On Besse orbifolds

M. Amann, Chr. Lange

August 2018

M. Amann, Chr. Lange On Besse orbifolds

On Besse orbifolds

M. Amann, Chr. Lange

August 2018

M. Amann, Chr. Lange On Besse orbifolds

M. Amann, Chr. Lange

• Obvious examples of closed geodesics can be found on the sphere or the torus.

- Obvious examples of closed geodesics can be found on the sphere or the torus.
- There are non-closed geodesics on the flat torus.

M. Amann, Chr. Lange

- Obvious examples of closed geodesics can be found on the sphere or the torus.
- There are non-closed geodesics on the flat torus.
- This is a metric-dependent problem.

- Obvious examples of closed geodesics can be found on the sphere or the torus.
- There are non-closed geodesics on the flat torus.
- This is a metric-dependent problem. **"Lyusternik-Fet"**: Every closed Riemannian manifold has a closed geodesic. **"Theorem of the three geodesics"**: Every metric on a homeomorphism sphere possesses three closed (simple) geodesics.

- Obvious examples of closed geodesics can be found on the sphere or the torus.
- There are non-closed geodesics on the flat torus.
- This is a metric-dependent problem. "Lyusternik-Fet": Every closed Riemannian manifold has a closed geodesic. "Theorem of the three geodesics": Every metric on a homeomorphism sphere possesses three closed (simple) geodesics.
- How is the topology of a manifold/orbifold related to the existence of infinitely many closed geodesics?

Theorem (Sullivan–Vigué-Poirrier, Gromoll–Meyer, McCleary, Saneblidze)

If M is a compact simply-connected Riemannian manifold whose \mathbb{Q} - or \mathbb{Z}_p -cohomology algebra requires at least two generators, then M has infinitely many geometrically distinct closed geodesics in any metric.

Theorem (Sullivan–Vigué-Poirrier, Gromoll–Meyer, McCleary, Saneblidze)

If M is a compact simply-connected Riemannian manifold whose \mathbb{Q} - or \mathbb{Z}_p -cohomology algebra requires at least two generators, then M has infinitely many geometrically distinct closed geodesics in any metric.

Note: Any metric on S^2 has infinitely many closed geodesics (Bangert–Franks). Maybe this is true on every manifold (Klingenberg)?

What if **all** geodesics are closed?

M. Amann, Chr. Lange

A **Besse metric** g on the manifold M satisfies that all of its geodesics are closed. A **Besse manifold** is a manifold endowed with a Besse metric.

A **Besse metric** g on the manifold M satisfies that all of its geodesics are closed. A **Besse manifold** is a manifold endowed with a Besse metric.

Example

CROSSes: $\mathbb{S}^n, \mathbb{C}\mathbf{P}^n, \mathbb{H}\mathbf{P}^n, \mathrm{CaP}^2$

A **Besse metric** g on the manifold M satisfies that all of its geodesics are closed. A **Besse manifold** is a manifold endowed with a Besse metric.

Example

CROSSes:
$$\mathbb{S}^n, \mathbb{C}\mathbf{P}^n, \mathbb{H}\mathbf{P}^n, \mathrm{CaP}^2$$

Theorem (Bott-Samelson)

Let M be a Besse manifold, then so is its universal cover \tilde{M} and

$$H^*(\tilde{M};\mathbb{Z}) \cong H^*(X;\mathbb{Z})$$

with X a CROSS as above. In particular, if $n := \dim \tilde{M}$ is odd, then \tilde{M} is homeomorphic to \mathbb{S}^n .

Motivation to study orbifolds: They naturally occur as

Motivation to study orbifolds: They naturally occur as

quotient spaces

Motivation to study orbifolds: They naturally occur as

- quotient spaces
- ② Gromov-Hausdorff limits

Motivation to study orbifolds: They naturally occur as

- quotient spaces
- ② Gromov-Hausdorff limits
- 3 moduli spaces

A curve $\gamma: [0, l] \to \mathcal{O}$ is a **(orbifold) geodesic** if it locally lifts to a geodesic on a manifold chart. A closed (orbifold) geodesic is a continuous loop which is an (orbifold) geodesic on each subinterval. An orbifold is called **Besse** if all its geodesics are closed.

A curve $\gamma: [0, l] \to \mathcal{O}$ is a **(orbifold) geodesic** if it locally lifts to a geodesic on a manifold chart. A closed (orbifold) geodesic is a continuous loop which is an (orbifold) geodesic on each subinterval. An orbifold is called **Besse** if all its geodesics are closed.

