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Introduction

Stiefel manifolds

Stiefel manifolds V"™, F € {R, C, H} are the set of all orthonormal k-frames
in IF™. It can be shown that Vi IF" is diffeomorphic to a homogeneous space
G/H. In particular:

elncaseF=R V

ViR™ 2 SO(n)/ SO(n — k)
eincase F=C

ViC™ =2 SU(n)/SU(n — k)
eincaseF=H

ViH" = Sp(n)/Sp(n — k)

In all cases the Stiefel manifolds are reductive homogeneous spaces, with
reductive decomposition g = ) @ m, where Ad(H)m C m and m =
T,(G/H), with respect to negative of Killing form of g.

If H is connected then Ad(H)m C m < [h, m] C m.
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Introduction

G-invariant metrics on G/ H

A G-invariant metric g on homogeneous space G/ H is the metric for which
the diffeomorphism 7, : G/H — G/H, gH — agH is an isometry. It can be
shown that

Proposition 1

There exists a one-to-one correspondence between:
@ G-invariant metrics g on G/H

@ Ad“/Hinvariant inner products (-, -) on m, that is
(AA/H (p) X, Ad9H(h)Y) = (X, Y) foral X,Y e m,h € H

@ (f H is compact and m = h with respect to the negative of the Killing
form B of G) Ad“/H -equivariant, B-symmetric and positive definite
operators A : m — m such that (X,Y) = B(A(X),Y).

We call such an inner product Ad® (H )-invariant, or simply Ad(H )-invariant
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Infroduction
@00
G-nvariant metrics on G / H

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous
space G/H

AdS/H . H  —  Aut(m)
h +— (dm) :m—om

is irreducible, then GG / H admits a unique (up to scalar) G-invariant metric g,
which is also Einstein — Ricy = A - g.
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Infroduction
@00
G-nvariant metrics on G / H

Isotropy irreducible homogeneous space

In the case where the isotropy representation of a reductive homogeneous
space G/H

AdS/H . H  —  Aut(m)
h +— (dm) :m—om

is irreducible, then GG / H admits a unique (up to scalar) G-invariant metric g,
which is also Einstein — Ricy = A - g.

» These spaces have been studied in 1968 by J. Wolf.

Some examples of such spaces are the following:
e SO(n+1)/S0(n) = 5"
e Spin(7)/ Gy = S7
o Gy /SU(3) = 56
e SU(n)/S(U(1) x U(n)) = CP™.
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Infroduction
oeo
G-nvariant metrics on G / H

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible
representations ; : H — Aut(m;),i =1,2,...s, thatis

AT =20 @0 @ @ s — Aut(my Bme @ -+ Dmy),
then we have the following two cases:
A)
@ The representations (; are non equivalent.

In 2004 B6hm-Wang-Ziller conjectured the following: Let G/ H be a compact
homogeneous space whose isotropy representation splits into a finite sum of
non-equivalent and irreducible, subrepresentations. Then the number of
G-invariant Einstein metrics on G/ H s finite.
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Infroduction
oeo
G-nvariant metrics on G / H

Isotropy reducible homogeneous space

In the case where the isotropy representation is a direct sum of irreducible
representations ; : H — Aut(m;),i =1,2,...s, thatis

AT =20 @0 @ @ s — Aut(my Bme @ -+ Dmy),
then we have the following two cases:
A)
@ The representations (; are non equivalent.

In 2004 B6hm-Wang-Ziller conjectured the following: Let G/ H be a compact
homogeneous space whose isotropy representation splits into a finite sum of
non-equivalent and irreducible, subrepresentations. Then the number of
G-invariant Einstein metrics on G/ H s finite.

(®

@ Some of the representations ; are equivalent, that is ©; ~ ¢, @ 7£ .
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G-nvariant metrics on G / H

Isotropy reducible homogeneous space, case (A)

When the representations ¢; are non equivalent then the decomposition of m
m=m;Gme D --Dmy
is unigue and m;, m; ¢ # j are perpendicular.

» In this case all Ad(H)- invariant inner products on m are described as
follows:

() = 21(=B)|m; +22(=B)lmy+ - +2s(=B)|m, s ERT,i = 1,2, 5
» The matrix of the operator A : m — m with respect to (= B)-orthonormal

basis is:
211dp, 0

0 2 Idm,
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Infroduction
ooe
G-nvariant metrics on G / H

Isotropy reducible homogeneous space, case (A)

When the representations ¢; are non equivalent then the decomposition of m
m=m;Gme D --Dmy
is unigue and m;, m; ¢ # j are perpendicular.

