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Goal of this lecture

Some applications of Higgs bundle in complex geometry, in order
to study e.g.

» Arakelov Inequalities

» Totally Geodesic (Special) Subvarieties in Period Domains

Special Subvarieties are usually arithmetic and characterized by
(Periods and) extra Hodge Classes.



Literature

History: Nigel Hitchin, Carlos Simpson (+ analysis of Hermitian
Yang-Mills equation)

Book: Jim Carlson/SMS/Chris Peters (Cambridge, 2003/2017)

Articles: in particular by Eckart Viehweg and Kang Zuo since
~2000, partially together with Jirgen Jost, Martin Méller and (to
a lesser extent) myself.



Set-Up

f : A— X smooth, projective holomorphic map between complex
manifolds A and X, extending to compactifications:

A < A_
fl LF
X = X

D = X\ X: Set of singular fibers of .

We will construct Higgs bundles on X arising from f:

(E,9): ESE®QL(logD), 9#A9=0

¥ € End(E) ® Q% (log D) Higgs field.



Monodromy

Fix w € N (weight). The fibers A; are all diffeomorphic
(Ehresmann). Therefore:

The cohomology groups H"(A¢, C) form a local system
V = R%f,C of complex vector spaces.

V corresponds to a monodromy representation
p:mi(X,*) = GLy(C), where n = dim¢ HY (A, C).

The local monodromies around the divisor D at infinity are
denoted by T.



Unipotency

Theorem (Borel, Landman)

T is always quasi-unipotent:

(T" —1)** =0

We will often assume that v = 1, hence the local monodromy T is

unipotent:
1 x% *
0 1 *
7=10 O 1 *
0 0 1



Semistable implies Unipotent

Theorem
A semistable family has unipotent monodromies. J

f:A— X is called semistable, if f is a flat morphism, D C X is a
normal crossing divisor and the inverse image f~1(D) is also a
normal crossing divisor in A.

Semistable Reduction Theorem

If X is a curve, then — after passing to a finite cover of X —we may
assume that f is semistable.




GauB-Manin connection

We have a vector bundle V =V ® Ox on X.

GauB-Manin connection:
ViV Ve V2=0
is C—linear. There is a Hodge filtration
V=F'oF>...
By Griffiths transversality we have Ox—linear maps

9P = GrPV : FP/FPH — FP1/FP @ Q.



Example: Families of Abelian Varieties (Riemann)

An Abelian Variety of dimension g: compact torus A, = C&/A.
N = columns of g x 2g-matrix (I 7), with 7 € H (Siegel space).

Cohomology: HY(A,,Z) = 7Z?¢ and H™(A,,Z) = N"H(A,, 7).

Hodge bundles for smooth family f : A — X of abelian varieties:
V=F=RU%C, F' = £.Q) .

Specialty: Ql%ﬂg,r = S2HO(A,, Q}L‘T).

Higgs field: HO(A,, QY ) — HYA,,04,) ®S?HO(A,, QL ).
T T

dual of HO(A;,Q} )



Deligne extension, Higgs bundles

Theorem (Deligne 70)

V' and the Hodge bundles P have extensions as vector bundles to
X such that

GrPV : FP/FPTE — FP71/FP @ Q) (log D).

are maps of vector bundles, i.e., Ox-linear.

The bundles EP*~=P = FP/FP+1 form the Higgs bundle

E= P EP?

p+q=w

with Higgs field ¥ = V : E — E © Q% (log D). One has J A9 = 0.



The case w =1 in general

Assume we have a semistable family f : A — X.
Then V = R!f,C has the extended Hodge bundles
Fl = fQ}\/).((logf D) and one has FO/F! = R, 0.

The associated Higgs bundle is

E=EYoE" =19} ;(logf D)@ R'£.Ox.