A curve $\gamma: [0, l] \to \mathcal{O}$ is a **(orbifold) geodesic** if it locally lifts to a geodesic on a manifold chart. A closed (orbifold) geodesic is a continuous loop which is an (orbifold) geodesic on each subinterval. An orbifold is called **Besse** if all its geodesics are closed.

Motivation to study orbifold geodesics and Besse orbifolds:

There are many more examples of Besse orbifolds than Besse manifolds.

A curve $\gamma: [0, l] \to \mathcal{O}$ is a **(orbifold) geodesic** if it locally lifts to a geodesic on a manifold chart. A closed (orbifold) geodesic is a continuous loop which is an (orbifold) geodesic on each subinterval. An orbifold is called **Besse** if all its geodesics are closed.

- There are many more examples of Besse orbifolds than Besse manifolds.
- ② Certain problems in Finsler geometry can be transcribed to the realm of Besse orbifolds.

A curve $\gamma: [0, l] \to \mathcal{O}$ is a **(orbifold) geodesic** if it locally lifts to a geodesic on a manifold chart. A closed (orbifold) geodesic is a continuous loop which is an (orbifold) geodesic on each subinterval. An orbifold is called **Besse** if all its geodesics are closed.

- There are many more examples of Besse orbifolds than Besse manifolds.
- ② Certain problems in Finsler geometry can be transcribed to the realm of Besse orbifolds.
- The orbifold setting is geometrically richer than the manifold situation...as we shall see later.

A curve $\gamma: [0, l] \to \mathcal{O}$ is a **(orbifold) geodesic** if it locally lifts to a geodesic on a manifold chart. A closed (orbifold) geodesic is a continuous loop which is an (orbifold) geodesic on each subinterval. An orbifold is called **Besse** if all its geodesics are closed.

- There are many more examples of Besse orbifolds than Besse manifolds.
- ② Certain problems in Finsler geometry can be transcribed to the realm of Besse orbifolds.
- The orbifold setting is geometrically richer than the manifold situation...as we shall see later.
- ④ ... or already now: Although every "known closed orbifold" possesses a closed geodesic, it is not known if this is true in general.

M. Amann, Chr. Lange

M. Amann, Chr. Lange

Results on 2-orbifolds

Theorem (L.)

Every Riemannian 2-orbifold possesses infinitely many closed geodesics.

Theorem (L.)

Every Riemannian 2-orbifold possesses infinitely many closed geodesics.

A 2-orbifold admits a Besse metric iff it is covered by S^2 or bad (i.e. not covered by a manifold).

Theorem (L.)

The geodesic length spectrum of a Besse 2-orbifold \mathcal{O} is determined up to scaling by the topology of \mathcal{O} (in the manifold case all closed geodesics have the same length).

Theorem (L.)

Every Riemannian 2-orbifold possesses infinitely many closed geodesics.

A 2-orbifold admits a Besse metric iff it is covered by S^2 or bad (i.e. not covered by a manifold).

Theorem (L.)

The geodesic length spectrum of a Besse 2-orbifold \mathcal{O} is determined up to scaling by the topology of \mathcal{O} (in the manifold case all closed geodesics have the same length).

Problems:

- (1) How does the moduli space of Besse metrics on 2-orbifolds look like?
- ⁽²⁾ What can be said about Besse orbifolds in higher dimensions?

Consider $S^{2n+1} \subseteq C^{n+1}$ with the non-standard action of $C \supseteq S^1 \subseteq S^{2n+1}$ given by

$$w \cdot (z_0, \ldots, z_n) := (w^{a_0} z_0, \ldots, w^{a_n} z_n)$$

with rotation numbers $a_i \in \mathbb{Z} \setminus \{0\}$. Set $a := (a_0, \ldots, a_n)$. This action is almost free (clearly, not necessarily free) and the quotient

$$\mathbb{C}\mathbf{P}^n_a:=\mathbb{S}^{2n+1}/\mathbb{S}^1$$

is an orbifold.
Consider $S^{2n+1} \subseteq C^{n+1}$ with the non-standard action of $C \supseteq S^1 \subseteq S^{2n+1}$ given by

$$w \cdot (z_0, \ldots, z_n) := (w^{a_0} z_0, \ldots, w^{a_n} z_n)$$

with rotation numbers $a_i \in \mathbb{Z} \setminus \{0\}$. Set $a := (a_0, \ldots, a_n)$. This action is almost free (clearly, not necessarily free) and the quotient

$$\mathbb{C}\mathbf{P}^n_a:=\mathbb{S}^{2n+1}/\mathbb{S}^1$$

is an orbifold.