» In this case all Ad(H)- invariant inner products on m are described as
follows:

() = 21(=B)|m, +22(=B)|m,+- - '+175(_B)|ms T; € RJrai =1,2,...,5

» The matrix of the operator A : m — m with respect to (= B)-orthonormal

basis is:
211dp, 0
0 2 Idpy,,
The G-invariant metrics that correspond to these inner products are called
diagonal.
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Riccl tensor

Ricci tensor for diagonal metrics

Now for the Ricci tensor of diagonal G-invariant metrics we have the following:
We set d; := dimm; and let {¢%, }%_| be a (—B)—orThonormoI basis adapted
to the above decomposition of m,ie.e!, e m; 1 =1,2,...,s.

Consider the numbers A ; = (—B)([é, eﬁ], A{) such that
ZAQB €y

and set

k
Aijr = LJ = Z(Alﬁ)Q
where the sum taken over all three indices «, 3, v with efx e m;, eé e my,
62 € my.
The numbers Aij;c are non-negative, independent of the (—B)-or’rhonormol
bases chosen for m;, m;, my, and are symmetric in all three indices:

Aijie = Ajir = Apij.

Marina Statha Marburg March 2016 Castle Rauischholzhausen 7/M4



Riccl tensor

Ricci tensor for diagonal metrics

» The Ricci tensor Ric;. .y of a G-invariant Riemannian metric on G/ H has
also a diagonal form, i.e. Ric(. .y = 7 7k2k(—B)|m, - We have the
following proposition due to Park and Sakane (1997).

Proposition 2

The components rq, ..., 74 of the Ricci tensor Ric<.7,> on G/H are given by

1 1 zr [k 1 i j
= o Tl 2 57 k=1,... 1
Tk 2xy, + Ad,, Z T |:]Z:| 2} Z TR |:kl ( ) >Q)7 M

Jst Jst

where the sum is taken over i, j = 1,. .., q. In particular for each k it holds

that .
3 J ) :
|:k‘l:| — e Akij = dk ;= dim my. ()

4,3
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Riccl tensor

Isotropy reducible homogeneous space, case (B)

When some of the ;, ¢, in the isotropy representation of G / H are
equivalent, then

o the diagonal GG-nvariant metrics is not unique, and
e the submodules m;, m; does not necessarily perpendicular.

In this case the matrix of the operator (-7 ) = (A-, > has some non zero non
diagonal elements.

» Also the Ricci tensor is not easy to describe
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Riccl tensor

Isotropy reducible homogeneous space, case (B)--Examples

o For the real Stiefel manifolds V;,R™ = SO(n)/ SO(n — k) the isotropy
representation is given as follows:

AP |y = = Ak @1O B LBAk D B i
N—_—— —_— —

AdSO(n—k) (;“) —times k—tfimes
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Riccl tensor

Isotropy reducible homogeneous space, case (B)--Examples

o For the real Stiefel manifolds V;,R™ = SO(n)/ SO(n — k) the isotropy

representation is given as follows:

ANk 1B - B1BM 1@ B Ak
N ——

SO(n)
Ad ! SO(n—k)
AdSO(n—k) (’;) —times k—times

Forn = 4 and k = 2 the matrix of the operator A : m — m has the following

form:
o 0 0 0 O
0 X1 0 )\ 0
0 0 x 0 X AeR,z; e RTi=0,1,2.
0 X 0 =z O
0O 0 X 0 =z
e For the quaternionic Stiefel manifolds V;,H" the isotropy representation is
given as follows:
AdS™ gl = .= Sk ® 10Ol Bk ® D Vnck
p(n—Fk) N >
AdSp(n—k)  (2+2F=1)_times 2k—times
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Riccl tensor

Some history

e Kobayashi (1963): Proved the existence of an SO(n)-invariant Einstein
metric on the unit tangent bundle 71.5™ = SO(n)/ SO(n — 2).

e Sagle (1970) - Jensen (1973): Proved the existence of SO(n)-invariant
Einstein metrics on the Stiefel manifolds V;,R™ 22 SO(n)/ SO(n—k).fork > 3

0 a 1
metrics of the form: <> (,) = [a a 1
1 1

e Back - Hsiang (1987) and Kerr (1998): Proved that for n > 5 the Stiefel
manifolds VoR™ 22 SO(n)/ SO(n — 2) admit exactly one (diagonal)
SO(n)-invariant Einstein metric.

e Arvanitoyeorgos-Dzhepko-Nikonorov (2009): Showed that for s > 1 and
I > k > 3 the Stiefel manifolds V., F***+! = G(sk + 1) /G(l) admit at least
four G(sk + l)-invariant Einstein metrics which are also Ad (G(k)*® x
G(I))-nvariant (two of these are Jensen’s metrics) where G (£) € {SO(¥),

Sp(€)}.

a
metrics of the form: <> (-,-) = [ 3
1
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Special class of G-invariant metrics

General construction

As seen before, the G-invariant metrics M on G/H = V,F", F € {R, H}
are not only diagonal. For this reason the complete description of G-invariant
Einstein metrics is difficult, because the Ricci tensor is not easy to describe. So
we search for a subset of these metrics which are diagonal.

