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What this talk is about...

Groups are everywhere...

Groups are omnipresent in mathematics, and in geometry in particular.

... or are they?

This is because we consider mostly parts of mathematics where groups
are present and conveniently ignore the rest.

But isn’t this bias justified?

Many problem simplify dramatically, and in fact only become tractable at
all, in the presence of symmetries. Also, nature seems to have a bias
towards symmetric structures, just consider how atoms are organized in
crystals.
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What this talk is about...

No, it is not!
If you believe that matter is organized in periodic ways, you are stuck in
the 1980s. There are mathematical structures with no symmetries which
are still very tractable, and even appear in nature (quasi-crystals).

Our mantra for this talk
Reconsider the things you do with periodic structures and investigate
whether you can do similar things in the presence of some kind of
aperiodic order. This will usually require to enrich the theory by
introducing non-trivial dynamical systems.

For limitations of time, space and competence of the speaker, I will focus
on classical topics in geometric group theory, Lie theory and harmonic
analysis which one usually studies in periodic situations. I will try to
convince you that many of these topics can be studied in aperiodic
settings.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



What this talk is about...

No, it is not!
If you believe that matter is organized in periodic ways, you are stuck in
the 1980s. There are mathematical structures with no symmetries which
are still very tractable, and even appear in nature (quasi-crystals).

Our mantra for this talk
Reconsider the things you do with periodic structures and investigate
whether you can do similar things in the presence of some kind of
aperiodic order. This will usually require to enrich the theory by
introducing non-trivial dynamical systems.

For limitations of time, space and competence of the speaker, I will focus
on classical topics in geometric group theory, Lie theory and harmonic
analysis which one usually studies in periodic situations. I will try to
convince you that many of these topics can be studied in aperiodic
settings.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



What this talk is about...

No, it is not!
If you believe that matter is organized in periodic ways, you are stuck in
the 1980s. There are mathematical structures with no symmetries which
are still very tractable, and even appear in nature (quasi-crystals).

Our mantra for this talk
Reconsider the things you do with periodic structures and investigate
whether you can do similar things in the presence of some kind of
aperiodic order. This will usually require to enrich the theory by
introducing non-trivial dynamical systems.

For limitations of time, space and competence of the speaker, I will focus
on classical topics in geometric group theory, Lie theory and harmonic
analysis which one usually studies in periodic situations. I will try to
convince you that many of these topics can be studied in aperiodic
settings.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Table of Contents

1 Periodic structures: Geometric actions, lattices, periodic tilings

2 Approximate lattices

3 The hull of a uniform approximate lattice

4 Geometric approximate group theory

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Groups as large-scale geometric objects

(X , d) proper geodesic metric space
Γ (discrete) group acting on (X , d) by isometries
(X , d) geometric model for Γ :⇔ Γ y (X , d) properly & cocompactly

Examples

1 (M, g) closed Riem. manifold ⇒ (M̃, g̃) geometric model for π1(M).
2 Γ fin.-gen., S finite gen. set ⇒ Cay(Γ,S) geometric model for Γ.

Lemma (Schwarz–Milnor)

A group Γ admits a geometric model iff it is fin.-gen.
In this case, any two geometric models are quasi-isometric.

Thus, fin. gen. group Γ  canonical QI type [Γ].
Properties of [Γ] are properties of Γ (geometric properties).
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Information flows both ways

Geometric properties sometimes imply algebraic properties, e. g.

Theorem(Gromov)

[Γ] has polynomial volume growth ⇔ Γ is virtually nilpotent.

Conversely, groups can be used to encode QI types:

Example (Encoding QI types by finite presentations)

Γ := 〈a1, b1, a2, b2 | [a1, b1][a2, b2] = e〉 has geometric model H2

 Cay(Γ, {a1, b1, a2, b2}) gives a model for the QI type [H2]
 Encoding of [H2] by finite data (e. g. to store it in a computer)

If Γ y (X , d) geometrically, then [Γ] = [X ]. Sometimes the converse
holds (QI rigidity), e.g. for Riemannian symmetric space of non-compact
type without Euclidean factors (Tukkia, Pansu, Kleiner–Leeb).
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A different perspective

(X , d) proper geodesic metric space.

Observation

Isometric action Γ y (X , d) ↔ Homomorphism ρ : Γ→ Is(X , d)

Geometric action Γ y (X , d) ↔ ρ has finite kernel and ρ(Γ)
is a uniform lattice in Is(X , d).

Recall:
Is(X , d) is a compactly-generated lcsc group w.r.t. compact-open
topology (and every cglcsc group is isomorphic to some Is(X , d)).
A uniform lattice in a lcsc group is a discrete, cocompact subgroup.