The projection π induces a quotient orbifold metric on $\mathbb{C}\mathbf{P}_a^n$ such that π is a Riemannian submersion.

Consider $S^{2n+1} \subseteq C^{n+1}$ with the non-standard action of $C \supseteq S^1 \subseteq S^{2n+1}$ given by

$$w \cdot (z_0, \ldots, z_n) := (w^{a_0} z_0, \ldots, w^{a_n} z_n)$$

with rotation numbers $a_i \in \mathbb{Z} \setminus \{0\}$. Set $a := (a_0, \ldots, a_n)$. This action is almost free (clearly, not necessarily free) and the quotient

$$\mathbb{C}\mathbf{P}^n_a:=\mathbb{S}^{2n+1}/\mathbb{S}^1$$

is an orbifold.

The projection π induces a quotient orbifold metric on $\mathbb{C}\mathbf{P}_a^n$ such that π is a Riemannian submersion.

Since \mathbb{S}^{2n+1} is a Besse manifold, every geodesic lifts to a closed geodesic and projects downwards to a closed geodesic. Hence $\mathbb{C}\mathbf{P}_a^n$ is a Besse orbifold.

Replace now \mathbb{C} by \mathbb{H} , the hypersphere \mathbb{S}^{2n+1} by \mathbb{S}^{4n+3} , and the sphere \mathbb{S}^1 by the unit quaternions \mathbb{S}^3 . Likewise, this yields a Besse orbifold

$$\mathbb{H}\mathbf{P}^n_a := \mathbb{S}^{4n+3}/\mathbb{S}^3$$

Replace now \mathbb{C} by \mathbb{H} , the hypersphere \mathbb{S}^{2n+1} by \mathbb{S}^{4n+3} , and the sphere \mathbb{S}^1 by the unit quaternions \mathbb{S}^3 . Likewise, this yields a Besse orbifold

$$\mathbb{H}\mathbf{P}^n_a:=\mathbb{S}^{4n+3}/\mathbb{S}^3$$

These examples are non-good orbifolds, so-called *weighted projective spaces*. The weighted $\mathbb{C}\mathbf{P}^1$ is a "spindle orbifold".

Replace now \mathbb{C} by \mathbb{H} , the hypersphere \mathbb{S}^{2n+1} by \mathbb{S}^{4n+3} , and the sphere \mathbb{S}^1 by the unit quaternions \mathbb{S}^3 . Likewise, this yields a Besse orbifold

$$\mathbb{H}\mathbf{P}^n_a:=\mathbb{S}^{4n+3}/\mathbb{S}^3$$

These examples are non-good orbifolds, so-called *weighted projective spaces*. The weighted $\mathbb{C}\mathbf{P}^1$ is a "spindle orbifold".

A map $\phi: \mathcal{O}' \to \mathcal{O}$ between Riemannian orbifolds of the same dimension is called *covering* if it is a submetry, i.e. $\phi(B_r(x)) = B_r(\phi(x))$ holds for all $x \in \mathcal{O}'$ and all $r \ge 0$.

A map $\phi: \mathcal{O}' \to \mathcal{O}$ between Riemannian orbifolds of the same dimension is called *covering* if it is a submetry, i.e. $\phi(B_r(x)) = B_r(\phi(x))$ holds for all $x \in \mathcal{O}'$ and all $r \ge 0$.

If $\phi : \mathcal{O}' \to \mathcal{O}$ is a covering, then every point $x \in \mathcal{O}$ has a neighborhood U isometric to some M/Γ such that each connected component of $\phi^{-1}(U)$ is isometric to M/Γ_i for some subgroup $\Gamma_i < \Gamma$ such that ϕ is compatible with the natural projections $M/\Gamma \to M/\Gamma_i$.

A map $\phi: \mathcal{O}' \to \mathcal{O}$ between Riemannian orbifolds of the same dimension is called *covering* if it is a submetry, i.e. $\phi(B_r(x)) = B_r(\phi(x))$ holds for all $x \in \mathcal{O}'$ and all $r \ge 0$.

