} \to \operatorname{End}(V^{\lambda})$.
- Let $D \in \text{der}(\mathfrak{g})$ be a *skew-symmetric* derivation: $\kappa(Dx,y) = -\kappa(x,Dy)$. Assume D is *diagonal*: $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$.
- ▶ Then ρ_{λ} can be extended to a representation $\widetilde{\rho}_{\lambda}$: $\mathfrak{g} \rtimes \mathbb{C}D \to \text{End}(V^{\lambda})$ by setting $\widetilde{\rho}_{\lambda}(D)v_{\mu} := i\chi(\mu \lambda)v_{\mu}$ for all $\mu \in \mathcal{P}_{\lambda}$, $v_{\mu} \in V_{\mu}$.

Highest-weight representations

- $(\mathfrak{g}, \mathfrak{h}, \kappa)$ a quadratic split Lie algebra.
- ▶ $\Delta^+ \subseteq \Delta$ a positive system.
- ▶ Let $\lambda \in \mathfrak{h}^*$ and $V = V^{\lambda}$ a HWM over \mathfrak{g} with highest weight λ .
- ▶ We assume the property (Weight): $\mathcal{P}_{\lambda} = \text{Conv}(W.\lambda) \cap (\lambda + \mathbb{Z}[\Delta])$.

Positive energy

- ▶ Consider the highest weight representation ρ_{λ} : $\mathfrak{g} \to \operatorname{End}(V^{\lambda})$.
- Let $D \in \text{der}(\mathfrak{g})$ be a *skew-symmetric* derivation: $\kappa(Dx,y) = -\kappa(x,Dy)$. Assume D is *diagonal*: $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$.
- ▶ Then ρ_{λ} can be extended to a representation $\widetilde{\rho}_{\lambda}$: $\mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ by setting $\widetilde{\rho}_{\lambda}(D)v_{\mu} := i\chi(\mu \lambda)v_{\mu}$ for all $\mu \in \mathcal{P}_{\lambda}$, $v_{\mu} \in V_{\mu}$.
- ▶ Then

$$\widetilde{\rho}_{\lambda}$$
 is a PER \Leftrightarrow Spectrum of $H := -i\widetilde{\rho}_{\lambda}(D)$ is bounded from below $\Leftrightarrow \inf \chi(\mathcal{P}_{\lambda} - \lambda) > -\infty$ $\Leftrightarrow \inf \chi(W.\lambda - \lambda) > -\infty$.

Locally finite Lie algebras

- ▶ g is locally finite
 - \Leftrightarrow Every finite subset of ${\mathfrak g}$ generates a finite dimensional Lie subalgebra.
 - $\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras

Locally finite Lie algebras

- ▶ g is locally finite simple
 - \Leftrightarrow Every finite subset of g generates a finite dimensional Lie subalgebra.
 - \Leftrightarrow g is the directed union of its finite dimensional subalgebras that are simple \leadsto of type A_n, B_n, C_n, D_n .

Locally finite Lie algebras

- ▶ g is locally finite simple
 - ⇔ Every finite subset of g generates a finite dimensional Lie subalgebra.
 - $\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \leadsto of type A_n, B_n, C_n, D_n .
- ▶ \leadsto g has a *locally finite root system* Δ of type A_J , B_J , C_J or D_J for some infinite set J.

Locally finite Lie algebras

- ▶ g is locally finite simple
 - \Leftrightarrow Every finite subset of g generates a finite dimensional Lie subalgebra.
 - $\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \leadsto of type A_n, B_n, C_n, D_n .
- ightharpoonup igh

Example: $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$

lacksquare For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)}:=\mathrm{vect}_\mathbb{C}\{e_j\}_{j\in J}$.

Locally finite Lie algebras

- ▶ g is locally finite simple
 - ⇔ Every finite subset of g generates a finite dimensional Lie subalgebra.

 ⇔ g is the directed union of its finite dimensional subalgebras that are
 - $\Leftrightarrow \mathfrak{g}$ is the directed union of its finite dimensional subalgebras that are simple \leadsto of type A_n, B_n, C_n, D_n .
- ▶ \leadsto g has a *locally finite root system* Δ of type A_J , B_J , C_J or D_J for some infinite set J.

- ▶ For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)} := \text{vect}_{\mathbb{C}}\{e_j\}_{j \in J}$.
- ▶ $\mathfrak{g} := \mathfrak{gl}(J, \mathbb{C}) := \{A \in \operatorname{End}(\mathbb{C}^{(J)}) \mid A_{ij} := \langle Ae_j, e_i \rangle = 0 \ \forall'(i,j) \in J \times J\}.$ Define $E_{jk} \in \mathfrak{g}$ by $E_{jk}(x) := \langle x, e_k \rangle e_j$ for all $x \in \mathbb{C}^{(J)}$.

Locally finite Lie algebras

- ▶ g is locally finite simple
 - \Leftrightarrow Every finite subset of $\mathfrak g$ generates a finite dimensional Lie subalgebra. $\Leftrightarrow \mathfrak g$ is the directed union of its finite dimensional subalgebras that are
- simple \leadsto of type A_n, B_n, C_n, D_n .
- ▶ \leadsto g has a *locally finite root system* Δ of type A_J , B_J , C_J or D_J for some infinite set J.