The study of geometric actions is the study of finite extensions of lattices
in compactly-generated lcsc groups.
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Studying lattices

A lcsc group G is called an envelope of Γ if Γ is a uniform lattice in G .
Many properties of envelopes are reflected by their lattices and vice versa.

Γ is finite, finitely generated, abelian, nilpotent, solvable, amenable,
a-T -menable, has Property (T), (FLp), exponential growth, . . . iff
G is compact, compactly generated, abelian, nilpotent, ...
Γ is unimodular (since the counting measure is bi-invariant), and
“hence” G is unimodular.

A key tool in transferring information between Γ and G is the associated
homogeneous space G/Γ. This has two key properties:

It is a compact space with a jointly continuous G -action (topological
dynamical system).
It admits a unique G -invariant probability measure with which it is
an ergodic measurable G -dynamical system.

These dynamical systems are transitive, hence the orbit structure is trivial.
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Yet another perspective

If Γ y (X , d) geometrically and o ∈ X , then for every point x ∈ Γ.o
define the associated Voronoi cell by

V (x) := {x ′ ∈ X | d(x , x ′) = min
y∈Γ.o

d(y , x ′)}.

These Voronoi cells form a periodic tiling of X by compact convex tiles,
and Γ acts transitively on tiles, i.e. each tile is a fundamental domain.

Conversely, the symmetry group of a periodic tiling with compact tiles is
a uniform lattice in the isometry group.
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Lattices in crystallography and harmonic analysis

Lattices in Rn serve as mathematical models for crystals. Experimentally,
crystals are often studied by diffraction experiments, i. e. by shooting a
laser at them and measuring the resulting diffraction picture. To evaluate
such experiments one uses Poisson summation formula:

Poisson summation formula (mathematical version)

For all sufficiently regular and sufficiently fast decaying functions
f : Rd → C the following identity holds:∑

x∈Γ

f (x) =
∑
ξ∈Γ∗

f̂ (ξ).

Here, Γ∗ ⊂ Rn denotes the dual lattice

Γ∗ = {v ∈ Rn | ∀w ∈ Γ : 〈v ,w〉 ∈ Z}.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Lattices in crystallography and harmonic analysis

Lattices in Rn serve as mathematical models for crystals. Experimentally,
crystals are often studied by diffraction experiments, i. e. by shooting a
laser at them and measuring the resulting diffraction picture. To evaluate
such experiments one uses Poisson summation formula:

Poisson summation formula (mathematical version)

For all sufficiently regular and sufficiently fast decaying functions
f : Rd → C the following identity holds:∑

x∈Γ

f (x) =
∑
ξ∈Γ∗

f̂ (ξ).

Here, Γ∗ ⊂ Rn denotes the dual lattice

Γ∗ = {v ∈ Rn | ∀w ∈ Γ : 〈v ,w〉 ∈ Z}.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Lattices in crystallography and harmonic analysis

Lattices in Rn serve as mathematical models for crystals. Experimentally,
crystals are often studied by diffraction experiments, i. e. by shooting a
laser at them and measuring the resulting diffraction picture. To evaluate
such experiments one uses Poisson summation formula:

Poisson summation formula (Physical formulation)

If one shoots a laser at a crystal, whose structure is described by a lattice
Γ, then the diffraction picture consists entirely of sharp peaks (Bragg
peaks) of equal intensity.

The positions of these peaks are given by the
dual lattice Γ∗.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Lattices in crystallography and harmonic analysis

Lattices in Rn serve as mathematical models for crystals. Experimentally,
crystals are often studied by diffraction experiments, i. e. by shooting a
laser at them and measuring the resulting diffraction picture. To evaluate
such experiments one uses Poisson summation formula:

Poisson summation formula (Physical formulation)

If one shoots a laser at a crystal, whose structure is described by a lattice
Γ, then the diffraction picture consists entirely of sharp peaks (Bragg
peaks) of equal intensity. The positions of these peaks are given by the
dual lattice Γ∗.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Lattices in crystallography and harmonic analysis

Lattices in Rn serve as mathematical models for crystals. Experimentally,
crystals are often studied by diffraction experiments, i. e. by shooting a
laser at them and measuring the resulting diffraction picture. To evaluate
such experiments one uses Poisson summation formula:

Poisson summation formula (mathematical version)

For all sufficiently regular and sufficiently fast decaying functions
f : Rd → C the following identity holds:∑

x∈Γ

f (x) =
∑
ξ∈Γ∗

f̂ (ξ).

Here, Γ∗ ⊂ Rn denotes the dual lattice

Γ∗ = {v ∈ Rn | ∀w ∈ Γ : 〈v ,w〉 ∈ Z}.