The Higgs field 9 : EL0 — E%1 ® Q} (log D)

comes pointwise from (adjoint of) Kodaira-Spencer map:

HO(A:, Qp,) — H'(Ar, Oa,) @ HY(Ar, Ta,)Y



First application: Arakelov inequalities

Theorem (Arakelov 71, Faltings 83, Deligne 87, Peters 00, Viehweg-
Zuo 01/04, Jost-Zuo 02)

f:A— f( semistable family of abelian varieties of dimension g over
acurve X, E = E10 @ E%! associated Higgs bundle, then

deg(EM?) < %deg QL (log D) = %(Zg()_() —2+4D).

Corollary

X =P, g =1, f not isotrivial, then 4D > 4.




Proof

By Simpson correspondence: After splitting off the maximal
unitary local subsystem in V, may assume

0: EX05B ® QL (log D) with B ¢ EOL.

EY0 @ B C E sub Higgs bundle "2 deg(E10 @ B) < 0.

Hence, deg(E™?) = deg(B) + rk(B) - deg Q% (log D)
< —deg(E'0) + g - deg Q% (log D).

Equality implies E®! = B, i.e., in the non-flat part € is an
isomorphism (maximal Higgs field).



Equality

Theorem (Viehweg-Zuo 2004)

Equality in the theorem holds iff in the non-flat part 6 is an isomor-
phism. This implies (if D # () up to an étale cover that f : A — X
isaproduct Z x E xx E Xx --- xx E, where E — X is a modular
family of elliptic curves and Z is a constant abelian variety.

Sketch of proof: Equality = local system is L. ® U; & Uy with U;
unitary. I Higgs bundle of rank two, uniformizing: ¢ : X — H
period map. 8 maximal = ¢ locally biholomorphic, hence
isomorphism and X = MN\H. O

Upshot: Extremal cases in Arakelov inequalities lead to special
arithmetically defined families (also if D = ().



A Generalization: Hyperbolicity

Theorem (Viehweg-Zuo 01)

f:A— X semistable family of m-folds over a curve X, then for all
v > 1 with f*wg/)—( = 0 one has

deg(F.w% 5)  m.
/X) m-v 1
rank(fw? o) = 2 deg Q2 (log D).

A/ X

Corollary

X = P!, f not isotrivial, then #D > 3 (since left side is > 0).

Example

Non-isotrivial families of Calabi-Yau manifolds (» = 1, called mini-
mal in case of equality), here local Torelli holds.

v




Generalization to base X a surface

Theorem (Viehweg-Zuo 2005)

f:A—= X semistable family of abelian varieties of dimension g
over a surface X, smooth over X = X \ D, and with period map
¢ : X — Ag generically finite. Then:

a(fwisx) - awx(D) < §wx(D)).

Here Ag :=T\Hg, I C Sps(Z), where Hg = Spg(R)/U(g) is
Siegel upper half space. Ag parametrizes all abelian varieties.



Equality

If one has equality, and the Griffiths—Yukawa Coupling
T8 NERY 5 NETLENOQEM @) (log S) — -+ — NEE* ' ®@58Q) (log S)

does not vanish, then X is a generalized Hilbert modular surface.

If, in the above, g = 3 and 73 =0, then

a(fiwsz) - alwg(D)) < Z¢ (wg(D)),
and X is a generalized Picard modular surface (ball quotient).

The proof uses again stability arguments.



Shimura varieties and special subvarieties

Shimura variety: X = N'\G(R)/K, I arithmetic subgroup.

G semisimple, adjoint algebraic group/Q of Hermitian type, i.e.,
G(R)/K Hermitian symmetric domain.

Examples: G = SLy and G = SO(2,2): modular curves and
Hilbert modular surfaces

50(2,19): Moduli space of polarized K3 surfaces
Spog: Ag
SU(1, n): Ball quotients

Special subvariety: Image of F’\H(R)/K’HLC#;F\G(R)/K.
Totally geodesic + CM-point !



Problems for special subvarieties

André-Oort Conjecture: Let YO C Ag be a smooth algebraic
subvariety. If there are sufficiently many special subvarieties
CO% C YO, then YOV itself is special.

Solved by Jacob Tsimerman in 2015 for a dense infinite set of
CM-points in A,.

We want to use finitely many special curves.