- ▶ For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)} := \text{vect}_{\mathbb{C}}\{e_j\}_{j \in J}$.
- ▶ $\mathfrak{g} := \mathfrak{gl}(J, \mathbb{C}) := \{A \in \operatorname{End}(\mathbb{C}^{(J)}) \mid A_{ij} := \langle Ae_j, e_i \rangle = 0 \ \forall'(i,j) \in J \times J\}.$ Define $E_{jk} \in \mathfrak{g}$ by $E_{jk}(x) := \langle x, e_k \rangle e_j$ for all $x \in \mathbb{C}^{(J)}$.
- ▶ $\mathfrak{h} := \{ \text{diagonal matrices } \sum_j x_j E_{jj} \} \subseteq \mathfrak{g} \text{ is a Cartan subalgebra,}$ $\mathfrak{h}^* = \{ \sum_j x_j \varepsilon_j \mid x_j \in \mathbb{C} \} \text{ where } \varepsilon_k(E_{jj}) := \delta_{jk}.$

Locally finite Lie algebras

- ▶ g is locally finite simple
 - \Leftrightarrow Every finite subset of $\mathfrak g$ generates a finite dimensional Lie subalgebra. $\Leftrightarrow \mathfrak g$ is the directed union of its finite dimensional subalgebras that are
 - \Leftrightarrow g is the directed union of its finite dimensional subalgebras that are simple \leadsto of type A_n, B_n, C_n, D_n .
- ▶ \leadsto g has a *locally finite root system* Δ of type A_J , B_J , C_J or D_J for some infinite set J.

- ▶ For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)} := \text{vect}_{\mathbb{C}}\{e_j\}_{j \in J}$.
- ▶ $\mathfrak{g} := \mathfrak{gl}(J, \mathbb{C}) := \{A \in \operatorname{End}(\mathbb{C}^{(J)}) \mid A_{ij} := \langle Ae_j, e_i \rangle = 0 \ \forall'(i,j) \in J \times J\}.$ Define $E_{jk} \in \mathfrak{g}$ by $E_{jk}(x) := \langle x, e_k \rangle e_j$ for all $x \in \mathbb{C}^{(J)}$.
- ▶ $\mathfrak{h} := \{ \text{diagonal matrices } \sum_j x_j E_{jj} \} \subseteq \mathfrak{g} \text{ is a Cartan subalgebra,}$ $\mathfrak{h}^* = \{ \sum_j x_j \varepsilon_j \mid x_j \in \mathbb{C} \} \text{ where } \varepsilon_k(E_{jj}) := \delta_{jk}.$
- ▶ $[E_{\ell\ell}, E_{jk}] = (\delta_{\ell j} \delta_{\ell k})E_{jk} = (\varepsilon_j \varepsilon_k)(E_{\ell\ell})E_{jk} \Rightarrow \mathfrak{g}_{\varepsilon_j \varepsilon_k} = \mathbb{C}E_{jk}.$ $\leadsto \mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \ \Delta = \Delta(A_J) := \{\varepsilon_j - \varepsilon_k \mid j, k \in J, \ j \neq k\}.$

Locally finite Lie algebras

- ▶ g is locally finite simple
 - \Leftrightarrow Every finite subset of $\mathfrak g$ generates a finite dimensional Lie subalgebra. $\Leftrightarrow \mathfrak g$ is the directed union of its finite dimensional subalgebras that are
 - \Leftrightarrow g is the directed union of its finite dimensional subalgebras that are simple \leadsto of type A_n, B_n, C_n, D_n .
- ▶ \leadsto g has a *locally finite root system* Δ of type A_J , B_J , C_J or D_J for some infinite set J.

Example: $g = gl(J, \mathbb{C})$

- ▶ For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)} := \text{vect}_{\mathbb{C}}\{e_j\}_{j \in J}$.
- ▶ $\mathfrak{g} := \mathfrak{gl}(J, \mathbb{C}) := \{A \in \operatorname{End}(\mathbb{C}^{(J)}) \mid A_{ij} := \langle Ae_j, e_i \rangle = 0 \ \forall'(i,j) \in J \times J\}.$ Define $E_{jk} \in \mathfrak{g}$ by $E_{jk}(x) := \langle x, e_k \rangle e_j$ for all $x \in \mathbb{C}^{(J)}$.
- ▶ $\mathfrak{h} := \{ \text{diagonal matrices } \sum_j x_j E_{jj} \} \subseteq \mathfrak{g} \text{ is a Cartan subalgebra,}$ $\mathfrak{h}^* = \{ \sum_j x_j \varepsilon_j \mid x_j \in \mathbb{C} \} \text{ where } \varepsilon_k(E_{jj}) := \delta_{jk}.$
- ▶ $[E_{\ell\ell}, E_{jk}] = (\delta_{\ell j} \delta_{\ell k})E_{jk} = (\varepsilon_j \varepsilon_k)(E_{\ell\ell})E_{jk} \Rightarrow \mathfrak{g}_{\varepsilon_j \varepsilon_k} = \mathbb{C}E_{jk}.$ $\leadsto \mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \ \Delta = \Delta(A_J) := \{\varepsilon_j - \varepsilon_k \mid j, k \in J, \ j \neq k\}.$
- ▶ $r_{\varepsilon_j-\varepsilon_k}=(j,k)\in S_J\Rightarrow W=W(\mathfrak{g},\mathfrak{h})=S_{(J)}\leq S_J$ finite permutations of J.