General construction

Let G/H a homogeneous spaces with reductive decomposition g = h © m.
We consider the operator
Ad(n):g— g

wheren € Ng(H) ={g € G:gHg™! = H}.Then

Proposition 3

The operator Ad(n)|m : m — g takes values in m, that is ¢ = Ad(n)|m
€ Aut(m). Also, (Ad(n)|m) ™! = (Ad(n)|m)".
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Special class of G-invariant metrics

General construction

We define the isometric action

O x MY 5 MY (p, A podopt=A,

where @ is the set { = Ad(n)|m : n € Ng(H)} C Aut(m).

Proposition 4

The action of ® on M is well defined, i.e. A is Ad( H )-equivariant, symmetric
and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism
Ad(n) : m — m, to the metrics corresponding fo the operator A.
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Special class of G-invariant metrics

General construction

We define the isometric action

O x MY 5 MY (p, A podopt=A,

where @ is the set { = Ad(n)|m : n € Ng(H)} C Aut(m).

Proposition 4

The action of ® on M is well defined, i.e. A is Ad( H )-equivariant, symmetric
and positive definite.

Remark: Metrics corresponding to the operator A are equivalent, up to automorphism
Ad(n) : m — m, to the metrics corresponding fo the operator A.

From the above action we consider the set of all fixed points (subset of My
(MH? ={A e M : poAop t=Afaralp € d}

» Any element of (M%)® parametrizes all Ad(Ng (H ))-invariant inner
products of m and thus it defines a subset of all inner products on m.
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Special class of G-invariant metrics

General construction

» Since H C N¢g(H) we have:

Proposition 5

Let G/ H be a homogeneous space. Then there exists a one-to-one
correspondence between:

(1) G-invariant metrics on G/ H,
(20 Ad(H )-invariant inner products on m,
(3) Fixed points

(MG)(DH = {AEMG cpoAoyp ™t = A foraly € By}

of the action 5 = {¢ = Ad(h)|w : h € H} C ® on M.

° (MG)CD C (MG)CI’H.
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Special class of G-invariant metrics
€000
General construction

K closed subgroup of G

» We work with some closed subgroup K of GG such that
H C K CNg(H) CG.
Then the fixed point set of the non trivial action of
O ={p=Adk)|m: k€ K} CPon M%is
(MEPE =LA e MY . poAop ! = Aforalp € g},

and this set determines a subset of all Ad (K )-invariant inner products of m.
We have the inclusions (M%)® € (MY)x C (MT)®x,

Ad(K)-invariant inner
product

Ad(H)-invariant inner

Ad(NyH))-invariant inner

duct The set of all inner
product

product in g
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Special class of G-invariant metrics
0®00

General construction

K closed subgroup of G

By Proposiﬂon 5 the subset (MG)‘I’K is in one-to-one correspondence with a
subset M of all G-invariant metrics, call it Ad(K)-invariant, as shown in
the following figure:

) Ad(K)-invariant inner
M/C K products

MG(Gfinvarimzt metrics) Ad(H)-invariant inner
products
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Special class of G-invariant metrics
0®00

General construction

K closed subgroup of G

By Proposiﬂon 5 the subset (MG)‘I’K is in one-to-one correspondence with a
subset M of all G-invariant metrics, call it Ad(K)-invariant, as shown in
the following figure:

) Ad(K)-invariant inner
M/C K products

MG(Gfinvarimzt metrics) Ad(H)-invariant inner
products

Proposition 6

Let K be a subgroup of G with H C K C G and such that K = L x H, for
some subgroup L of G. Then K is contained in Ng(H ).
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Special class of G-invariant metrics
00e0
General construction

K closed subgroup of G

» We apply the previous proposition for the Stiefel manifolds
Vk1+k2Fkl+k2+k3 = Gk1+k2+k3/G3>
Gy tkotks € {SO(kl + ko + k3). Sp(kl + ko + kg)} G; € {SO(/CZ),

Sp(k;)} G =1,2,3) and F € {R, H}, where we take the following two cases
for the subgroup K = L x (Gs:

A K = (G1 X Gg) x (3, and search for

Ad(K) = Ad ((G1 X Gg) X Gg) -invariant metrics.
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Special class of G-invariant metrics
00e0
General construction

K closed subgroup of G

» We apply the previous proposition for the Stiefel manifolds
k1+ka+ks ~
Vk1+k2F phhaths o Gk1+k2+k3/G3>

Gy tkotks € {SO(kl + ko + k3). Sp(kl + ko + kg)} G; € {SO(/CZ),
Sp(k;)} G =1,2,3) and F € {R, H}, where we take the following two cases
for the subgroup K = L x (Gs:

A K = (G1 X Gg) x (3, and search for
Ad(K) = Ad ((G1 X Gg) X Gg) -invariant metrics.
®) K = U(ky + k2) x Sp(ks). and search for
Ad(K) = Ad(U(ky + k2) x Sp(ks))-invariant metrics.