If $\phi : \mathcal{O}' \to \mathcal{O}$ is a covering, then every point $x \in \mathcal{O}$ has a neighborhood U isometric to some M/Γ such that each connected component of $\phi^{-1}(U)$ is isometric to M/Γ_i for some subgroup $\Gamma_i < \Gamma$ such that ϕ is compatible with the natural projections $M/\Gamma \to M/\Gamma_i$.

Every orbifold \mathcal{O} has a *universal covering orbifold* $\tilde{\mathcal{O}}$.

A map $\phi: \mathcal{O}' \to \mathcal{O}$ between Riemannian orbifolds of the same dimension is called *covering* if it is a submetry, i.e. $\phi(B_r(x)) = B_r(\phi(x))$ holds for all $x \in \mathcal{O}'$ and all $r \ge 0$.

If $\phi: \mathcal{O}' \to \mathcal{O}$ is a covering, then every point $x \in \mathcal{O}$ has a neighborhood U isometric to some M/Γ such that each connected component of $\phi^{-1}(U)$ is isometric to M/Γ_i for some subgroup $\Gamma_i < \Gamma$ such that ϕ is compatible with the natural projections $M/\Gamma \to M/\Gamma_i$.

Every orbifold \mathcal{O} has a *universal covering orbifold* $\tilde{\mathcal{O}}$.

The *fundamental group* of \mathcal{O} can be defined as the group of deck transformations of $\tilde{\mathcal{O}} \to \mathcal{O}$. An orbifold is called *simply-connected* if it does not admit a non-trivial covering.

Theorem (Guruprasad–Haefliger)

Let \mathcal{O} be a simply-connected closed orbifold. Suppose that $H^*(\mathcal{O}; \mathbb{Q})$ as an algebra is not generated by one single element. Then there are infinitely many geometrically distinct closed (orbifold) geodesics on \mathcal{O} .

Theorem (Guruprasad–Haefliger)

Let \mathcal{O} be a simply-connected closed orbifold. Suppose that $H^*(\mathcal{O}; \mathbb{Q})$ as an algebra is not generated by one single element. Then there are infinitely many geometrically distinct closed (orbifold) geodesics on \mathcal{O} .

Besse orbifolds are compact and have finite fundamental group.

M. Amann, Chr. Lange

Theorem (Guruprasad–Haefliger)

Let \mathcal{O} be a simply-connected closed orbifold. Suppose that $H^*(\mathcal{O}; \mathbb{Q})$ as an algebra is not generated by one single element. Then there are infinitely many geometrically distinct closed (orbifold) geodesics on \mathcal{O} .

Besse orbifolds are compact and have finite fundamental group.

Theorem (A., L., Radeschi)

An odd dimensional Besse orbifold \mathcal{O} is covered by a manifold. Hence, by a sphere.

The action of Γ_i extends to the bundle of orthogonal frames over U_i by differentials yielding the **frame bundle** $\operatorname{Fr}(\mathcal{O})$ locally modelled on $\operatorname{Fr}(\mathbb{R}^n)/\Gamma_i$.

The action of Γ_i extends to the bundle of orthogonal frames over U_i by differentials yielding the **frame bundle** $\operatorname{Fr}(\mathcal{O})$ locally modelled on $\operatorname{Fr}(\mathbb{R}^n)/\Gamma_i$.

Theorem

For a given orbifold \mathcal{O} , its frame bundle $\operatorname{Fr}(\mathcal{O})$ is a smooth manifold with a smooth, effective and almost free $\mathbf{O}(n)$ -action, and \mathcal{O} is naturally isomorphic to the resulting quotient orbifold $\operatorname{Fr}(\mathcal{O})/\mathbf{O}(n)$.

Definition

We call

$$\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O}) \times_{\mathbf{O}(n)} \mathbf{EO}(n)$$

the classifying space of the orbifold $\mathcal{O} = \operatorname{Fr}(\mathcal{O}) / \mathbf{O}(n)$.

Definition

We call

$$\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O}) \times_{\mathbf{O}(n)} \mathbf{EO}(n)$$

the classifying space of the orbifold $\mathcal{O} = \operatorname{Fr}(\mathcal{O}) / \mathbf{O}(n)$.