For lattices in non-commuative groups there exist similar (but much more
complicated) formulas (e. g. trace formulas)
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The 1983 revolution in crystallography

The following picture was produced in 1983 by Dan Shechtman when
conducting a diffraction experiment at an aluminum-manganese alloy. It
single-handedly ended the period of classical crystallography:

What is so shocking about this picture?

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Why is this picture so shocking?

1 The diffraction picture shows sharp Bragg peaks. Away from these
peaks, the light waves cancel out almost completely. This means
that the atoms in the alloy must obey very specific structural rules:
They are highly ordered.

2 The diffraction picture clearly shows a 10-fold symmetry. But by the
crystallographic obstruction, a lattice in dimension 2 or 3 cannot
have 10-fold symmetry. Thus the atomic structure is aperiodic.

3 Thus, contrary to the claims of classical crystallography, there exist
materials which show aspects of aperiodic order: “quasi-crystals”.

What would be mathematical models for such materials? It turns out
that the required models were developed a decade earlier by Yves Meyer
in his study of Pisot numbers. In modern terminology these are
approximate lattices, a special class of approximate subgroups.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Why is this picture so shocking?

1 The diffraction picture shows sharp Bragg peaks. Away from these
peaks, the light waves cancel out almost completely. This means
that the atoms in the alloy must obey very specific structural rules:
They are highly ordered.

2 The diffraction picture clearly shows a 10-fold symmetry. But by the
crystallographic obstruction, a lattice in dimension 2 or 3 cannot
have 10-fold symmetry. Thus the atomic structure is aperiodic.

3 Thus, contrary to the claims of classical crystallography, there exist
materials which show aspects of aperiodic order: “quasi-crystals”.

What would be mathematical models for such materials? It turns out
that the required models were developed a decade earlier by Yves Meyer
in his study of Pisot numbers. In modern terminology these are
approximate lattices, a special class of approximate subgroups.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Why is this picture so shocking?

1 The diffraction picture shows sharp Bragg peaks. Away from these
peaks, the light waves cancel out almost completely. This means
that the atoms in the alloy must obey very specific structural rules:
They are highly ordered.

2 The diffraction picture clearly shows a 10-fold symmetry. But by the
crystallographic obstruction, a lattice in dimension 2 or 3 cannot
have 10-fold symmetry. Thus the atomic structure is aperiodic.

3 Thus, contrary to the claims of classical crystallography, there exist
materials which show aspects of aperiodic order: “quasi-crystals”.

What would be mathematical models for such materials? It turns out
that the required models were developed a decade earlier by Yves Meyer
in his study of Pisot numbers. In modern terminology these are
approximate lattices, a special class of approximate subgroups.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Why is this picture so shocking?

1 The diffraction picture shows sharp Bragg peaks. Away from these
peaks, the light waves cancel out almost completely. This means
that the atoms in the alloy must obey very specific structural rules:
They are highly ordered.

2 The diffraction picture clearly shows a 10-fold symmetry. But by the
crystallographic obstruction, a lattice in dimension 2 or 3 cannot
have 10-fold symmetry. Thus the atomic structure is aperiodic.

3 Thus, contrary to the claims of classical crystallography, there exist
materials which show aspects of aperiodic order: “quasi-crystals”.

What would be mathematical models for such materials? It turns out
that the required models were developed a decade earlier by Yves Meyer
in his study of Pisot numbers.

In modern terminology these are
approximate lattices, a special class of approximate subgroups.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Why is this picture so shocking?

1 The diffraction picture shows sharp Bragg peaks. Away from these
peaks, the light waves cancel out almost completely. This means
that the atoms in the alloy must obey very specific structural rules:
They are highly ordered.

2 The diffraction picture clearly shows a 10-fold symmetry. But by the
crystallographic obstruction, a lattice in dimension 2 or 3 cannot
have 10-fold symmetry. Thus the atomic structure is aperiodic.

3 Thus, contrary to the claims of classical crystallography, there exist
materials which show aspects of aperiodic order: “quasi-crystals”.

What would be mathematical models for such materials? It turns out
that the required models were developed a decade earlier by Yves Meyer
in his study of Pisot numbers. In modern terminology these are
approximate lattices, a special class of approximate subgroups.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



A brief and biased history of approximate subgroups

Approximate subgroups were defined by Terry Tao in 2008, but have
appeared under various names in different areas since the 70ies:

’70 In his study of Pisot numbers, Yves Meyer introduces and classifies
harmonious sets in abelian locally-compact groups. These are the
first examples of approximate subgroups in the literature.

’73 Freiman publishes his influential book on additive combinatorics and
introduces finite approximate subgroups of abelian groups.

’83 Erdös and Szemeredi study finite approximate subgroups of solvable
groups in their work on sum-product-phenomena.

