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Problematic: Positive energy representations
» G Lie group with Lie algebra g = L(G).
a: R — Aut(G) : t — a: continuous R-action on G.
» m: G Xo R — U(#H) unitary representation on the Hilbert space H.
dr: g x RD — u(H™) derived representation, D := < |.—oL(a) € derg.

> (m,7H) is a positive energy representation (PER) if the spectrum of the
Hamiltonian H := —idx(D) is bounded from below.

Problem: Determine the irreducible PER (7, H) of G x4 R.

Motivation
» Problem = “Given a Lie group G and d € g = L(G), determine all unitary
representations (m,H) of G for which Spec(—idn(d)) is bounded from
below.”
> ~~ related to semibounded unitary representations (see [Neeb 2015,
arXiv:1510.08695] for a recent survey).
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» A complex Lie algebra g is split if there is a maximal abelian,
ad-diagonalisable subalgebra h C g (a Cartan subalgebra).

» Then g has a root space decomposition g = h & P o, Where

aEA
Va € b*, go :={x € g | [h,x] = a(h)x Vh € h} root space,
A= A(gb) = {a € b\ {0} | g # {0}} root system.
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is locally nilpotent. Set A; := {a € A | « integrable}.
For o € A;, the unique o € [ga, g—a] with a(a”) = 2 is the coroot of a.
NB: g_o + Ca” + go 2 5h(C) for all a € A;.

> W= W(g,h):=(ra: b* =2 b : A= A= (N, a)a” | a € A;) < GL(H*)
is the Weyl group of g.

» g is moreover quadratic if it possesses a non-degenerate symmetric
bilinear form x: g x g — C which is invariant: x([x, y],z) = k(x, [y, z]).
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(g,b, k) a quadratic split Lie algebra.

A* C A a positive system: A = AT U —A* and the monoid
N[AT] := {3F, ma; | a; € AT, nj, k € N} is free.
Let A € h*. A g-module V = V* is a highest weight module (HWM)
with highest weight A if there exists some nonzero vy € V such that
> h-vy = A(h)v, forall heb,
> go - vy = {0} for all @ € AT,
> V=U(g) - va
Forpe b, V,:={ve V| h-v=u(h)v Vh € bh} weight space.
Pr:={pe€h” | V., #{0}} set of weights.
We assume the property (Weight): P = Conv(W.\) N (X + Z[A]).



(g, b, k) a quadratic split Lie algebra.

AT C A a positive system.

Let A € h* and V = V* a HWM over g with highest weight .

We assume the property (Weight): Px = Conv(W.\) N (A + Z[A]).

v vV v Vv



Lie algebra reformulation (2/2)

Highest-weight representations
> (g,h, ) a quadratic split Lie algebra.
» AT C A a positive system.
» Let A € h* and V = V* a HWM over g with highest weight .
> We assume the property (Weight): Py = Conv(W.X\) N (A + Z[A]).

Positive energy

» Consider the highest weight representation py: g — End(V?).

> Let D € der(g) be a skew-symmetric derivation: x(Dx,y) = —k(x, Dy).
Assume D is diagonal: D(xa) = ix(a)xa for all @ € A, xo € ga, for some
character x: Z[A] — R.



Lie algebra reformulation (2/2)

Highest-weight representations
> (g,h, ) a quadratic split Lie algebra.
» AT C A a positive system.
» Let A € h* and V = V* a HWM over g with highest weight .
> We assume the property (Weight): Py = Conv(W.X\) N (A + Z[A]).

Positive energy

» Consider the highest weight representation py: g — End(V?).

> Let D € der(g) be a skew-symmetric derivation: x(Dx,y) = —k(x, Dy).
Assume D is diagonal: D(xa) = ix(a)xa for all @ € A, xo € ga, for some
character x: Z[A] — R.

» Then py can be extended to a representation px: g x CD — End(V?) by
setting pa(D)v, := ix(p — A)vy for all p € Py, v, € V.



Lie algebra reformulation (2/2)

Highest-weight representations
> (g,h, ) a quadratic split Lie algebra.
» AT C A a positive system.
» Let A € h* and V = V* a HWM over g with highest weight .
> We assume the property (Weight): Py = Conv(W.X\) N (A + Z[A]).

Positive energy

» Consider the highest weight representation py: g — End(V?).

> Let D € der(g) be a skew-symmetric derivation: x(Dx,y) = —k(x, Dy).
Assume D is diagonal: D(xa) = ix(a)xa for all @ € A, xo € ga, for some
character x: Z[A] — R.

» Then py can be extended to a representation px: g x CD — End(V?) by
setting pa(D)v, := ix(p — A)vy for all p € Py, v, € V.
» Then
o is a PER < Spectrum of H := —ipx(D) is bounded from below
S inf x(Pyr — A) > —o0
< inf x(W.XA — ) > —oo.
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> For a set J, consider the pre-Hilbert space C) := vectc{ej}je.