One can show that orbifold coverings of ${\cal O}$ are in one-to-one correspondence with ordinary coverings of ${\bf B}{\cal O}.$ In particular, we have

 $\pi_1^{\operatorname{orb}}(\mathcal{O}) = \pi_1(\mathbf{B}\mathcal{O}).$

Definition

We call

$$\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O}) \times_{\mathbf{O}(n)} \mathbf{EO}(n)$$

the classifying space of the orbifold $\mathcal{O} = \operatorname{Fr}(\mathcal{O}) / \mathbf{O}(n)$.

One can show that orbifold coverings of ${\cal O}$ are in one-to-one correspondence with ordinary coverings of ${\bf B}{\cal O}.$ In particular, we have

$$\pi_1^{\operatorname{orb}}(\mathcal{O}) = \pi_1(\mathbf{B}\mathcal{O}).$$

Definition

Orbifold cohomology is defined as

$$H^*_{orb}(\mathcal{O}) := H^*(\mathbf{B}\mathcal{O})$$

M. Amann, Chr. Lange

Remark

• The orbifold $\mathcal{O} = Fr(\mathcal{O})/\mathbf{O}(n)$ is a manifold if and only if $\mathbf{O}(n)$ acts freely on $Fr(\mathcal{O})$.

Remark

- The orbifold $\mathcal{O} = Fr(\mathcal{O})/\mathbf{O}(n)$ is a manifold if and only if $\mathbf{O}(n)$ acts freely on $Fr(\mathcal{O})$.
- It holds that

$$\begin{aligned} \mathbf{B}(\mathbb{R}^n/\Gamma_i) &= \mathrm{Fr}(\mathbb{R}^n)/\Gamma_i \times_{\mathbf{O}(n)} \mathbf{EO}(n) \\ &\simeq (\mathbb{R}^n \times \mathbf{O}(n))/\Gamma_i \times_{\mathbf{O}(n)} \mathbf{EO}(n) \\ &\simeq \mathbb{R}^n \times_{\Gamma_i} \mathbf{EO}(n) \\ &\simeq (\mathbb{R}^n \times \mathbf{EO}(n))/\Gamma_i \\ &\simeq \mathbf{B}\Gamma_i \end{aligned}$$

and hence $H^*_{orb}(\mathbb{R}^n/\Gamma_i) = H^*(\mathbf{B}\Gamma_i) = H^*(\Gamma_i)$ and $\pi_1^{orb}(\mathbb{R}^n/\Gamma_i) = \Gamma_i$.

Remark

- The orbifold $\mathcal{O} = Fr(\mathcal{O})/\mathbf{O}(n)$ is a manifold if and only if $\mathbf{O}(n)$ acts freely on $Fr(\mathcal{O})$.
- It holds that

$$\begin{aligned} \mathbf{B}(\mathbb{R}^n/\Gamma_i) &= \mathrm{Fr}(\mathbb{R}^n)/\Gamma_i \times_{\mathbf{O}(n)} \mathbf{EO}(n) \\ &\simeq (\mathbb{R}^n \times \mathbf{O}(n))/\Gamma_i \times_{\mathbf{O}(n)} \mathbf{EO}(n) \\ &\simeq \mathbb{R}^n \times_{\Gamma_i} \mathbf{EO}(n) \\ &\simeq (\mathbb{R}^n \times \mathbf{EO}(n))/\Gamma_i \\ &\simeq \mathbf{B}\Gamma_i \end{aligned}$$

and hence $H^*_{orb}(\mathbb{R}^n/\Gamma_i) = H^*(\mathbf{B}\Gamma_i) = H^*(\Gamma_i)$ and $\pi_1^{orb}(\mathbb{R}^n/\Gamma_i) = \Gamma_i$. Moreover,

 $H^*_{orb}(\mathcal{O};\mathbb{Q})\cong H^*(\mathcal{O};\mathbb{Q})$

Weighted complex- and quaternionic projective spaces are simply-connected Besse orbifolds.

Weighted complex- and quaternionic projective spaces are simply-connected Besse orbifolds.

The integral orbifold cohomology of such a weighted $\mathbb{C}\mathbf{P}^n$ is the integral cohomology of the usual $\mathbb{C}\mathbf{P}^n$ up to its dimension n degenerating to \mathbb{Z}_k -torsion in even degrees from degree n+2 on, where k is the product of the weights.

Weighted complex- and quaternionic projective spaces are simply-connected Besse orbifolds.

The integral orbifold cohomology of such a weighted $\mathbb{C}\mathbf{P}^n$ is the integral cohomology of the usual $\mathbb{C}\mathbf{P}^n$ up to its dimension n degenerating to \mathbb{Z}_k -torsion in even degrees from degree n+2 on, where k is the product of the weights.