’84 Dan Shechtman discovers quasi-crystals experimentally; subsequent
joint efforts of mathematicians, physicists and crystallographers
show that Meyer’s harmonious sets (now called Meyer sets) are the
correct mathematical models.

’94 L. Pauling (“There are no quasi-crystals, only quasi-scientists.”) dies.
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A brief and biased history of approximate subgroups (ctd.)

’08 Papers of Bourgain–Gamburd and Helfgott in Ann. Math. point out
the relevance of finite approximate subgroups in the context of
superstrong approximation.

’11 Nobel prize in chemistry for Dan Schechtman.
’12 Breuillard, Green and Tao complete their structure theory of finite

approximate subgroups with a 100 page paper in Publ. IHES.

’16 Björklund and Hartnick initiate the study of infinite, non-abelian
approximate subgroups by geometric means (geometric approximate
group theory, approximate lattices).

’17 Abel prize for Yves Meyer.

We will not follow the historical development, but present approximate
groups from our current point of view.
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Approximate subgroups

Definition (T.Tao, 2008)

Let G be a group, k ∈ N. A subset Λ < G is called a k-approximate
subgroup if:

1 Λ contains the identity and Λ = Λ−1.
2 There is a subset F ⊂ G of cardinality ≤ k such that Λ · Λ ⊂ Λ · F .

Trivial Examples

By definition, a subgroup is a 1-approximate subgroup.
Every finite set Λ is a |Λ|-approximate subgroup. Symmetric arithmetic
progressions in Z are 2-approximate subgroups.
If Λ is an approximate subgroup and ∆ ⊂ Λ ⊂ ∆F ′ for some finite F ′,
then ∆ is an approximate subgroup (relatively dense in Λ).

We are going to construct infinite approximate subgroups which are not
relatively dense in an actual subgroup. These examples will in fact be
approximate lattices.
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Approximate lattices

If (X , d) is a metric space, then Ξ ⊂ X is called a Delone set if

0 < inf{d(x , y) | x , y ∈ Ξ, x 6= y} < sup{d(x ,Ξ) | x ∈ X} <∞.

Delone sets in lcsc groups

If G is a lcsc group, then every left-invariant, proper, continuous metric
on G has the same Delone sets (Delone sets in G ). A subgroup in G is a
uniform lattice iff it is Delone.

Definition (M. Björklund, T. H.)

A subset Λ ⊂ G is a uniform approximate lattice if it is a Delone set and
an approximate subgroup.

Relation to Meyer’s original definition (Björklund–H.)

A Delone set Λ ⊂ G is a Meyer set if (Λ−1Λ)k is discrete for all k ∈ N.
Uniform approximate lattices are precisely the symmetric Meyer sets.
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Meyer’s “Cut-and-Project”-construction

Take...

two lcsc groups, a base space G and an auxiliary space H;
an irreducible uniform lattice Γ in G × H;
a compact, Jordan measurable subset W ⊂ H with non-empty
interior (the “window”).

CUT out the strip (G ×W ) ∩ Γ of the lattice ...

H

W

G
x

(Illustration: G. Keller / C. Richard)
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Meyer’s “Cut-and-Project”-construction

H

W

G

(Illustration: G. Keller / C. Richard)

... and PROJECT the lattice points inside this strip to G .

Outcome
The resulting model set

Λ := Λ(G ,H, Γ,W ) = πG ((G ×W ) ∩ Γ) ⊂ G

(and hence every relatively dense subset of a model set) is a Meyer set.
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A famous Euclidean example

The Penrose tiling is the Voronoi tiling associated with a model set in R2

(but Penrose did not construct it in this way, nor was he aware of Meyer’s
work).

Many other Euclidean tilings constructed in the last 50 years turned out
to be Meyer tilings.
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Which groups admit Meyer sets?

Every lcsc group containing a Meyer set must be unimodular.

Semisimple Lie groups contain Meyer sets (as well as uniform lattices).
Concerning nilpotent Lie groups we have:

Example

A 1-connected nilpotent Lie group G admits a uniform lattice if its Lie
algebra admits a basis with rational structure constants. It admits a
Meyer set iff its Lie algebra admits a basis with algebraic structure
constants. Thus most nilpotent Lie groups which admit a uniform
approximate lattice do not admit an actual uniform lattice.

Theorem [Björklund–H.]

If Λo is a model set in a lcsc group G , then there exists a model set
Λ = Λ(G ,H, Γ,W ) with H a connected Lie group such that Λo is a
relatively dense subset of a finite enlargement of Λ. In particular, if G
does not admit a uniform lattice coupling with a non-trivial connected Lie
group, then every model set in G is essentially periodic.
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Meyer’s embedding theorem

When Meyer was awarded the Abel prize, he was asked by the EMS what
was his favourite among the theorems he proved. He named the
following:

Meyer’s embedding theorem

Every Meyer set (hence in particular every uniform approximate lattice) in
a compactly-generated locally compact abelian group is a relatively dense
subset of a model set.