Locally finite Lie algebras

▶ g is locally finite simple

simple \rightsquigarrow of type A_n, B_n, C_n, D_n .

- \Leftrightarrow Every finite subset of $\mathfrak g$ generates a finite dimensional Lie subalgebra. $\Leftrightarrow \mathfrak g$ is the directed union of its finite dimensional subalgebras that are
- ightharpoonup
 ightharpoonup g has a *locally finite root system* Δ of type A_J , B_J , C_J or D_J for some infinite set J.

Example: $g = gl(J, \mathbb{C})$

- lacktriangle For a set J, consider the pre-Hilbert space $\mathbb{C}^{(J)} := \mathrm{vect}_{\mathbb{C}}\{e_j\}_{j \in J}$.
- ▶ $\mathfrak{g} := \mathfrak{gl}(J, \mathbb{C}) := \{A \in \operatorname{End}(\mathbb{C}^{(J)}) \mid A_{ij} := \langle Ae_j, e_i \rangle = 0 \ \forall'(i,j) \in J \times J\}.$ Define $E_{ik} \in \mathfrak{g}$ by $E_{ik}(x) := \langle x, e_k \rangle e_i$ for all $x \in \mathbb{C}^{(J)}$.
- ▶ $\mathfrak{h} := \{ \text{diagonal matrices } \sum_{j} x_{j} E_{jj} \} \subseteq \mathfrak{g} \text{ is a Cartan subalgebra,}$ $\mathfrak{h}^{*} = \{ \sum_{i} x_{i} \varepsilon_{i} \mid x_{i} \in \mathbb{C} \} \text{ where } \varepsilon_{k}(E_{ij}) := \delta_{ik}.$
- $[E_{\ell\ell}, E_{jk}] = (\delta_{\ell j} \delta_{\ell k}) E_{jk} = (\varepsilon_j \varepsilon_k) (E_{\ell \ell}) E_{jk} \Rightarrow \mathfrak{g}_{\varepsilon_j \varepsilon_k} = \mathbb{C} E_{jk}.$ $\Rightarrow \mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}, \ \Delta = \Delta(A_J) := \{\varepsilon_j \varepsilon_k \mid j, k \in J, \ j \neq k\}.$
- $rac{1}{\epsilon_{i}-\epsilon_{k}}=(j,k)\in S_{J}\Rightarrow W=W(\mathfrak{g},\mathfrak{h})=S_{(J)}\leq S_{J}$ finite permutations of J.
- κ(x, y) := tr(xy) non-degenerate invariant symmetric bilinear form.
 NB: g has an antilinear involution *: g → g : E_{ii} → E^{*}_{ii} := E_{ii}.

Unitary highest weight representations

▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ▶ Facts (Neeb '98): Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra.
 - ▶ $\forall \lambda \in \mathfrak{h}^*$, $\exists !$ irreducible HWM $L(\lambda, \Delta_+)$ over \mathfrak{g} .

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ▶ Facts (Neeb '98): Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra.
 - ▶ $\forall \lambda \in \mathfrak{h}^*$, \exists ! irreducible HWM $L(\lambda, \Delta_+)$ over \mathfrak{g} .
 - ▶ $L(\lambda, \Delta_+)$ is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda(\alpha^{\vee}) \in \mathbb{N} \ \forall \alpha \in \Delta_i$.

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ▶ Facts (Neeb '98): Let $(\mathfrak{g}, \mathfrak{h})$ be a locally finite simple Lie algebra.
 - ▶ $\forall \lambda \in \mathfrak{h}^*$, $\exists !$ irreducible HWM $L(\lambda, \Delta_+)$ over \mathfrak{g} .
 - ▶ $L(\lambda, \Delta_+)$ is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda(\alpha^{\vee}) \in \mathbb{N} \ \forall \alpha \in \Delta_i$.
 - ▶ If $L(\lambda, \Delta_+)$ is unitary, then Property (Weight) is satisfied.

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ▶ Facts (Neeb '98): Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra.
 - ▶ $\forall \lambda \in \mathfrak{h}^*$, $\exists !$ irreducible HWM $L(\lambda, \Delta_+)$ over \mathfrak{g} .
 - ▶ $L(\lambda, \Delta_+)$ is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda(\alpha^{\vee}) \in \mathbb{N} \ \forall \alpha \in \Delta_i$.
 - ▶ If $L(\lambda, \Delta_+)$ is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

▶ Let $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$ with $J = \mathbb{Z}$, and choose the positive system $\Delta_+ = \{\varepsilon_j - \varepsilon_k \mid j < k\} \subseteq \Delta$.

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ▶ Facts (Neeb '98): Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra.
 - ▶ $\forall \lambda \in \mathfrak{h}^*$, $\exists !$ irreducible HWM $L(\lambda, \Delta_+)$ over \mathfrak{g} .
 - ▶ $L(\lambda, \Delta_+)$ is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda(\alpha^{\vee}) \in \mathbb{N} \ \forall \alpha \in \Delta_i$.
 - ▶ If $L(\lambda, \Delta_+)$ is unitary, then Property (Weight) is satisfied.