Results for Ag

Theorem (SMS/Viehweg/Zuo 2009, 2011, 2015)

Let Y© be a smooth, algebraic subvariety of Ag such that Y9 has
unipotent monodromies at infinity. Assume there is a finite set / of
compactified special curves C; with:

(BIG) The Q-Zariski closure H of the monodromy representation
of m(Uje; CP,y) in G = Spy, equals the Zariski closure of the
representation of 71(Y?,y).

(LIE) H is of Hermitian type, and its Lie algebra hh = Lie H(R) has
Hodge decomposition hc = h~51 @ h%0 @ h1—1 such that h=11 =
Tyo,, for the holomorphic tangent space of YO aty.

(RPC) All special curves C,-0 satisfy relative proportionality.

Then, Y9 is a special subvariety of Ag.

Remarks: (LIE) and (RPC) are necessary. Condition (BIG) ?




Relative Proportionality for A,

Definition (Relative Proportionality Condition)

Let CC Y C A be an irreducible special curve with logarithmic
normal bundle Nc/y and Harder-Narasimhan filtration NC/Y Then
one has the relative proportionality inequality

rank( C/Y) + rank(Ng/Y)

5 -deg T¢(—log S¢).

deg Nc)y <

If C° and Y are special subvarieties of A,, then equality holds
(RPC).

v

Example: CO special curve on a Hilbert modular surfaces, then

(Kx 4+ D).C +2C?% = 46 + 2¢.



Sketch of Proof of the Theorem

Using H, we define a special subvariety
Z° =TN\H(R)/K C Ag,
where T is the image of 71({;¢, C%y)in G = SPag-
(RPC) = Ty(—logSy)|c = Tc(—log Sc) @ N¢|y (thickening).

(RPC)+(BIG) = we know all (p, p)-classes surviving over all
points y € Y? (coming from the G;).

(RPC)+(BIG)+(LIE) = Y? = ZO for dimension reasons.



Results for Mumford-Tate domains

Theorem (Abolfazl/SMS/Zuo 2015)

Let X = '\D be a Mumford-Tate variety, i.e., a locally symmetric
quotient of a Mumford-Tate domain D associated to the Mumford-
Tate group G. Let YO be a smooth, horizontal algebraic subvariety
of X such that Y has unipotent monodromies at infinity. Assume
(BIG), (LIE) and (RPC) as before.

Then, YO is a special subvariety of X of Shimura type.




Relative Proportionality for Mumford-Tate domains

Definition (Relative Proportionality Condition (RPC))
The curve ¢ : C — Y satisfies (RPC), if the slope inequalities

/“L(NC/Y/NC/y) < M(Né/x/N’C/;) i=0,..,s

are equalities. The sheaves Né/x come from the HN-filtration.

The length s depends on the Lie group G.



Modular Curves

A Modular Curve is a (non-compact) quotient X = IN\H, where
I c SL2(Z)

is an discrete, torsion—free, “arithmetic” subgroup.

I can be a Congruence Subgroup: The curves
X(N) =T(N)\H, Xy (N) = T1(N)\H,  Xo(N) = Fo(N)\H,
parametrize elliptic curves with additional structures:
X(N) ={(E,¢) | ¢ : Ex—sor = (Z/NZ)?},
Xi(N)={(E,P) | N-P =0}, Xo(N)={(E,C) | C=Z/NZ}.

For N > 3 there is a universal family f : A(N) — X(N) of elliptic
curves over X(N), everything defined over Q.



Hilbert modular surfaces

F totally real number field of degree d.

Lie group is G = Resfg/gSL2 C SLp x SLp x - -+ x SLp (d—fold
product)

I C SLy(OF) (torsion-free) arithmetic subgroup.

Hilbert modular variety: X =T'\G(R)/K carries a family of
d—dim. abelian varieties with extra endomorphisms.

Hilbert modular surface: X = N\H x H.



Ball quotients/Picard modular surfaces

O ring of integers for imaginary quadratic number field, e.g.

0 = 2[4 c Q(v-3).

Picard modular surfaces: X = T\B,, where I C U(2,1;0)
arithmetic subgroup, i.e., X is a special surface in As.