Informally, in the abelian world, aperiodic order is just a shadow of
periodic order in higher dimensions.

The holy grail of aperiodic order

Is it true that every uniform approximate lattice in a lcsc group is a
relatively dense subset of a model set?

We do not know the answer to this question for any non-abelian lcsc
group (except those which don’t admit uniform approximate lattices).
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Towards the holy grail for nilpotent Lie groups

Theorem [Björklund–H.]

A→ G
π−→ Q abelian extension, Λ ⊂ G uniform approximate lattice.

Then the following conditions are equivalent:
1 π(Λ) is a uniform approximate lattice in Q.
2 Over a relatively dense subset of π(Λ) the fibers are Meyer sets.

In this case, Λ and A are called adapted; A is universally adapted if it is
adapted for every Λ.

Theorem [Björklund–H.]

Every 1-connected nilpotent Lie group admits a universally adapted
characteristic abelian subgroup A.
If G is 2-step one can take A := C (G ), otherwise A := C (CG ([G ,G ])).

Thus uniform approximate lattices in nilpotent 1-connected Lie groups
are iterated extensions of Meyer sets by abelian Meyer sets.
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Definition of the hull

The space of closed subsets of a lcsc group G carries a natural compact
Hausdorff topology (Chabauty–Fell topology).

If Λ ⊂ G is a Delone set, then we define its hull as the orbit closure

ΩΛ := {g .Λ | g ∈ G}.

It Λ is a uniform lattice, then ΩΛ is simply G/Λ.

For uniform
approximate lattices the hull admits the following characterizations:

Theorem (H.–Uso)
1 ΩΛ = {Λ′ ⊂ G | ∀R > 0 ∃g ∈ G : Λ′ ∩ BR(e) = gΛ ∩ BR(e)}.
2 Call f ∈ C (G ) strongly pattern equivariant if for some R > 0,

BR(x) ∩ Λ = BR(y) ∩ Λ ⇒ f (x) = f (y).

Then the uniform closure CPE (G ) ⊂ C (G ) of such functions is a
commutative unital C∗-algebra and ΩΛ = spec(CPE (G )).
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It Λ is a uniform lattice, then ΩΛ is simply G/Λ. For uniform
approximate lattices the hull admits the following characterizations:

Theorem (H.–Uso)
1 ΩΛ = {Λ′ ⊂ G | ∀R > 0 ∃g ∈ G : Λ′ ∩ BR(e) = gΛ ∩ BR(e)}.

2 Call f ∈ C (G ) strongly pattern equivariant if for some R > 0,

BR(x) ∩ Λ = BR(y) ∩ Λ ⇒ f (x) = f (y).

Then the uniform closure CPE (G ) ⊂ C (G ) of such functions is a
commutative unital C∗-algebra and ΩΛ = spec(CPE (G )).
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Properties of the hull

G y ΩΛ is a topological dynamical system which generalizes G/Γ.

If G is amenable, then there exists a G -invariant ergodic measure ν
in ΩΛ, giving rise to a measurable dynamical system G y (ΩΛ, ν),
but in general it is unclear whether such a ν exists.
There do, however, always exist stationary measures on the hull,
which is e. g. enough to prove that an envelope of a uniform
approximate lattice is unimodular (Björklund–H.).
In the case of model sets, one has the following deep theorem, which
in the abelian case goes back to Schlottmann:

Theorem (Björklund–H.–Pogorzelski)

If Λ(G ,H, Γ,W ) ⊂ G is a model set, then there exists a unique
G -invariant measure νΛ on ΩΛ. Moreover, L2(ΩΛ, νΛ) ∼= L2((G × H)/Γ)
decomposes discretely as a G -representation.
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Application to diffraction of quasi-crystals

The discrete decomposability of L2(ΩΛ, νΛ) for model sets has the
following consequence in the abelian setting:

Theorem (Meyer’s diffraction formula)

If Λ = Λ(Rn,Rk , Γ,W ) ⊂ Rn then for all f ∈ Cc(Rn),∑
x,y∈Λ

′f (x − y)

:= lim
R→∞

1
Vol(BR(0))

∑
x∈Λ∩BR (0)

∑
y∈Λ

f (x − y)

=
∑

(k,`)∈Γ⊥

|χ̂W (`)|2 · f̂ (k)

This explains Shechtman’s diffraction experiment. The Bragg peaks are
those k for which (k, `) ∈ Γ⊥ and |χ̂W (`)|2 > ε, where ε is the accuracy
of the detector.
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Beyond the abelian case

Meyer’s diffraction formula

lim
R→∞

1
Vol(BR(0))

∑
x∈Λ∩BR (0)

∑
y∈Λ

f (x − y) =
∑

(k,l)∈Γ⊥

|χ̂W (l)|2 · f̂ (k)

has been extended by Björklund–H.–Pogorzelski to Riemannian
symmetric space of the non-compact type,

and more generally to
commutative spaces G/K associated with Gelfand pairs with the
following modifications:

On the LHS, f is a bi-K -invariant function on G , balls are replaced by
suitable approximation sequences (BR), and we evaluate f a f (Kg−1hK),
where gK ∈ Λ ∩ BR and hK ∈ Λ.