» g:=gl(J,C) := {Ac End(CY)) | Aj := (Agj, &) =0 V'(i,j) € J x J}.
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> [Eee, Eix] = (8¢ — 0ex) Eik = (¢j — ex)(Eee) B = 8ej—er = CEpi.
=00 @aenbo A=A(A) = {gj—ex [ j ke, j#k}

> re—e, = (, k) €Sy = W= W(g,b) = Sy < S, finite permutations of J.

> k(x,y) := tr(xy) non-degenerate invariant symmetric bilinear form.
NB: g has an antilinear involution x: g — g : Ej — E; := Ej.
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Unitary highest weight representations
» A g-module V is unitary if it has a contravariant positive definite
hermitian form: (X -v,w) = (v, X" - w) forall X € g, v,w € V.
» Facts (Neeb '98): Let (g, ) be a locally finite simple Lie algebra.
> VA € bh*, 3l irreducible HWM L(\, A) over g.
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Y =eANe_1ANe_rA--- €V vacuum.

> g Vi Algg AN A )= (Agp)Aeg A+ ep A(Ag_ ) A+ ...

€N Nekr1 N Nek—1A... if k<0<,

= Ex(¥) = no .

0 otherwise.

= EJJ(’Lﬁ) = jso’lﬁ = )\(Ejj)’tp for A: h —R: Ejj — /\(Ejj) ‘= 0j<0-

w V2 L\ AL with Vy = Cip.
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Setting

> Let (g,h) be a locally finite simple Lie algebra, and let px: g — u(V?*) be
a unitary HWR. Extend py to a representation py: g x CD — End(V?)
for some D € der(g) given by D(xo) = ix(a)xa for all @ € A, x4 € ga, for
some character x: Z[A] — R. Thus py is a PER < inf x(W. XA — X) > —oo.
> A of type A, By, Cy or Dj, can be realised inside spany{e;}jcs C h*.

» We assume that A = 3", Ajej: b — Z is bounded: sup;c, |A;j| < oco.

The representation py is a PER if and only if X = Xmin + Xsum With
inf Xmin(W.A = X) =0and 37, [xsum(e))| < o0

» g = gl(J,C), H Hilbert-space completion of C™) with onb {e;};c,.
Bi1(#) completion of g wrt the norm ||A|; := Tr|A| (trace-class operators).
Set u1(H) ={X € Bi(H) | X = —=X"} and Ui(H) = U(H) N (L +u(H)).
> Fact (Neeb '98): If X is bounded, then p, lifts to a unitary representation
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» Fact (Neeb '98): If X is bounded, then p, lifts to a unitary representation
pa: Ui(H) — U(H), where 1> is the Hilbert-space completion of V.

> a: R — Ui(H) : t — a continuous R-action ~ a.(g) = e™ge™"™ for
some self-adjoint operator A € B(#). We assume A is diagonalisable:
Aej = die; Y¥j € J. Then py extends to Ui(H) xa R — U(H).
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min _sum sum . min sum

S ar = afma™ = oMo with '™ inner automorphism of Ui (H).



» g is locally affine < g direct limit of affine Kac-Moody algebras.



» g is locally affine < g direct limit of affine Kac—-Moody algebras.
> ~» g has a locally affine root system A of type A(Jl), Bﬁl), Cj(l), DSI), 852),
Cj(z) or BCJ(2) for some infinite set J.



Locally affine Lie algebras (1/2)

Locally affine Lie algebras
> g is locally affine < g direct limit of affine Kac-Moody algebras.
» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.

» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:



Locally affine Lie algebras (1/2)

Locally affine Lie algebras
> g is locally affine < g direct limit of affine Kac-Moody algebras.
» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.
» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:

> Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.



Locally affine Lie algebras (1/2)

Locally affine Lie algebras
> g is locally affine < g direct limit of affine Kac-Moody algebras.
» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.
» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:
> Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.

> There is a non-degenerate invariant bilinear form on L (§), given by
Kt ®@x,t°®y) =6, —sk(x,y) .



Locally affine Lie algebras (1/2)

Locally affine Lie algebras
> g is locally affine < g direct limit of affine Kac-Moody algebras.

» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.

» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:

> Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.

> There is a non-degenerate invariant bilinear form on L (§), given by
Kt ®@x,t°®y) =6, —sk(x,y) .

> Let D € der(L,(§)) be a skew-symmetric derivation. Then
wp(x,y) = k(Dx,y) is a 2-cocycle on L,(§). Extend D to the derivation
D(z,x) = (0, Dx) of the corresponding central extension C Buwp Lo(8)-



Locally affine Lie algebras (1/2)

Locally affine Lie algebras

> g is locally affine < g direct limit of affine Kac-Moody algebras.
» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.

» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:

> Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.

> There is a non-degenerate invariant bilinear form on L (§), given by
Kt ®@x,t°®y) =6, —sk(x,y) .