The benefit for such metrics is that they are diagonal metrics on the
homogeneous space.
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Special class of G-invariant metrics
oooe
General construction

We study the case

K = (G]_ X Gz) X G3 where GZ S {SO(kz), Sp(kz)}, 7= 1, 2,3

that is

K = SO(kZl) X SO(kg) X SO(’Cg) — Vk1+k2Rn

K = Sp(k1) X Sp(k2) X Sp(ks) — Vi, +r,H"
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Case (A)

Stiefel manifolds
9000000000

K= (Gl X Gg) x Gz, G; € {SO(LZ),SI)(AZ)}

We view the Stiefel manifold Vi, 11, F™. where n = k1 + ko + k3 as fotal
space over the generalized Wallach space, i.e:

G1 x Gg X Gg . Gn . G,
Gg G5 G1 X GQ X GL;
» The tangent space p of the generalized Wallach space has three non
equivalent Ad(K )—invorion‘r, irreducible isotropy summands, that is
P =p12 DPpiz D Pas,

and the tangent space of the fiber is the Lie algebra

01 D g2 where g; € {so(k;),sp(ki)}, i =1,2.
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Case (A)

Stiefel manifolds
9000000000

K= (Gl X Gg) x Gz, G; € {SO(LZ),SI)(AZ)}

We view the Stiefel manifold Vi, 11, F™. where n = k1 + ko + k3 as fotal
space over the generalized Wallach space, i.e:

G1 x Gg X Gg . Gn . G,
Gg G5 G1 X GQ X GL;
» The tangent space p of the generalized Wallach space has three non
equivalent Ad(K )—invorion‘r, irreducible isotropy summands, that is
P =p12 DPpiz D Pas,

and the tangent space of the fiber is the Lie algebra

01 D g2 where g; € {so(k;),sp(ki)}, i =1,2.

» Therefore, the tangent space m of the total space can be written as a
direct sum of five non equivalent Ad( K )-invariant, ireducible components:

m g1 D g2 D P12 B P13 D po3
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Case (A)

Stiefel manifolds
0@00000000

K= (Gl X Gg) x Gz, G; € {SO(LZ),SI)(AZ)}

From the previous decomposition any Ad(K )—invorion’r metric is diagonal and
is determined by Ad(K)-invorion’r inner products of the form:

() = 2 (=B)lg +22(=B)lg.
+z12 (=B)|p1s + 213 (=B)lp15 + 223 (= B)pas
<~

(€))

(v)y=|x12 ®2 x23]. Hereki >2,ks>2andks > 1.

In the case where we have k1 = 1, then for the real Stiefel manifold
Vi 4 g, R1FE2HE3 the above inner products take the form

(-,) = @2 (*B)|5n(k2) + 212 (—B)|mys + 713 (—B)|mys + @23 (—B)|mas @

>

()= |(x12 ®2 x23]|. Hereki =1,ko >2andks > 1.

Marina Statha Marburg March 2016 Castle Rauischholzhausen

20/ 4



Stiefel manifolds
00e0000000
Case (A)

K= (G1 X Gg) x Gz, G; € {SO(LZ),SI)(AZ)}

We need to determine the Ricci components 71,72, 7;; (1 <1 < 7 < 3 for
the metric that correspond to the inner products (3) and (4). We first need to

k
identify the non zero numbers Aij Lk = |..|. From some Lie bracket relatfions
)

of g; and p;; we have:

Aq11, Az, Aia2)a2), Aias)as), Aza2)a2), A203)23), A2)(23)(13)-
From the Lemma below (due to Arvanitoyeorgos, Dzhepko and Nikonorov) we
have,

Lemma 5

Fora,b,c =1,2,3 and (a — b)(b — ¢)(c — a) # 0 the following relations hold:
real case quaternionic case
A —kaRa—DFa=2) | 4 _ Fa(katD(Ra+1)
aaa — 2(n—2) aaa — n+1
_ kakp(ka—1) _ kaky(2kat1)
A(av)(ab)a = ~5(nzy | Alab)ab)a = ~(ogi)
kakuke _ 2kakpke
Alav)be)(ae) = 32235 | Alab)be)ac) = “gd
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Stiefel manifolds
000@000000
Case (A)

K= (G1 X Gg) x Gz, G; € {SO(AZ),SI)(AZ)}

The components of the Ricci tensor for the Ad(K )-invariant metric
determined by (3) for the real case are given as follows:

k‘l -2 + 1 k xry + k Xy
r = oy ——— =
8 4(n —2)z1  4(n —2) 22122 *r132 )’
ky — 2 1 To To )
r = — 3
2 4(1’L — 2)w2 + 4(1’L — 2) < ! 13122 + 3 E232
1 k3 ( T12 13 23 )
ra = — + - -
2z12  4(n —2) \T13Z23  T12T23  T12T13
1 1 T2
= (k-1 ke — 1 )
4(n - 2) <( ! )96122 e )3122>
1 ko ( Z13 T12 T23 ) 1 ( 1
Tz = aF = = = k1 —1
2z13  4(n —2) \T12223  T13T23  T12T13 4(n —2) ( )$132