On the RHS, the spherical Fourier transform f̂ is evaluated at elements of
the spherical automorphic spectrum of Γ, and the coefficients are given by
a certain integral transform depending on the Gelfand pair and the lattice
called the shadow transform. (If K is open in G , then this is just a version
of the Hecke correspondence from analytic number theory.)
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Approximate groups and geometric actions

An approximate group is a pair (Λ,Λ∞), where Λ∞ is a group and
Λ ⊂ Λ∞ is an approximate subgroup which generates Λ∞.

A geometric action of (Λ,Λ∞) on a proper geodesic metric space (X , d)
is an isometric action of Λ∞ such that

1 Λ× X → X × X , (λ, x) 7→ (x , λ.x) is proper.
2 For some (hence any) o ∈ X the set Λ.o is relatively dense in X .

Equivalently, it is a homomorphism ρ∞ : Λ∞ → Is(X , d) such that
ker(ρ∞) ∩ Λk is finite for all k ∈ N and ρ∞(Λ) is a uniform approximate
lattice in Is(X , d). (Cordes–H.–Tonić)
Then (X , d) is called a geometric model for (Λ,Λ∞), and any two
geometric models are quasi-isometric.

So far, everything is as for groups, but there is one major difference: An
approximate group need not have a geometric model!

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Approximate groups and geometric actions

An approximate group is a pair (Λ,Λ∞), where Λ∞ is a group and
Λ ⊂ Λ∞ is an approximate subgroup which generates Λ∞.
A geometric action of (Λ,Λ∞) on a proper geodesic metric space (X , d)
is an isometric action of Λ∞ such that

1 Λ× X → X × X , (λ, x) 7→ (x , λ.x) is proper.
2 For some (hence any) o ∈ X the set Λ.o is relatively dense in X .

Equivalently, it is a homomorphism ρ∞ : Λ∞ → Is(X , d) such that
ker(ρ∞) ∩ Λk is finite for all k ∈ N and ρ∞(Λ) is a uniform approximate
lattice in Is(X , d). (Cordes–H.–Tonić)
Then (X , d) is called a geometric model for (Λ,Λ∞), and any two
geometric models are quasi-isometric.

So far, everything is as for groups, but there is one major difference: An
approximate group need not have a geometric model!

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Approximate groups and geometric actions

An approximate group is a pair (Λ,Λ∞), where Λ∞ is a group and
Λ ⊂ Λ∞ is an approximate subgroup which generates Λ∞.
A geometric action of (Λ,Λ∞) on a proper geodesic metric space (X , d)
is an isometric action of Λ∞ such that

1 Λ× X → X × X , (λ, x) 7→ (x , λ.x) is proper.
2 For some (hence any) o ∈ X the set Λ.o is relatively dense in X .

Equivalently, it is a homomorphism ρ∞ : Λ∞ → Is(X , d) such that
ker(ρ∞) ∩ Λk is finite for all k ∈ N and ρ∞(Λ) is a uniform approximate
lattice in Is(X , d). (Cordes–H.–Tonić)

Then (X , d) is called a geometric model for (Λ,Λ∞), and any two
geometric models are quasi-isometric.

So far, everything is as for groups, but there is one major difference: An
approximate group need not have a geometric model!

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Approximate groups and geometric actions

An approximate group is a pair (Λ,Λ∞), where Λ∞ is a group and
Λ ⊂ Λ∞ is an approximate subgroup which generates Λ∞.
A geometric action of (Λ,Λ∞) on a proper geodesic metric space (X , d)
is an isometric action of Λ∞ such that

1 Λ× X → X × X , (λ, x) 7→ (x , λ.x) is proper.
2 For some (hence any) o ∈ X the set Λ.o is relatively dense in X .

Equivalently, it is a homomorphism ρ∞ : Λ∞ → Is(X , d) such that
ker(ρ∞) ∩ Λk is finite for all k ∈ N and ρ∞(Λ) is a uniform approximate
lattice in Is(X , d). (Cordes–H.–Tonić)
Then (X , d) is called a geometric model for (Λ,Λ∞), and any two
geometric models are quasi-isometric.