- ▶ Let $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$ with $J = \mathbb{Z}$, and choose the positive system $\Delta_+ = \{\varepsilon_j \varepsilon_k \mid j < k\} \subseteq \Delta$.
- $\begin{array}{l} \blacktriangleright \quad V := \mathrm{vect}_{\mathbb{C}} \langle e_{j_0} \wedge e_{j_{-1}} \wedge \ldots \mid j_0 > j_{-1} > \ldots \ \, \mathrm{and} \, \, j_s = s \, \, \forall s << 0 \rangle \subseteq \Lambda^{\infty}(\mathbb{C}^{(J)}). \\ \psi := e_0 \wedge e_{-1} \wedge e_{-2} \wedge \cdots \in V \, \, \textit{vacuum}. \end{array}$

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ▶ Facts (Neeb '98): Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra.
 - ▶ $\forall \lambda \in \mathfrak{h}^*$, \exists ! irreducible HWM $L(\lambda, \Delta_+)$ over \mathfrak{g} .
 - ▶ $L(\lambda, \Delta_+)$ is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda(\alpha^{\vee}) \in \mathbb{N} \ \forall \alpha \in \Delta_i$.
 - ▶ If $L(\lambda, \Delta_+)$ is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

- ▶ Let $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$ with $J = \mathbb{Z}$, and choose the positive system $\Delta_+ = \{\varepsilon_j \varepsilon_k \mid j < k\} \subseteq \Delta$.
- ▶ $V := \text{vect}_{\mathbb{C}}\langle e_{j_0} \wedge e_{j_{-1}} \wedge \ldots | j_0 > j_{-1} > \ldots \text{ and } j_s = s \ \forall s << 0 \rangle \subseteq \Lambda^{\infty}(\mathbb{C}^{(J)}).$ $\psi := e_0 \wedge e_{-1} \wedge e_{-2} \wedge \cdots \in V \text{ vacuum}.$
- $\mathfrak{g} \curvearrowright V \colon A(e_{j_0} \land e_{j_{-1}} \land \dots) := (Ae_{j_0}) \land e_{j_{-1}} \land \dots + e_{j_0} \land (Ae_{j_{-1}}) \land \dots + \dots$ $\Rightarrow E_{jk}(\psi) = \begin{cases} e_0 \land \dots \land e_{k+1} \land e_j \land e_{k-1} \land \dots & \text{if } k \leq 0 < j, \\ 0 & \text{otherwise.} \end{cases}$

Unitary highest weight representations

- ▶ A g-module V is **unitary** if it has a contravariant positive definite hermitian form: $\langle X \cdot v, w \rangle = \langle v, X^* \cdot w \rangle$ for all $X \in \mathfrak{g}$, $v, w \in V$.
- ► Facts (Neeb '98): Let (g, h) be a locally finite simple Lie algebra.
 - $\forall \lambda \in \mathfrak{h}^*, \exists ! \text{ irreducible HWM } L(\lambda, \Delta_+) \text{ over } \mathfrak{g}.$
 - ▶ $L(\lambda, \Delta_+)$ is unitary $\Leftrightarrow \lambda$ dominant integral, i.e., $\lambda(\alpha^{\vee}) \in \mathbb{N} \ \forall \alpha \in \Delta_i$.
 - ▶ If $L(\lambda, \Delta_+)$ is unitary, then Property (Weight) is satisfied.

Example: infinite wedge representations

- ▶ Let $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$ with $J = \mathbb{Z}$, and choose the positive system $\Delta_+ = \{\varepsilon_i \varepsilon_k \mid i < k\} \subset \Delta$.
- ▶ $V := \text{vect}_{\mathbb{C}} \langle e_{j_0} \wedge e_{j_{-1}} \wedge \ldots | j_0 > j_{-1} > \ldots \text{ and } j_s = s \ \forall s << 0 \rangle \subseteq \Lambda^{\infty}(\mathbb{C}^{(J)}).$ $\psi := e_0 \wedge e_{-1} \wedge e_{-2} \wedge \cdots \in V \text{ vacuum}.$
- $\mathfrak{g} \curvearrowright V \colon A(e_{j_0} \land e_{j_{-1}} \land \dots) := (Ae_{j_0}) \land e_{j_{-1}} \land \dots + e_{j_0} \land (Ae_{j_{-1}}) \land \dots + \dots$ $\Rightarrow E_{jk}(\psi) = \begin{cases} e_0 \land \dots \land e_{k+1} \land e_j \land e_{k-1} \land \dots & \text{if } k \leq 0 < j, \\ 0 & \text{otherwise.} \end{cases}$ $\Rightarrow E_{jj}(\psi) = \delta_{j \leq 0} \psi = \lambda(E_{jj}) \psi \text{ for } \lambda \colon \mathfrak{h} \to \mathbb{R} \colon E_{jj} \mapsto \lambda(E_{jj}) := \delta_{j \leq 0}.$ $\Rightarrow V \cong L(\lambda, \Delta_+) \text{ with } V_{\lambda} = \mathbb{C} \psi.$

Setting

- Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda} \colon \mathfrak{g} \to \mathfrak{u}(V^{\lambda})$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda} \colon \mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W.\lambda \lambda) > -\infty$.
- ▶ Δ of type A_J , B_J , C_J or D_J , can be realised inside $\operatorname{span}_{\mathbb{Z}}\{\varepsilon_j\}_{j\in J}\subseteq \mathfrak{h}^*$.
- ▶ We assume that $\lambda = \sum_{j \in J} \lambda_j \varepsilon_j$: $\mathfrak{h} \to \mathbb{Z}$ is bounded: $\sup_{j \in J} |\lambda_j| < \infty$.