1 k1 ( T23 13 12 ) 1 ( T2
T23 = + - - - (k2 — 1)
2x23  4(n —2) \T13T12  T12T23  T237T13 4(n —2) x232

where n = ki + ko + k.
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Stiefel manifolds
[e]e]ele] lelelele]e}
Case (A)

K= (G1 X Gg) x Gz, G; € {SO(AZ),SI)(AZ)}

The components of the Ricci tensor for the Ad(K )-invariant metric
determined by (3) for the quaternionic case are given as follows:
ki+1 ko T n k3 T3
= S =5
! 4(n+ 1)z 4(n+1) z122 4(n+ 1) z132
ko +1 k1 xTo I ks T2
2= 4n+1)as  4(n+1) x122  4(n+ 1) z932’
1 ks ( 12 13 23 )
riz2 = —+ - -
2z12  4(n+1) \z13T23  T12T23  T12Z13
2k1+1 1 2ko +1 a2
8(n+1) x122 8(n + 1) z122’
. 1 i ka ( 13 Tio T23 > 2k1 +1 =z
13 = - - -
2z13  4(n+1) \z12T23 T13T23  T12T13 8(n + 1) z132
, _ 1 i k1 ( T23 T13 Ti2 > 2ka +1 x2
23 = = - - - —-
2z23  4(n+1) \Z13Z12  T12%T23 23713 8(n + 1) 232
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Stiefel manifolds
[e]e]ele]e] lelelele}
Case (A)

K = (G1 X Gg) X Gg, Gi € {SO(AZ),SI)(AZ)}

The components of the Ricci tensor for the Ad (K )-invariant metric
determined by (4) ( real case only), are given as follows:

ko — 2 : 1 ( xo . xTo >
ro = =1 —
2 4(n —2)zs  4(n—2) \z122 3 w232 )’

1 k 1
o — o 3 ( Tiz w13 Tag )7 ((szl) 9022>’

2z12  4(n —2) \z13w23  T12T23  T12713 4(n - 2) Z12
1 1 T23 13 T12 > 1 ( 2
r23 = — + ( - = = ko —1)—
2x23  4(n —2) \Z13T12  T12T23  T23T13 4(n — 2) ( w232 )’

1 k @ @ az
- n 2 ( 13 12 23 )7

2z13  4(n —2) \zi12223  xi13T23  T12T13

wheren = 1 + ko + ks.
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Stiefel manifolds
[e]e]ele]ele] lelele}
Case (A)

Einstein metrics on V5, R"

» For the Stiefel manifolds V3;R™ =2 SO(n)/SO(n — 4), where ks = 3 and
]{'3 =n — 4, the

Ad(SO(3) x SO(n — 4))-invariant Einstein metrics
are the solutions of the system

T2 =T12, Ti2 =713, T13 = T23,
and we set x93 = 1. Then we have
fi = —(n-— 4)11231’2 +(n— 4)261221’13063 + (n — 4)513123013212
—2(n — 2)zi2z1322 + (N — 4)z1222 + z12°T13 + 39013303 =0,
fo = (n-— 3)w123 —2(n — 2)x122m13 —(n— 5)9:121132
+2(n — 2)z12213 + (3 — n)z12 + 2x12 @132 — 2T1322 = 0,
fs = (n—2zi2w13 — (n — 2)z12 + 212° — 1221372

—2213° +2=0. ®

We take a Grébner basis for the ideal I of the polynomial ring
R = Qlz, x2, 212, x13] which is generated by
{f1, f2, f3, zx2 212 213 — 1}, fo find non zero solutions of the above system.
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Stiefel manifolds
0000000800

Case (A)

Einstein metrics on Real Stiefel manifolds V}, 1, R"

By the aid of computer programs for symbolic computations we obtain the
following results:

Theorem 1 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifolds V,R™ = SO(n)/SO(n — 4) (n > 6) admit at least four
invariant Einstein metrics. Two of them are Jensen’s metrics and the other two
are given by the Ad(SO(3) x SO(n — 4))-invariant inner products of the
form (4).