So maybe the best to hope for is

Conjecture

Also in the even-dimensional case integral orbifold cohomology is monicly generated.

We show that the Besse orbifold is actually a manifold, then the manifold classification yields the result. We proceed as follows.

We show that the Besse orbifold is actually a manifold, then the manifold classification yields the result. We proceed as follows.

Theorem (Quillen)

A compact Lie group G acts freely on a finite G-CW-complex X if and only if dim $H^*_G(X; \mathbb{Z}_p) < \infty$ for all $p \ge 0$.

We show that the Besse orbifold is actually a manifold, then the manifold classification yields the result. We proceed as follows.

Theorem (Quillen)

A compact Lie group G acts freely on a finite G-CW-complex X if and only if dim $H^*_G(X; \mathbb{Z}_p) < \infty$ for all $p \ge 0$.

As a consequence (for $G = \mathbf{O}(n)$ and $X = Fr(\mathcal{O})$) we obtain

Theorem

The orbifold \mathcal{O} has the structure of a manifold if and only if $\dim H^*(\mathbf{B}\mathcal{O};\mathbb{Z}_p) < \infty$ for all $p \ge 0$.

Idea for this:

 \mathcal{O} is manifold $\iff \mathbf{O}(n)$ acts freely on $F\mathcal{O}$. If so, $H^*(\mathbf{B}\mathcal{O}; \mathbb{Z}_p)$ is $H^*(F\mathcal{O}/\mathbf{O}(n); \mathbb{Z}_p)$, which is finite-dimensional, since $F\mathcal{O}/\mathbf{O}(n)$ is a manifold.

Idea for this:

 \mathcal{O} is manifold $\iff \mathbf{O}(n)$ acts freely on $F\mathcal{O}$. If so, $H^*(\mathbf{B}\mathcal{O}; \mathbb{Z}_p)$ is $H^*(F\mathcal{O}/\mathbf{O}(n); \mathbb{Z}_p)$, which is finite-dimensional, since $F\mathcal{O}/\mathbf{O}(n)$ is a manifold.

Remains to prove: Whenever orbifold cohomology is finite dimensional, the orbifold is already a manifold.

Idea for this:

 \mathcal{O} is manifold $\iff \mathbf{O}(n)$ acts freely on $F\mathcal{O}$. If so, $H^*(\mathbf{B}\mathcal{O};\mathbb{Z}_p)$ is $H^*(F\mathcal{O}/\mathbf{O}(n);\mathbb{Z}_p)$, which is finite-dimensional, since $F\mathcal{O}/\mathbf{O}(n)$ is a manifold.

Remains to prove: Whenever orbifold cohomology is finite dimensional, the orbifold is already a manifold.

Suppose that $\mathbf{O}(n)$ acts on $F\mathcal{O}$ with a point of finite isotropy $\Gamma \neq 0$. Since $\Gamma \neq 0$, we may pick a non-trivial element in there generating a finite cyclic group; without restriction \mathbb{Z}_p for a prime p.

Since p is prime, \mathbb{Z}_p acts freely if and only if it acts without fixed-points. Thus it remains to show that \mathbb{Z}_p cannot have a fixed-point, contradicting its very construction.

Since p is prime, \mathbb{Z}_p acts freely if and only if it acts without fixed-points. Thus it remains to show that \mathbb{Z}_p cannot have a fixed-point, contradicting its very construction.

We compute the equivariant cohomology of the action as

$$H^*_{\mathbb{Z}_p}(F\mathcal{O};\mathbb{Z}_p) = H^*(F\mathcal{O}\times_{\mathbb{Z}_p} \mathbf{EO}(n);\mathbb{Z}_p)$$

Since p is prime, \mathbb{Z}_p acts freely if and only if it acts without fixed-points. Thus it remains to show that \mathbb{Z}_p cannot have a fixed-point, contradicting its very construction.