Setting

- Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda} \colon \mathfrak{g} \to \mathfrak{u}(V^{\lambda})$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda} \colon \mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W.\lambda \lambda) > -\infty$.
- ▶ Δ of type A_J , B_J , C_J or D_J , can be realised inside $\operatorname{span}_{\mathbb{Z}}\{\varepsilon_j\}_{j\in J}\subseteq \mathfrak{h}^*$.
- ▶ We assume that $\lambda = \sum_{j \in J} \lambda_j \varepsilon_j$: $\mathfrak{h} \to \mathbb{Z}$ is bounded: $\sup_{j \in J} |\lambda_j| < \infty$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

Setting

- ▶ Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda} \colon \mathfrak{g} \to \mathfrak{u}(V^{\lambda})$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda} \colon \mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER \Leftrightarrow inf $\chi(W.\lambda \lambda) > -\infty$.
- ▶ Δ of type A_J , B_J , C_J or D_J , can be realised inside $\operatorname{span}_{\mathbb{Z}}\{\varepsilon_j\}_{j\in J}\subseteq \mathfrak{h}^*$.
- ▶ We assume that $\lambda = \sum_{j \in J} \lambda_j \varepsilon_j$: $\mathfrak{h} \to \mathbb{Z}$ is bounded: $\sup_{j \in J} |\lambda_j| < \infty$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

Example: Unitary group $U_1(\mathcal{H})$ of Schatten class 1

▶ g = gl(J, C), H Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\{e_j\}_{j\in J}$. $B_1(\mathcal{H})$ completion of g wrt the norm $\|A\|_1 := \operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_1(\mathcal{H}) = \{X \in B_1(\mathcal{H}) \mid X = -X^*\}$ and $U_1(\mathcal{H}) = U(\mathcal{H}) \cap (\mathbb{1} + \mathfrak{u}_1(\mathcal{H}))$.

Setting

- Let $(\mathfrak{g},\mathfrak{h})$ be a locally finite simple Lie algebra, and let $\rho_{\lambda} \colon \mathfrak{g} \to \mathfrak{u}(V^{\lambda})$ be a unitary HWR. Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda} \colon \mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi \colon \mathbb{Z}[\Delta] \to \mathbb{R}$. Thus $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W.\lambda \lambda) > -\infty$.
- ▶ Δ of type A_J , B_J , C_J or D_J , can be realised inside $\operatorname{span}_{\mathbb{Z}}\{\varepsilon_j\}_{j\in J}\subseteq \mathfrak{h}^*$.
- ▶ We assume that $\lambda = \sum_{j \in J} \lambda_j \varepsilon_j$: $\mathfrak{h} \to \mathbb{Z}$ is bounded: $\sup_{j \in J} |\lambda_j| < \infty$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

- ▶ $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$, \mathcal{H} Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\{e_j\}_{j\in J}$. $B_1(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_1 := \operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_1(\mathcal{H}) = \{X \in B_1(\mathcal{H}) \mid X = -X^*\}$ and $U_1(\mathcal{H}) = U(\mathcal{H}) \cap (\mathbb{1} + \mathfrak{u}_1(\mathcal{H}))$.
- ▶ Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}$: $U_1(\mathcal{H}) \to U(\mathcal{H}^{\lambda})$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ} .

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

- ▶ $\mathfrak{g} = \mathfrak{gl}(J,\mathbb{C}), \mathcal{H}$ Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\{e_j\}_{j\in J}$. $B_1(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_1 := \operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_1(\mathcal{H}) = \{X \in B_1(\mathcal{H}) \mid X = -X^*\}$ and $U_1(\mathcal{H}) = U(\mathcal{H}) \cap (\mathbb{1} + \mathfrak{u}_1(\mathcal{H}))$.
- ▶ <u>Fact</u> (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}$: $U_1(\mathcal{H}) \to U(\mathcal{H}^{\lambda})$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ} .

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

- ▶ $\mathfrak{g} = \mathfrak{gl}(J,\mathbb{C})$, \mathcal{H} Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\{e_j\}_{j\in J}$. $B_1(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_1 := \operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_1(\mathcal{H}) = \{X \in B_1(\mathcal{H}) \mid X = -X^*\}$ and $U_1(\mathcal{H}) = U(\mathcal{H}) \cap (\mathbb{1} + \mathfrak{u}_1(\mathcal{H}))$.
- ▶ Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}$: $U_1(\mathcal{H}) \to U(\mathcal{H}^{\lambda})$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ} .
- ▶ α : $\mathbb{R} \to U_1(\mathcal{H})$: $t \mapsto \alpha_t$ continuous \mathbb{R} -action $\leadsto \alpha_t(g) = e^{itA}ge^{-itA}$ for some self-adjoint operator $A \in B(\mathcal{H})$. We assume A is diagonalisable: $Ae_j = d_je_j \ \forall j \in J$. Then $\widehat{\rho}_{\lambda}$ extends to $U_1(\mathcal{H}) \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H}^{\lambda})$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