In the same way, for the Stiefel manifolds Vs R7, we consider the cases
]171:2?]{72:3,]4‘3:2 k1:1112:4.]{‘3:2
Then we have:

Theorem 2 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold VsR” = SO(7)/ SO(2) admits at least six invariant
Einstein metrics. Two of them are Jensen’s metrics, the other two are given by
Ad(SO(2) x SO(3) x SO(2))-invariant inner products of the form (3), and

the rest two are given by Ad(SO(4) x SO(2))-invariant inner products of the

@lian
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Stiefel manifolds
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Case (A)

Einstein metrics on quaternionic Stiefel manifolds V7, 1, H"

For the quaternionic Stiefel manifolds we solve the system
71 = To, T9g = T12, T'12 = T'13, T'13 = 723 and we obtain the following results:
» Forthecase ki = 1, ko =1, k3 = 1the
Ad(Sp(1) x Sp(1) x Sp(1))-invariant Einstein metrics on VoH? are

(z1, 2,212, T13,223) ~ (0.276281, 0.251266, 0.460887, 0.568722, 1)
(1.112249, 0.417937, 1.598741, 0.595776, 1)
(0.701500, 1.866891, 2.683459, 1.678482, 1)
(0.441809, 0.485793, 0.810389, 1.758325, 1).

%

Q

Q

Two are Jensen’s metrics:

(0.472797, 047.2797, 0.472797, 1, 1)
(1.812916, 1.812916, 1.812916, 1, 1),

%

($1,$2,$127$13,$23)

%

and the other two are Arvanitoyeorgos-Dzhepko-Nikonorov metrics:

(0.3448897, 0.3448897, 0.800199, 1, 1)
(0.483972, 0.483972, 2.585187, 1, 1).

%

(3517 x2,%12,T13, 9623)

Q
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Case (A)

Einstein metrics on Quaternionic Stiefel manifolds V};, 4, H"

e Inthe same way forky =n — 2, ko = 1, k3 = 1 the
Ad(Sp(n — 2) x Sp(1) x Sp(1))-invariant Einstein metrics on V,,_1H™ are

© 3 < n < 8there are 8 metrics, 2 of Jensen’s metrics and 6 are new.
@ 7 < n < 30 there are 10 metrics, 2 of Jensen’s and 8 are new.

O n > 29 there are 12 metrics, 2 Jensen’s and the rest 10 are new.
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Case (A)

Einstein metrics on Quaternionic Stiefel manifolds V};, 4, H"

e Inthe same way forky =n — 2, ko = 1, k3 = 1 the
Ad(Sp(n — 2) x Sp(1) x Sp(1))-invariant Einstein metrics on V,,_1H™ are

@ 3 < n < 8there are 8 metrics, 2 of Jensen’s metrics and 6 are new.
@ 7 < n < 30 there are 10 metrics, 2 of Jensen’s and 8 are new.
O n > 29 there are 12 metrics, 2 Jensen’s and the rest 10 are new.
» Incasewhere ki =n — 3, ko =1, k3 = 2the
Ad(Sp(n — 3) x Sp(1) x Sp(2))-invariant Einstein metrics on V,,_oH" are

@ n = 4 there are 8 metrics, 2 Jensen'’s, two
Nikonorov-Arvanitoyeorgos-Dzhepko and 4 are new.

4 < n < 10 there are 8 metrics, 2 Jensen’s and 6 new.
n = 10 there are 10 metrics, 2 Jensen’s and 8 new.
11 < n < 28 there are 8 metrics, 2 Jensen’s and 6 new.

27 < n < 41 there are 10 metrics, 2 Jensen’s and 8 new.

©0 600

n > 40 there are 12 metrics, 2 Jensen’s and 10 are new.
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Quaternionic Stiefel manifolds

We now study the case

K = U(kl + k2) X Sp(k:3)

for the quaternionic Stiefel manifolds Vi, 41, H™, where n = k1 + ko + ks.

Wesetp = ki + ko, s0 k3 =n — p.
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Case (B)

K=

Quaternionic Stiefel manifolds
©0000000000

U(p) x Sp(n — p)

In this case we view the Stiefel manifold V,H", where n = ki + kz + k3. asa
total space over the flag manifold with two isotropy sulnmands i.e:

U(p) x Sp(n — p) Sp(n) Sp(n)
Spn—p)  Sp(n—p) - U(p) x Sp(n — p)

» The tangent space m of the base space is written as a direct sum of two
non equivalent Ad(K )—invcrionf ireducible isotropy summands my, my of
dimension dy = dim(m;) = 4p(n — p) and ds = dim(msy) = p(p + 1).

Also, the tanent space of the fiber U(p) =2 U(1) x SU(p) is the Lie algebra
h = by D h1 where hg is the center of u(p) and by = su(p), with dp =
dlm(ho) =1and dl = dlm([’)l) =p2 — 1.