We compute the equivariant cohomology of the action as

$$H^*_{\mathbb{Z}_p}(F\mathcal{O};\mathbb{Z}_p) = H^*(F\mathcal{O}\times_{\mathbb{Z}_p} \mathbf{EO}(n);\mathbb{Z}_p)$$

Hsiang localisation (with a bit of abuse of notation) yields an isomorphism of (non-graded) algebras

$$S^{-1}H^*_{\mathbb{Z}_p}(F\mathcal{O};\mathbb{Z}_p)\cong S^{-1}H^*_{\mathbb{Z}_p}((F\mathcal{O})^{\mathbb{Z}_p};\mathbb{Z}_p)$$

Since p is prime, \mathbb{Z}_p acts freely if and only if it acts without fixed-points. Thus it remains to show that \mathbb{Z}_p cannot have a fixed-point, contradicting its very construction.

We compute the equivariant cohomology of the action as

$$H^*_{\mathbb{Z}_p}(F\mathcal{O};\mathbb{Z}_p) = H^*(F\mathcal{O}\times_{\mathbb{Z}_p} \mathbf{EO}(n);\mathbb{Z}_p)$$

Hsiang localisation (with a bit of abuse of notation) yields an isomorphism of (non-graded) algebras

$$S^{-1}H^*_{\mathbb{Z}_p}(F\mathcal{O};\mathbb{Z}_p)\cong S^{-1}H^*_{\mathbb{Z}_p}((F\mathcal{O})^{\mathbb{Z}_p};\mathbb{Z}_p)$$

Obtain

$$S^{-1}H^*_{\mathbb{Z}_p}((F\mathcal{O})^{\mathbb{Z}_p};\mathbb{Z}_p) \cong S^{-1}(H^*((F\mathcal{O})^{\mathbb{Z}_p} \times \mathbf{B}\mathbb{Z}_p;\mathbb{Z}_p))$$
$$\cong S^{-1}(H^*(\mathbf{B}\mathbb{Z}_p;\mathbb{Z}_p) \otimes H^*((F\mathcal{O})^{\mathbb{Z}_p};\mathbb{Z}_p))$$

and derive that $S^{-1}H^*_{\mathbb{Z}_p}((F\mathcal{O})^{\mathbb{Z}_p};\mathbb{Z}_p)$ vanishes if and only if \mathbb{Z}_p acts without fixed-points. Equivalently, since $H^*(\mathbf{B}\mathbb{Z}_p;\mathbb{Z}_p)$ is infinite dimensional over \mathbb{Z}_p , we conclude that

$$\dim_{\mathbb{Z}_p} H^*_{\mathbb{Z}_p}(F\mathcal{O};\mathbb{Z}_p) < \infty \qquad \Longleftrightarrow \qquad \mathbb{Z}_p \text{ acts freely.}$$

A. Amann, Chr. Lange

Now we take profit of the manifold recognition theorem: Via

$$\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)} \xrightarrow{\phi} \mathbf{E}\mathbf{O}(n) / \mathbf{O}(n) = \mathbf{B}\mathbf{O}(n)$$

 $H^*(\mathbf{B}F\mathcal{O};\mathbb{Z}_p)$ is an $H^*(\mathbf{BO}(n);\mathbb{Z}_p)$ -module. This yields the orbifold Stiefel–Whitney and Pontryagin classes

$$w_i(\mathcal{O}) := \phi^*(w_i)$$
$$p_i(\mathcal{O}) := \phi^*(p_i)$$

Now we take profit of the manifold recognition theorem: Via

$$\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)} \xrightarrow{\phi} \mathbf{E}\mathbf{O}(n) / \mathbf{O}(n) = \mathbf{B}\mathbf{O}(n)$$

 $H^*(\mathbf{B}F\mathcal{O}; \mathbb{Z}_p)$ is an $H^*(\mathbf{BO}(n); \mathbb{Z}_p)$ -module. This yields the orbifold Stiefel–Whitney and Pontryagin classes

$$w_i(\mathcal{O}) := \phi^*(w_i)$$
$$p_i(\mathcal{O}) := \phi^*(p_i)$$

By a spectral sequence argument we prove

Corollary

If the orbifold Pontryagin and Stiefel–Whitney classes are nilpotent elements, the orbifold is actually a manifold.

We want to show that all orbifold characteristic classes vanish in our case!

