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Pseudodifferential operators

Notations

M an n-dimensional smooth closed manifold;

π : E → M a finite rank vector bundle;

C∞(M,E) the space of smooth sections of E ;

Ψcl(M,E) the algebra of polyhomogeneous (or classical) pseudodifferential
operators acting on C∞(M,E); we write Ψcl(M) if E = M × C.

Example

(M, g) a Riemannian manifold, E = M × C, ∆g = −
∑n

i,j=1
1√
g
∂ig

ij √g∂j
the Laplace-Beltrami operator: (∆g + πg )−1 ∈ Ψcl

−2(M);

M a spin manifold and E = S the spinor bundle, D2 the square of the
Dirac operator D =

∑n
i=1 γi∂i : log(D2 + πD) /∈ Ψcl(M,E).

Classes of pseudodifferential operators determined by their order

For Γ ⊂ C, let ΣΓ(M,E) := {A ∈ Ψcl(M,E), ord(A) ∈ Γ}. Examples: The class

ΨZ
cl(M,E) (resp. Ψ/∈Z

cl (M,E)) of integer order (resp. noninteger order) classical

pseudodifferential operators.
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Locality versus non-locality

Definition

A ∈ Ψcl(M,E) is local if it satisfies the two equivalent conditions:

it preserves the support Supp(Aφ) ⊂ Supp(φ) for φ ∈ C∞(M);

(locality relation) Supp(φ) ∩ Supp(ψ) = ∅ =⇒ φAψ = 0 for φ, ψ ∈ C∞(M).

Local pseudodifferential operators

A ∈ Ψcl(M,E)

is in general only micro-local, it preserves the support of singularities
WF(Au) ⊂WF(u), so in particular Suppsing(Au) ⊂ Suppsing(u) ∀u ∈
D′(M).

it is local if and only it is a differential operator.

ε-locality, ε ≥ 0

A properly supported operator A ∈ Ψcl(M,E) is ε- local (finite propagation) i.e., it
satisfies the two equivalent conditions:

it preserves the support modulo an ε-perturbation
Supp(Aφ) ⊂ Neighε (Supp(φ)) for all φ ∈ C∞(M);

φ>εψ :⇐⇒ d (Supp(φ),Supp(ψ)) > ε =⇒ φAψ = 0 for all φ ∈ C∞(M).

A 0-local operator A is local: φ>0ψ =⇒ φAψ = 0.
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TRACE DEFECT FORMULAE FOR GEOMETRIC OPERATORS New trends and open problems in Global Analysis and Geometry 4 of 17



Locality versus non-locality

Definition

A ∈ Ψcl(M,E) is local if it satisfies the two equivalent conditions:

it preserves the support Supp(Aφ) ⊂ Supp(φ) for φ ∈ C∞(M);

(locality relation) Supp(φ) ∩ Supp(ψ) = ∅ =⇒ φAψ = 0 for φ, ψ ∈ C∞(M).

Local pseudodifferential operators

A ∈ Ψcl(M,E)

is in general only micro-local, it preserves the support of singularities
WF(Au) ⊂WF(u), so in particular Suppsing(Au) ⊂ Suppsing(u) ∀u ∈
D′(M).

it is local if and only it is a differential operator.

ε-locality, ε ≥ 0

A properly supported operator A ∈ Ψcl(M,E) is ε- local (finite propagation) i.e., it
satisfies the two equivalent conditions:

it preserves the support modulo an ε-perturbation
Supp(Aφ) ⊂ Neighε (Supp(φ)) for all φ ∈ C∞(M);

φ>εψ :⇐⇒ d (Supp(φ),Supp(ψ)) > ε =⇒ φAψ = 0 for all φ ∈ C∞(M).

A 0-local operator A is local: φ>0ψ =⇒ φAψ = 0.
Sylvie Paycha, University of Potsdam, on leave from Université Clermont-Auvergne
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Pseudodifferential operators on manifolds are ”tamely” non-local

”Tame” non-locality for pseudodifferential operators

For any A ∈ Ψcl(M,E) and any ε > 0, there exists A0 ∈ Ψcl(M,E) ε-local such
that

A− A0︸︷︷︸
ε−local

=: SA ∈ Ψ−∞(M,E) has smooth kernel supported outside the diagonal.

Notations

U = (Ui )i∈I is a finite open cover of M;

(χi )i∈I is a partition of unity subordinated to U ;

A ∈ Ψ−∞(M,E) := ∩r∈RΨr
cl(M,E) has smooth Schwartz kernel.

”Tame” non-locality (following Shubin)

For A ∈ Ψcl(M,E)

A =
∑
i,j

χi Aχj︸ ︷︷ ︸
Aij

=
∑

Supp(χi )∩Supp(χj ) 6=∅

Aij

︸ ︷︷ ︸
A0=:Op(σ(A)) is ε-local

+
∑

Supp(χi )∩Supp(χj )=∅

Aij

︸ ︷︷ ︸
SA∈Ψ−∞(M,E)

, (1)
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TRACE DEFECT FORMULAE FOR GEOMETRIC OPERATORS New trends and open problems in Global Analysis and Geometry 6 of 17



PART II

Local linear forms

Sylvie Paycha, University of Potsdam, on leave from Université Clermont-Auvergne
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>0- locality

>0- locality on C∞(M)

φ>0ψ :⇐⇒ Supp(φ)∩Supp(ψ) = ∅.