» Therefore the tangent space p of Stiefel manifold can be written as direct
sum of four non equivalent Ad (K )-invariant ireducible submodules:

p="bo Db Dmy O my.
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Quaternionic Stiefel manifolds
0O@000000000
Case (B)

K =U(p) x Sp(n — p)

The diagonal Ad(K)-invariant metrics on V,H™ are determined by the
following Ad (K )-invariant inner products on p

<'a > = uO(_B)‘ho + ul(_B)‘hl + xl(_B)Iml + xQ(_B)‘mz' )
We know that [my, my] C b @ mo, [me, mo| C h, [my, ma] C my, hence the
only non zero numbers Aijk =|..| are
)
Azzg, Az, Ar11, A122, A133, Agao.
From Arvanitoyeorgos-Mori-Sakane we obtain the following:

Lemma 9

For the metric (-, -) on Sp(n)/ Sp(n — p), the non-zero numbers A;j;, are
given as follows:

A . ds A . 4ds A . 2d3(2d1 +2 - d3)
220_7d2+4d3 330_7d2+4d3 111_—d2+4d3
i _2s(ds>2)  , _ dads
R 183 = o 822 =
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Quaternionic Stiefel manifolds
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Case (B)

K =U(p) x Sp(n — p)

Lemma

The components of the Ricci tensor for the Ad (K )-invariant metric
determined by (6) are given as follows:

g do uQ 4ds
ro = +—
4331 (dg —+ 4d3) 4:)32 (dQ + 4d3)
1 2d3(2di+2—d3) w1 do L ds(ds —2)
ry =
! 4diuq (dg -+ 4d3) 4951 (dQ -4 4d3) 2d1:1:2 (d2 - 4d3)

1 dy
"7 %01 222 (da + 4d3) 223 (”O (42 +4d3) " (& +4d3))

1 (1 1 dy )+(E2 da 1( I )
r3=— |=-—= —— — = = |u u
2T 22 \2 2 (da+4ds)) ' 4a? (dy+4ds) 22 \ ° (dz+4ds) ' (da + Ads)

where d; = p® — 1, da = 4p(n — p). d3 = p(p + 1).

Next, we solve the Einstein equation for the Stiefel manifold V5H"™. In this
casewe have dy =1, dy =3, da = 8(n — 2),ds = 6.
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Quaternionic Stiefel manifolds
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Case (B)

K =U(2) x Sp(n —2)

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold Vo H™ 22 Sp(n)/ Sp(n — 2) admits four invariant Einstein
metrics. Two of them are Jensen’s metrics and the other two are given by the
Ad(U(2) x Sp(n — 2))-invariant inner products of the form (6).
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Case (B)

K =U(2) x Sp(n —2)

Quaternionic Stiefel manifolds
00080000000

Theorem 3 (A. Arvanitoyeorgos-Y. Sakane-M.S.)

The Stiefel manifold Vo H™ 22 Sp(n)/ Sp(n — 2) admits four invariant Einstein
metrics. Two of them are Jensen’s metrics and the other two are given by the
Ad(U(2) x Sp(n — 2))-invariant inner products of the form (6).

Proof

We consider the system of equation
rg="T1, T1=7"2 T2=T73. @

We set 5 = 1 and then system (7) reduces to

fi = 2nuoui — 2nu? + 6uguir? — duguy — 4udz? +4ui — 222 =0
fo = 4nu% — 8nuix1 + uour + 8u%x% — 5u% — 8uix1 +6ur + 4:17% =0
fs = 8nx; —4n+ 4uox% —ug + 8u1:r% —3u; — 24:5% + 8xr1+2=0.

®
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Quaternionic Stiefel manifolds
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Case (B)

K =U(2) x Sp(n —2)

We consider a polynomial ring R = Q[z, ug, u1, 1] and an ideal I
generated by { f1, f2, f3, 2 upu1 1 — 1} to find non zero solutions for the
system (8). We take a lexicographic order > with z > ug > x1 > uy fora
monomial ordering on R. Then, the Grébner basis for the ideal I contains the
polynomial (u; — 1)U; (uy) where Uy is a given by:

Ui(ur) = (4n — 1)*uy® — 2(4n — 55)(4n — 1)3u,”

+(4n — 1)%(512n% — 48n% — 20401 + 2903)u;° — 4(4n — 1)(288n*
—3224n3 + 21602 + 104190 — 6076)u1° + (14336n° — 5120n°
~103168n* + 78208n> + 104608n2 — 104280n + 30583)u,*
—2(2048n5 — 15361° + 3840n* — 11408n° — 28320n>

+59088n — 22489)u1® + (2048n° + 832n* — 10848n3 + 17924n2
—23472n + 13237)u 2 — 4(n — 1)(64n* — 961 + 336n>

—374n + 205)uy + 4(n — 1)%(4n — 1)?
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Quaternionic Stiefel manifolds
0O0000e00000
Case (B)

K =U(2) x Sp(n —2) —— —(u1 = DU (1) — ——

Case A: u; # 1

We prove that the equation Uy (ul) = 0 has two positive solutions. Observe
that
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Quaternionic Stiefel manifolds
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Case (B)
K =U(2) x Sp(n —2) —— —(u1 = DU (1) — ——
Case A: u; # 1
We prove that the equation Uy (ul) = 0 has two positive solutions. Observe
that
» Foru; =0

U1(0) = 68112 — 133344n + 73744n” + 47360n" — 616961
+3328n° 4 10240n° is positive for all n. > 3,
» Foru; =1/5