- ▶ $\mathfrak{g} = \mathfrak{gl}(J,\mathbb{C})$, \mathcal{H} Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\{e_j\}_{j\in J}$. $B_1(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_1 := \operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_1(\mathcal{H}) = \{X \in B_1(\mathcal{H}) \mid X = -X^*\}$ and $U_1(\mathcal{H}) = U(\mathcal{H}) \cap (\mathbb{1} + \mathfrak{u}_1(\mathcal{H}))$.
- ▶ Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}$: $U_1(\mathcal{H}) \to U(\mathcal{H}^{\lambda})$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ} .
- ▶ $\alpha \colon \mathbb{R} \to U_1(\mathcal{H}) \colon t \mapsto \alpha_t$ continuous \mathbb{R} -action $\leadsto \alpha_t(g) = e^{itA}ge^{-itA}$ for some self-adjoint operator $A \in B(\mathcal{H})$. We assume A is diagonalisable: $Ae_j = d_je_j \ \forall j \in J$. Then $\widehat{\rho}_{\lambda}$ extends to $U_1(\mathcal{H}) \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H}^{\lambda})$.
- Lie algebra level: $\widetilde{\rho}_{\lambda}$: $\mathfrak{u}_{1}(\mathcal{H}) \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\lambda})$ with " $D = \operatorname{ad}(iA)$ ", that is, $D(E_{jk}) = i(d_{j} d_{k})E_{jk} = i\chi(\varepsilon_{j} \varepsilon_{k})E_{jk} \leadsto \chi$: $\mathbb{Z}[\Delta] \to \mathbb{R}$: $\varepsilon_{j} \mapsto d_{j}$.

Theorem 1 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

- ▶ $\mathfrak{g} = \mathfrak{gl}(J, \mathbb{C})$, \mathcal{H} Hilbert-space completion of $\mathbb{C}^{(J)}$ with onb $\{e_j\}_{j \in J}$. $B_1(\mathcal{H})$ completion of \mathfrak{g} wrt the norm $\|A\|_1 := \operatorname{Tr}|A|$ (trace-class operators). Set $\mathfrak{u}_1(\mathcal{H}) = \{X \in B_1(\mathcal{H}) \mid X = -X^*\}$ and $U_1(\mathcal{H}) = U(\mathcal{H}) \cap (\mathbb{1} + \mathfrak{u}_1(\mathcal{H}))$.
- ▶ Fact (Neeb '98): If λ is bounded, then ρ_{λ} lifts to a unitary representation $\widehat{\rho}_{\lambda}$: $U_1(\mathcal{H}) \to U(\mathcal{H}^{\lambda})$, where \mathcal{H}^{λ} is the Hilbert-space completion of V^{λ} .
- ▶ α : $\mathbb{R} \to U_1(\mathcal{H})$: $t \mapsto \alpha_t$ continuous \mathbb{R} -action $\rightsquigarrow \alpha_t(g) = e^{itA}ge^{-itA}$ for some self-adjoint operator $A \in B(\mathcal{H})$. We assume A is diagonalisable: $Ae_i = d_ie_i \ \forall i \in J$. Then $\widehat{\rho}_{\lambda}$ extends to $U_1(\mathcal{H}) \rtimes_{\alpha} \mathbb{R} \to U(\mathcal{H}^{\lambda})$.
- ▶ Lie algebra level: $\widetilde{\rho}_{\lambda}$: $\mathfrak{u}_1(\mathcal{H}) \rtimes \mathbb{R}D \to \mathfrak{u}(\mathcal{H}^{\lambda})$ with " $D = \operatorname{ad}(iA)$ ", that is, $D(E_{ik}) = i(d_i d_k)E_{ik} = i\chi(\varepsilon_i \varepsilon_k)E_{ik} \leadsto \chi$: $\mathbb{Z}[\Delta] \to \mathbb{R}$: $\varepsilon_i \mapsto d_i$.
- ► Hence $\chi = \chi_{\min} + \chi_{\text{sum}} \Leftrightarrow A = A_{\min} + A_{\text{sum}}$ with $A_{\min}, A_{\text{sum}} \in B(\mathcal{H})$ such that $iA_{\text{sum}} \in \mathfrak{u}_1(\mathcal{H})$ and A_{\min} yields a *minimal energy representation* $\Leftrightarrow \alpha_t = \alpha_t^{\min} \alpha_t^{\text{sum}} = \alpha_t^{\text{sum}} \alpha_t^{\text{min}}$ with α_t^{sum} inner automorphism of $U_1(\mathcal{H})$.

Locally affine Lie algebras

 \blacktriangleright ${\mathfrak g}$ is locally affine $\Leftrightarrow {\mathfrak g}$ direct limit of affine Kac–Moody algebras.

- ▶ \mathfrak{g} is **locally affine** $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.
 - ▶ There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$, given by $\kappa(t^r \otimes x, t^s \otimes y) := \delta_{r, -s} \mathring{\kappa}(x, y)$.