As a next step we do Morse theory on the loop space in order to better understand the orbifold classifying space $\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)}$.
As a next step we do Morse theory on the loop space in order to better understand the orbifold classifying space $\mathbf{B}\mathcal{O} = \operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)}$. For regular points q_1, q_2 and fixed $z \in \pi^{-1}(q_2)$ a suitable version of an orbifold loop space is

$$\begin{split} \Omega_{q_1,q_2}^{\mathsf{orb}}\mathcal{O} &:= \{\gamma : [0,1] \to \operatorname{Fr}(\mathcal{O}) \mid \gamma \text{ piecew. smooth, } \gamma(0) \in \pi^{-1}(q_1), \gamma(1) = z \} \\ \text{where } \pi \colon \operatorname{Fr}(\mathcal{O}) \to \mathcal{O}. \text{ There is a homotopy equivalence} \\ \Omega_{q_1,q_2}^{\mathsf{orb}}\mathcal{O} \simeq \Omega(\operatorname{Fr}(\mathcal{O})_{\mathbf{Q}(n)}) \end{split}$$

The Besse condition yields that this space has **uniformly bounded** Betti numbers in all coefficients.

The Besse condition yields that this space has **uniformly bounded** Betti numbers in all coefficients.

• First apply this in the rational case using rational homotopy theory. This yields

$$H^*(\operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)}; \mathbb{Q}) \cong H^*(\mathbb{S}^n; \mathbb{Q})$$

and

$$H^*(\Omega(\operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)}); \mathbb{Q}) \cong H^*(\Omega \mathbb{S}^n; \mathbb{Q})$$

This can be seen as follows: Given a minimal Sullivan model $(\Lambda V, d)$ of $(\operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)})$, a model for the loop space $\Omega((\operatorname{Fr}\mathcal{O})_{\mathbf{O}(n)})$ is given by $(\Lambda V^{-1}, 0)$, since an *H*-space has trivial differential.

This can be seen as follows: Given a minimal Sullivan model $(\Lambda V, d)$ of $(\operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)})$, a model for the loop space $\Omega((\operatorname{Fr}\mathcal{O})_{\mathbf{O}(n)})$ is given by $(\Lambda V^{-1}, 0)$, since an *H*-space has trivial differential.

There are two even-degree spherical cohomology classes in $H^*(\Omega(\operatorname{Fr} \mathcal{O})_{\mathbf{O}(n)})$ $\iff \dim V^{\operatorname{odd}} \ge 2$ \iff there is a polynomial algebra $\mathbb{Q}[u, v] \subseteq H^*(\Omega\operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)}; \mathbb{Q}).$ This can be seen as follows: Given a minimal Sullivan model $(\Lambda V, d)$ of $(\operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)})$, a model for the loop space $\Omega((\operatorname{Fr}\mathcal{O})_{\mathbf{O}(n)})$ is given by $(\Lambda V^{-1}, 0)$, since an *H*-space has trivial differential.

There are two even-degree spherical cohomology classes in $H^*(\Omega(\operatorname{Fr} \mathcal{O})_{\mathbf{O}(n)})$ $\iff \dim V^{\operatorname{odd}} \ge 2$ \iff there is a polynomial algebra $\mathbb{Q}[u, v] \subseteq H^*(\Omega \operatorname{Fr}(\mathcal{O})_{\mathbf{O}(n)}; \mathbb{Q}).$

Since Betti numbers are uniformly bounded, this cannot be the case and $\mathbf{B}\mathcal{O} = (\mathrm{Fr}(\mathcal{O}))_{\mathbf{O}(n)}$ has a monicly generated rational cohomology algebra, in odd dimensions the one of a sphere.

Push this down to \mathbb{Z}_p -coefficients using work of McCleary drawing on Hopf structures, the Bockstein spectral sequence, etc.

 $H^*(\Omega \mathbf{B}\mathcal{O}) \cong H^*(\Omega(\mathrm{Fr}(\mathcal{O})_{\mathbf{O}(n)})) \cong H^*(\Omega_{q_1,q_2}^{\mathsf{orb}}\mathcal{O};\mathbb{Z}_p) \cong H^*(\Omega \mathbb{S}^n;\mathbb{Z}_p)$

Push this down to \mathbb{Z}_p -coefficients using work of McCleary drawing on Hopf structures, the Bockstein spectral sequence, etc.

$$H^*(\Omega \mathbf{B}\mathcal{O}) \cong H^*(\Omega(\mathrm{Fr}(\mathcal{O})_{\mathbf{O}(n)})) \cong H^*(\Omega_{q_1,q_2}^{\mathsf{orb}}\mathcal{O};\mathbb{Z}_p) \cong H^*(\Omega \mathbb{S}^n;\mathbb{Z}_p)$$

Then, up to an application of the Wu formula, by degree reasons the orbifold characteristic classes vanish.

Thank you very much