Ui(1/5) = 1098.64 — 2511.49n 4 1988.33n° — 639.029n°
+15.3295n" + 46.1537n° — 9.8304n° is negative forn > 3,

so we have one solution u1 = a; between 0 < ay < 1/5. l
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Case (B)

Quaternionic Stiefel manifolds
0O0000e00000

K =U(2) x Sp(n - 2) —— —(wu — DU (w) - ——

Case A: u; # 1
We prove that the equation Uy (ul) = 0 has two positive solutions. Observe
that
» Foru; =0
U1(0) = 68112 — 133344n + 73744n” + 47360n" — 616961
+3328n° + 10240n° is positive for all n > 3,
» Foru; =1/5
Ui(1/5) = 1098.64 — 2511.49n 4 1988.33n° — 639.029n°
+15.3295n" + 46.1537n° — 9.8304n° is negative forn > 3,

’so we have one solution 11 = a; between 0 < ay < 1/5. l

» Foru; =1
Ui (1) = 68112 — 133344n + 73744n° + 47360n" — 61696n"
—|—3328n5 + 10240n° is always positive for n > 3,

’hence we have a second solution u; = [3; between 1/5 < By < 1. ‘
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Case (B)

K =U(2) x Sp(n - 2) —— —(wu — DU (w) - ——

Next, we consider the ideal J generated by the polynomials

{fI? f27 f37 ZUgul T (ul - 1) — 1}

We take the lexigographic orders > with

Q 2 > ug > x1 > uy. Then the Grébner basis of J contains the polynomial
U1 (u1) and the polynomial

ar(n) x1 + Wi(ug,n)

@ - > 11 > ug > uq. Then the Grébner basis of J contains the polynomial
Ui (u1) and the polynomial

az(n) ug + Wa(ug,n)

where a;(n) i = 1,2 is a polynomial of n of degree 17 for i =1, and of
degree 16 for i = 2. For n > 3 the polynomial a;(n) ¢ = 1,2 is positive. Thus
for positive values 11 = a1, 31 found above we obtain real values

r1 = 71,72 and ug = g, Bp as solutions of system (8).
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Case (B)

Quaternionic Stiefel manifolds
00000008000

K =U(2) x Sp(n - 2) —— —(wu — DU (w) - ——

Now we prove that the solutions 1 = 71,72 and uy = oy, 5 are positive.
We consider the ideal J with the lexicographic order > with

@ 2 > ug > uy > x1 then the Grébner basis of J contains the Uy (u;) and
the polynomial

8
Xi(z1) =Y be(n)a}
k=0

@ z > x1 > uy > ug then the Grobner basis of J contains the Uy (u1) and
the polynomial

cx(n)ug

M

U()(Uo) =
k=0
for n > 3 the coefficients of the polynomials by, (1), cx(n) are positive when
the k is even degree and negative for odd degree. Thus if the equations
Xi1(z1) = 0and Up(up) = 0 has redl solutions, then these are all positive. So
the solutions x1 = 1,72 and ug = «yp, By are positive.
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Case (B)

K =U(2) x Sp(n - 2) —— —(wu — DU (w) - ——

CaseB:u; =1
Then from the system (8) we get the solutions:

24+2n — V=2 —4n +4n?

fuo=1,uw =121, = 5 w8 = 1}

and

24+ 2n4+ V=2 —4n +4n?
| T

6 2 =1}

{fuo=1, w1 =1, 24

which are Jensen’s metrics.

So the new Einstein metrics on VoH™ are of the form
{uo = ag, uy = a1, 1y =71, v2 = 1}
{uo = Bo, u1 = 1, 1 = 72, T2 = 1}
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Case (B)

Comparison of the metrics on V;R" = SO(n)/SO(n — 4)

e Jensen’s metrics on Stiefel manifold V,R™ = SO(n)/ SO(n — 4)

0
(w)=1|a , Ad(SO(4) x SO(n — 4))-invariant.
1

= Q Q
* = =

e Our Einstein metrics
0 B8 v
(=18 o 1], Ad(SO(3) x SO(n — 4))-invariant
v 1 =%
(a, B, # 1 are all different ).

e For the Stiefel manifolds V,RF*+¢ = SO(2k + )/ SO({) (¢ > k > 3)
Einstein metrics of Arvanitoyeorgos, Dzhepko and Nikonorov

a B 1
(=18 a 1 ( @, B are different ).
1 1 =
Marina Statha Marburg March 2016
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Case (B)

New Einstein metrics on complex Stiefel manifold Vg(C”‘Jr3

Theorem

On a complex Stiefel manifold V3C" 3 =2 SU(n + 3)/ SU(n) forn > 2, there
exist new invariant Einstein metrics which are different from Jensen’s metrics.

» In this case we view the Stiefel manifold V3(C"+3 as a total space over the
generalized flag manifold

SU(1 +2+n)/S(U1) x U2) x U(n)) n>2
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