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.
 - ▶ There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$, given by $\kappa(t' \otimes x, t^s \otimes y) := \delta_{r, -s} \mathring{\kappa}(x, y)$.
 - Let $D \in \operatorname{der}(\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}))$ be a skew-symmetric derivation. Then $\omega_D(x,y) := \kappa(Dx,y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$. Extend D to the derivation $\widetilde{D}(z,x) = (0,Dx)$ of the corresponding central extension $\mathbb{C} \oplus \omega_D \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.
 - ▶ There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$, given by $\kappa(t' \otimes x, t^s \otimes y) := \delta_{r, -s} \mathring{\kappa}(x, y)$.
 - Let $D \in \operatorname{der}(\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}))$ be a skew-symmetric derivation. Then $\omega_D(x,y) := \kappa(Dx,y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$. Extend D to the derivation $\widetilde{D}(z,x) = (0,Dx)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.
 - $\mathfrak{g} = (\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})) \rtimes_{\widetilde{D}}$ affinisation of $\mathring{\mathfrak{g}}$, with Lie bracket $[(z,x,t),(z',x,t')] = (\omega_D(x,x'),[x,x'] + tDx' t'Dx,0).$

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.
 - ▶ There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$, given by $\kappa(t' \otimes x, t^s \otimes y) := \delta_{r, -s} \mathring{\kappa}(x, y)$.
 - Let $D \in \operatorname{der}(\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}))$ be a skew-symmetric derivation. Then $\omega_D(x,y) := \kappa(Dx,y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$. Extend D to the derivation $\widetilde{D}(z,x) = (0,Dx)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.
 - $\mathfrak{g} = (\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})) \rtimes_{\widetilde{D}}$ affinisation of $\mathring{\mathfrak{g}}$, with Lie bracket $[(z,x,t),(z',x,t')] = (\omega_D(x,x'),[x,x'] + tDx' t'Dx,0).$
 - $\mathfrak{h}:=\mathbb{C}\oplus\mathring{\mathfrak{h}}\oplus\mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} for some Cartan subalgebra $\mathring{\mathfrak{h}}$ of $\mathring{\mathfrak{g}}^{\varphi}\subseteq\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}).$

- ▶ $\mathfrak g$ is **locally affine** $\Leftrightarrow \mathfrak g$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra g:
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.
 - ▶ There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$, given by $\kappa(t' \otimes x, t^s \otimes y) := \delta_{r, -s} \mathring{\kappa}(x, y)$.
 - Let $D \in \operatorname{der}(\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}))$ be a skew-symmetric derivation. Then $\omega_D(x,y) := \kappa(Dx,y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$. Extend D to the derivation $\widetilde{D}(z,x) = (0,Dx)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.
 - $\mathfrak{g} = (\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})) \rtimes_{\widetilde{D}}$ affinisation of $\mathring{\mathfrak{g}}$, with Lie bracket $[(z, x, t), (z', x, t')] = (\omega_D(x, x'), [x, x'] + tDx' t'Dx, 0).$
 - $\mathfrak{h} := \mathbb{C} \oplus \mathring{\mathfrak{h}} \oplus \mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} for some Cartan subalgebra $\mathring{\mathfrak{h}}$ of $\mathring{\mathfrak{g}}^{\varphi} \subseteq \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.
 - $\blacktriangleright \ \Delta = \Delta(\mathfrak{g}, \mathfrak{h}) \subseteq \{0\} \times (\Delta(\mathring{\mathfrak{g}}, \mathring{\mathfrak{h}}) \cup \{0\}) \times \mathbb{C} \subseteq \mathfrak{h}^* \approx \mathbb{C} \times \mathring{\mathfrak{h}}^* \times \mathbb{C}.$