So far, everything is as for groups,

but there is one major difference: An
approximate group need not have a geometric model!

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Approximate groups and geometric actions

An approximate group is a pair (Λ,Λ∞), where Λ∞ is a group and
Λ ⊂ Λ∞ is an approximate subgroup which generates Λ∞.
A geometric action of (Λ,Λ∞) on a proper geodesic metric space (X , d)
is an isometric action of Λ∞ such that

1 Λ× X → X × X , (λ, x) 7→ (x , λ.x) is proper.
2 For some (hence any) o ∈ X the set Λ.o is relatively dense in X .

Equivalently, it is a homomorphism ρ∞ : Λ∞ → Is(X , d) such that
ker(ρ∞) ∩ Λk is finite for all k ∈ N and ρ∞(Λ) is a uniform approximate
lattice in Is(X , d). (Cordes–H.–Tonić)
Then (X , d) is called a geometric model for (Λ,Λ∞), and any two
geometric models are quasi-isometric.

So far, everything is as for groups, but there is one major difference: An
approximate group need not have a geometric model!

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



Associating a QI type with an approximate group

(Λ,Λ∞) countable approx. group, d proper left-invariant metric on Λ∞

[Λ]c := [Λ, d |Λ×Λ]c coarse equivalence class of Λ (independent of d).

In the group case, if Λ = Λ∞ is finitely generated, then one can define a
canonical QI type. In our case, we have two possible generalizations:

First generalization

(Λ,Λ∞) is geometrically finitely-generated if there exists a large-scale
geodesic metric do on Λ representing [Λ]c . In this case, its canonical QI
type is defined as [Λ] := [Λ, do ] (independent of do).

Second generalization

(Λ,Λ∞) is algebraically finitely-generated if Λ∞ is a f.g. group. In this
case its external QI type is [Λ]ext := [Λ, dS |Λ×Λ] for a word metric dS on
Λ∞ (independent of S).
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Distortion in approximate groups

Let (Λ,Λ∞) be a countable group which is both geometrically and
algebraically finitely-generated.

(Λ,Λ∞) is called undistorted if [Λ] = [Λ]ext, otherwise distorted.

In the group case Λ = Λ∞ is geometrically f.g. iff it is algebraically f.g.
iff it is f.g.; in this case it is always undistorted.
An example of a distorted approximate group is given by

Λ∞ := 〈a, b | bab−1 = a2〉, Λ := 〈a〉 ∪ {b, b−1}.

This approximate group is exponentially distorted.

Theorem (Cordes–H.–Tonić)

A distorted approximate group does not have a geometric model.
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QI rigidity

In view of the previous result, we formulate the QI rigidity problem as
follows:

Definition

A proper geodesic metric space (X , d) is QI rigid with respect to
approximate groups if for every undistorted geometrically and
algebraically finitely-generated approximate group (Λ,Λ∞) we have

[Λ] = [X ] ⇒ (Λ,Λ∞) y X geometrically

Theorem (Cordes–H.–Tonić, Björklund–H., Kleiner–Leeb)

Every Riemannian symmetric space of non-compact type without
Euclidean factors or factors of rank one is QI rigid with respect to
approximate groups.

The rank one case is currently open. We believe that the real-hyperbolic
case should work, except possibly for H2 (ongoing joint work with T.
Dymarz).
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A key tool

A finitely-generated group Γ admits a geometric action on itself with
respect to a word metric.

This is not the case for an approximate groups
(even an undistorted ones), but it does admit a geometric quasi-action on
itself. Rather then defining this formally, let us describe this quasi-action
in the undistorted case.
Fix a word metric on Λ∞. Then the inclusions Λk ↪→ Λk+1 are quasi-
isometries, hence admits quasi-inverses pk : Λk+1 → Λk . Now if γ ∈ Λk ,
then left-multiplication Lγ by γ maps Λ to Λk+1 and we define
λ(g) : Λ→ Λ by

λ(g) : Λ

Lg

++
Λ2

p1

ii Λ3

p2

ii . . .
p3

ii Λk+1

pk

jj .

Then ρ : Λ∞ → QI(Λ) is the left-regular geometric quasi-action.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



A key tool

A finitely-generated group Γ admits a geometric action on itself with
respect to a word metric. This is not the case for an approximate groups
(even an undistorted ones), but it does admit a geometric quasi-action on
itself. Rather then defining this formally, let us describe this quasi-action
in the undistorted case.

Fix a word metric on Λ∞. Then the inclusions Λk ↪→ Λk+1 are quasi-
isometries, hence admits quasi-inverses pk : Λk+1 → Λk . Now if γ ∈ Λk ,
then left-multiplication Lγ by γ maps Λ to Λk+1 and we define
λ(g) : Λ→ Λ by

λ(g) : Λ

Lg

++
Λ2

p1

ii Λ3

p2

ii . . .
p3

ii Λk+1

pk

jj .