> Let D € der(L,(§)) be a skew-symmetric derivation. Then
wp(x,y) = k(Dx,y) is a 2-cocycle on L,(§). Extend D to the derivation
D(z,x) = (0, Dx) of the corresponding central extension C Buwp Lo(8)-

> 9= (C®uwp Ly(§))xp affinisation of g, with Lie bracket
[(27X7 t)a (Z/7X7 t/)] = (wD(szl)’ [szl] + tDx’ — t/va 0)



Locally affine Lie algebras (1/2)

Locally affine Lie algebras

> g is locally affine < g direct limit of affine Kac-Moody algebras.

» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.

» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:

>

Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.

There is a non-degenerate invariant bilinear form on L, (§), given by

Kt ®@x,t°®y) =6, —sk(x,y) .

Let D € der(L,(§)) be a skew-symmetric derivation. Then

wp(x,y) = k(Dx,y) is a 2-cocycle on L,(§). Extend D to the derivation
D(z,x) = (0, Dx) of the corresponding central extension C Buwp Lo(8)-

g = (C®uwp Ly(6)) x5 affinisation of §, with Lie bracket

[(z,x,t), (2, x, t")] = (wp(x,x"), [x,x] + tDx" — t' Dx, 0).
h:=C@®hoCis a Cartan subalgebra of g for some Cartan subalgebra b of
§9 C Lo(8):



Locally affine Lie algebras (1/2)

Locally affine Lie algebras

> g is locally affine < g direct limit of affine Kac-Moody algebras.

» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.

» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:

>

v

Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.

There is a non-degenerate invariant bilinear form on L, (§), given by

Kt ®@x,t°®y) =6, —sk(x,y) .

Let D € der(L,(§)) be a skew-symmetric derivation. Then

wp(x,y) = k(Dx,y) is a 2-cocycle on L,(§). Extend D to the derivation
D(z,x) = (0, Dx) of the corresponding central extension C Buwp Lo(8)-

g = (C®uwp Ly(6)) x5 affinisation of §, with Lie bracket

[(z,x,t), (2, x, t")] = (wp(x,x"), [x,x] + tDx" — t' Dx, 0).
h:=C@®hoCis a Cartan subalgebra of g for some Cartan subalgebra b of
5% C £,(5). ° ,

A = A(g,h) S {0} x (A(§,h)U{0}) x CCh* = C x h* x C.



Locally affine Lie algebras (1/2)

Locally affine Lie algebras

> g is locally affine < g direct limit of affine Kac-Moody algebras.

» ~- g has a locally affine root system A of type A(Jl), BSU, CJ(I), DSU, 852),
CJ(Z) or BC§2) for some infinite set J.

» g can be constructed as double extension of a (twisted) loop algebra over
a locally finite simple Lie algebra §:

>

Set £(§) := § ®c C[t, t71]. Let ¢ € Aut(§) of finite order N € N and let
¢ =e*m/N € C. Extend ¢ to @ € Aut(L(§)) by B(t ® x) 1= Ct ® @(x).
= L,(8) := L(§)? twisted loop algebra.

There is a non-degenerate invariant bilinear form on L, (§), given by

Kt ®@x,t°®y) =6, —sk(x,y) .

Let D € der(L,(§)) be a skew-symmetric derivation. Then

wp(x,y) = k(Dx,y) is a 2-cocycle on L,(§). Extend D to the derivation
D(z,x) = (0, Dx) of the corresponding central extension C Buwp Lo(8)-

g = (C®uwp Ly(6)) x5 affinisation of §, with Lie bracket
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A(Q,E) is of type Ay, By, C;, D; or BCy, and can be realised inside
spanz {¢j}jes € b™.
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Setting

> Let (g,h) be a locally affine Lie algebra, and let py: g — u(V?) be a
unitary HWR (these exist for A integral, non-vanishing on the center of g,
cf. [Neeb '10 and '14]).

» Extend p) to a representation px: g x CD — End(V?>) for some
D € der(g) given by D(xa) = ix(a)xa for all & € A, Xo € ga, for some
character x: Z[A] — R. Then py is a PER & inf x(W.A — \) > —co.

» A C {0} x A(Xy) x C for some X € {A, B, C,D, BC}, where A(X}) can
be realised inside span,{¢;}jes C b*.
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The representation py is a PER if and only if X = Xmin + Xsum With
inf Xmin(W.A = X) =0and 37, [xsum(e))| < oo

Methods
» Use explicit descriptions of the Weyl group and root system for the 7
standard affinisations, corresponding to “minimal” realisations of the root
systems X", ¥ for X € {A,B,C,D} and Y € {B, C,BC}.
» Describe an explicit isomorphism from an arbitrary affinisation to a
standard affinisation, as a deformation between two twists compatible with
the root space decompositions.



Thank you for your attention!
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