- ▶ \mathfrak{g} is **locally affine** $\Leftrightarrow \mathfrak{g}$ direct limit of affine Kac–Moody algebras.
- ▶ \leadsto g has a locally affine root system Δ of type $A_J^{(1)}$, $B_J^{(1)}$, $C_J^{(1)}$, $D_J^{(1)}$, $B_J^{(2)}$, $C_J^{(2)}$ or $BC_J^{(2)}$ for some infinite set J.
- g can be constructed as double extension of a (twisted) loop algebra over a locally finite simple Lie algebra grit.
 - ▶ Set $\mathcal{L}(\mathring{\mathfrak{g}}) := \mathring{\mathfrak{g}} \otimes_{\mathbb{C}} \mathbb{C}[t, t^{-1}]$. Let $\varphi \in \operatorname{Aut}(\mathring{\mathfrak{g}})$ of finite order $N \in \mathbb{N}$ and let $\zeta = e^{2i\pi/N} \in \mathbb{C}$. Extend φ to $\widehat{\varphi} \in \operatorname{Aut}(\mathcal{L}(\mathring{\mathfrak{g}}))$ by $\widehat{\varphi}(t \otimes x) := \zeta t \otimes \varphi(x)$. $\Rightarrow \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}) := \mathcal{L}(\mathring{\mathfrak{g}})^{\widehat{\varphi}}$ twisted loop algebra.
 - ▶ There is a non-degenerate invariant bilinear form on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$, given by $\kappa(t' \otimes x, t^{\mathfrak{s}} \otimes y) := \delta_{r, -\mathfrak{s}} \mathring{\kappa}(x, y)$.
 - Let $D \in \operatorname{der}(\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}}))$ be a skew-symmetric derivation. Then $\omega_D(x,y) := \kappa(Dx,y)$ is a 2-cocycle on $\mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$. Extend D to the derivation $\widetilde{D}(z,x) = (0,Dx)$ of the corresponding central extension $\mathbb{C} \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.
 - $\mathfrak{g} = (C \oplus_{\omega_D} \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})) \rtimes_{\widetilde{D}}$ affinisation of $\mathring{\mathfrak{g}}$, with Lie bracket $[(z, x, t), (z', x, t')] = (\omega_D(x, x'), [x, x'] + tDx' t'Dx, 0).$
 - $\mathfrak{h} := \mathbb{C} \oplus \mathring{\mathfrak{h}} \oplus \mathbb{C}$ is a Cartan subalgebra of \mathfrak{g} for some Cartan subalgebra $\mathring{\mathfrak{h}}$ of $\mathring{\mathfrak{g}}^{\varphi} \subset \mathcal{L}_{\varphi}(\mathring{\mathfrak{g}})$.
 - $\blacktriangleright \ \Delta = \Delta(\mathfrak{g}, \mathfrak{h}) \subseteq \{0\} \times (\Delta(\mathring{\mathfrak{g}}, \mathring{\mathfrak{h}}) \cup \{0\}) \times \mathbb{C} \subseteq \mathfrak{h}^* \approx \mathbb{C} \times \mathring{\mathfrak{h}}^* \times \mathbb{C}.$
 - ▶ $\Delta(\mathring{\mathfrak{g}},\mathring{\mathfrak{h}})$ is of type A_J , B_J , C_J , D_J or BC_J , and can be realised inside $\operatorname{span}_{\mathbb{Z}}\{\varepsilon_i\}_{i\in J}\subseteq \mathfrak{h}^*$.

Setting

- Let $(\mathfrak{g},\mathfrak{h})$ be a locally affine Lie algebra, and let $\rho_{\lambda}\colon \mathfrak{g} \to \mathfrak{u}(V^{\lambda})$ be a unitary HWR (these exist for λ integral, non-vanishing on the center of \mathfrak{g} , cf. [Neeb '10 and '14]).
- Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda} : \mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi : \mathbb{Z}[\Delta] \to \mathbb{R}$. Then $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W.\lambda \lambda) > -\infty$.
- ▶ $\Delta \subseteq \{0\} \times \Delta(X_J) \times \mathbb{C}$ for some $X \in \{A, B, C, D, BC\}$, where $\Delta(X_J)$ can be realised inside $\operatorname{span}_{\mathbb{Z}} \{\varepsilon_j\}_{j \in J} \subseteq \mathfrak{h}^*$.

Setting

- ▶ Let $(\mathfrak{g},\mathfrak{h})$ be a locally affine Lie algebra, and let $\rho_{\lambda} \colon \mathfrak{g} \to \mathfrak{u}(V^{\lambda})$ be a unitary HWR (these exist for λ integral, non-vanishing on the center of \mathfrak{g} , cf. [Neeb '10 and '14]).
- Extend ρ_{λ} to a representation $\widetilde{\rho}_{\lambda} : \mathfrak{g} \rtimes \mathbb{C}D \to \operatorname{End}(V^{\lambda})$ for some $D \in \operatorname{der}(\mathfrak{g})$ given by $D(x_{\alpha}) = i\chi(\alpha)x_{\alpha}$ for all $\alpha \in \Delta$, $x_{\alpha} \in \mathfrak{g}_{\alpha}$, for some character $\chi : \mathbb{Z}[\Delta] \to \mathbb{R}$. Then $\widetilde{\rho}_{\lambda}$ is a PER $\Leftrightarrow \inf \chi(W.\lambda \lambda) > -\infty$.
- ▶ $\Delta \subseteq \{0\} \times \Delta(X_J) \times \mathbb{C}$ for some $X \in \{A, B, C, D, BC\}$, where $\Delta(X_J)$ can be realised inside $\operatorname{span}_{\mathbb{Z}} \{\varepsilon_j\}_{j \in J} \subseteq \mathfrak{h}^*$.

Theorem 2 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{i \in J} |\chi_{\text{sum}}(\varepsilon_i)| < \infty$.

Theorem 2 (M., Neeb '15):

The representation $\widetilde{\rho}_{\lambda}$ is a PER if and only if $\chi = \chi_{\min} + \chi_{\text{sum}}$ with $\inf \chi_{\min}(W.\lambda - \lambda) = 0$ and $\sum_{j \in J} |\chi_{\text{sum}}(\varepsilon_j)| < \infty$.

Methods

- ▶ Use explicit descriptions of the Weyl group and root system for the 7 standard affinisations, corresponding to "minimal" realisations of the root systems $X_{I}^{(1)}$, $Y_{I}^{(2)}$ for $X \in \{A, B, C, D\}$ and $Y \in \{B, C, BC\}$.
- Describe an explicit isomorphism from an arbitrary affinisation to a standard affinisation, as a deformation between two twists compatible with the root space decompositions.