Then ρ : Λ∞ → QI(Λ) is the left-regular geometric quasi-action.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



A key tool

A finitely-generated group Γ admits a geometric action on itself with
respect to a word metric. This is not the case for an approximate groups
(even an undistorted ones), but it does admit a geometric quasi-action on
itself. Rather then defining this formally, let us describe this quasi-action
in the undistorted case.
Fix a word metric on Λ∞. Then the inclusions Λk ↪→ Λk+1 are quasi-
isometries, hence admits quasi-inverses pk : Λk+1 → Λk .

Now if γ ∈ Λk ,
then left-multiplication Lγ by γ maps Λ to Λk+1 and we define
λ(g) : Λ→ Λ by

λ(g) : Λ

Lg

++
Λ2

p1

ii Λ3

p2

ii . . .
p3

ii Λk+1

pk

jj .

Then ρ : Λ∞ → QI(Λ) is the left-regular geometric quasi-action.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



A key tool

A finitely-generated group Γ admits a geometric action on itself with
respect to a word metric. This is not the case for an approximate groups
(even an undistorted ones), but it does admit a geometric quasi-action on
itself. Rather then defining this formally, let us describe this quasi-action
in the undistorted case.
Fix a word metric on Λ∞. Then the inclusions Λk ↪→ Λk+1 are quasi-
isometries, hence admits quasi-inverses pk : Λk+1 → Λk . Now if γ ∈ Λk ,
then left-multiplication Lγ by γ maps Λ to Λk+1

and we define
λ(g) : Λ→ Λ by

λ(g) : Λ

Lg

++
Λ2

p1

ii Λ3

p2

ii . . .
p3

ii Λk+1

pk

jj .

Then ρ : Λ∞ → QI(Λ) is the left-regular geometric quasi-action.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



A key tool

A finitely-generated group Γ admits a geometric action on itself with
respect to a word metric. This is not the case for an approximate groups
(even an undistorted ones), but it does admit a geometric quasi-action on
itself. Rather then defining this formally, let us describe this quasi-action
in the undistorted case.
Fix a word metric on Λ∞. Then the inclusions Λk ↪→ Λk+1 are quasi-
isometries, hence admits quasi-inverses pk : Λk+1 → Λk . Now if γ ∈ Λk ,
then left-multiplication Lγ by γ maps Λ to Λk+1 and we define
λ(g) : Λ→ Λ by

λ(g) : Λ

Lg

++
Λ2

p1

ii Λ3

p2

ii . . .
p3

ii Λk+1

pk

jj .

Then ρ : Λ∞ → QI(Λ) is the left-regular geometric quasi-action.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



A key tool

A finitely-generated group Γ admits a geometric action on itself with
respect to a word metric. This is not the case for an approximate groups
(even an undistorted ones), but it does admit a geometric quasi-action on
itself. Rather then defining this formally, let us describe this quasi-action
in the undistorted case.
Fix a word metric on Λ∞. Then the inclusions Λk ↪→ Λk+1 are quasi-
isometries, hence admits quasi-inverses pk : Λk+1 → Λk . Now if γ ∈ Λk ,
then left-multiplication Lγ by γ maps Λ to Λk+1 and we define
λ(g) : Λ→ Λ by

λ(g) : Λ

Lg

++
Λ2

p1

ii Λ3

p2

ii . . .
p3

ii Λk+1

pk

jj .

Then ρ : Λ∞ → QI(Λ) is the left-regular geometric quasi-action.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures



References

M. Björklund, T. Hartnick, Approximate lattices, Duke Math. J., to
appear, arXiv:1612.09246.
M. Björklund, T. Hartnick, Analytic properties of approximate
lattices, Ann. Inst. Fourier, to appear, arXiv:1709.09942.
M. Björklund, T. Hartnick, F. Pogorzelski, Aperiodic order and
spherical diffraction, I: Auto-correlation of regular model sets, Proc.
Lond. Math. Soc. (3) 116 (2018), no. 4, 957–996.
M. Björklund, T. Hartnick, F. Pogorzelski, Aperiodic order and
spherical diffraction, II: The shadow transform and the diffraction
formula, arXiv:1704.00302.
M. Cordes, T. Hartnick, V. Tonić, Foundations of geometric
approximate group theory, in preparation.

Tobias Hartnick, Justus-Liebig-Universität Gießen Aperiodic structures


	Periodic structures: Geometric actions, lattices, periodic tilings
	Approximate lattices
	The hull of a uniform approximate lattice
	Geometric approximate group theory