>0- locality on linear forms

A ”linear” form Λ on ΣΓ(M,E) is >0- local if for any φ, ψ ∈ C∞(M)

φ>0ψ =⇒ Λ(φAψ) = 0 (2)

.
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TRACE DEFECT FORMULAE FOR GEOMETRIC OPERATORS New trends and open problems in Global Analysis and Geometry 7 of 17



Local linear forms: the canonical trace and the residue

A >0- local form Λ is local (proved for E = M × C)

(??) ∧ (??) =⇒ Λ(A) = Λ(Op(σ(A))) only depends on the symbol σ(A)

in fact, Λ is local, i.e. of the form

Λ(A) =

∫
M
ωΛ
A(x)with ωΛ

A(x) = Λx (A) dx , Λx (A) = λ(σ(A)(x , ·)),

for some linear form λ on the symbol class of ΣΓ(M,E) and under additional
continuity assumptions.

Characterisation of local ”linear” forms (with S. AZZALI 2016)

Let Λ : ΣΓ(M,E)→ C be a local linear form:

if Γ = Z, then Λ is proportional to the Wodzicki residue:

Res(A) =

∫
M
Resx (A) dx ; Resx (A) =

∫
|ξx |=1

trx (σ−n(A)(x , ·)) .

if Γ = C \ Z, then Λ proportional to the canonical trace:

TR(A) =

∫
M
TRx (A) dx ; TRx (A) =

∫
Rn

trx (σ(A)(x , ·)) .
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TRACE DEFECT FORMULAE FOR GEOMETRIC OPERATORS New trends and open problems in Global Analysis and Geometry 8 of 17



Local linear forms: the canonical trace and the residue

A >0- local form Λ is local (proved for E = M × C)

(??) ∧ (??) =⇒ Λ(A) = Λ(Op(σ(A))) only depends on the symbol σ(A)

in fact, Λ is local, i.e. of the form

Λ(A) =

∫
M
ωΛ
A(x)with ωΛ

A(x) = Λx (A) dx , Λx (A) = λ(σ(A)(x , ·)),

for some linear form λ on the symbol class of ΣΓ(M,E) and under additional
continuity assumptions.

Characterisation of local ”linear” forms (with S. AZZALI 2016)

Let Λ : ΣΓ(M,E)→ C be a local linear form:

if Γ = Z, then Λ is proportional to the Wodzicki residue:

Res(A) =

∫
M
Resx (A) dx ; Resx (A) =

∫
|ξx |=1

trx (σ−n(A)(x , ·)) .

if Γ = C \ Z, then Λ proportional to the canonical trace:

TR(A) =

∫
M
TRx (A) dx ; TRx (A) =

∫
Rn

trx (σ(A)(x , ·)) .

Sylvie Paycha, University of Potsdam, on leave from Université Clermont-Auvergne
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Defect formulae: local defects/ discrepancies/ anomalies

Defect formulae measure defects of regularised traces (built from the canonical
trace) in terms of the Wodzicki residue (which is local.

Defect formulae (with S. SCOTT 2007)

Let A(z) ∈ Ψcl(M,E) be a holomorphic family of order −q z + a.

A(0) is differential =⇒ lim
z→0

(TR (A(z))) =
1

q

(
Res

(
A′(0)

))
is local.

ζ-regularised trace of differential (so local) operators

Take A(z) = AQ−z for A(0) = A differential and Q elliptic pseudodifferential
operator of order q > 0 (e.g. a Laplacian) with spectral cut: the ζ-regularised
trace of A with weight/regulator Q reads

ζA,Q(0) := lim
z→0

(
TR

(
A Q−z)) = − 1

q
Res

A log(Q)︸ ︷︷ ︸
NON local !


︸ ︷︷ ︸

local !

.
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Consequence: the index as a residue (on closed manifolds)

Notations

(M, g) Riemannian closed manifold;

π : E = E+ ⊕ E− −→ M a finite rank Z2-graded Clifford hermitian bundle;

D = D+ ⊕ D− with D± : C∞(M,E±) −→ C∞(M,E∓) an odd elliptic
differential operator of order 1;

D+ is formally adjoint to D−, so ∆ := ∆+ ⊕∆− is an even elliptic
essentially self-adjoint differential operator of order 2. Here ∆+ = D−D+

and ∆− = D+D−.

How defect formulae come in (A = Id , Q = ∆, q = 2)

ind(D+) = dim(Ker(D+))− dim(Ker(D−)) = Tr(πD+ )−Tr(πD− )

= Tr((D−D+ + πD+ )−z )−Tr((D+D− + πD− )−z ) Re(z) >> 0

since non zero eigenvalues ofD±cancel pairwise

= sTR
(
(∆ + π∆)−z

)
(meromorphic extension)

= lim
z→0

sTR

 Id︸︷︷︸
A

(∆ + π∆)︸ ︷︷ ︸
Q

−z

 = −
1

2
sRes (log∆)︸ ︷︷ ︸

local

(defect formula).
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For us to keep in mind: Locality of the index (Atiyah and Singer (1963))

The index is local as an integral of a differential form ω

ind(D+) =
∫
M ω(x), with ω expressed in terms of the curvature R.

If dimM = 2k, the Chern-Gauss-Bonnet index theorem(1850, 1945) on
Ω(M) with the natural Z2-grading.

ind
(
(d + d∗)+

)
= χ(M) =

∫
M

Pfaffian(R)(x).

If dimM = 4k, the Hirzebruch signature theorem (1966) on Ω(M) with
the Hodge-star operator Z2-grading.

ind
(
(d + d∗)+

)
= sign(M) =

∫
M

L-form(R)(x).
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PART III

Rescaling at a point
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Geometric operators

Deformation to the normal cone M 7−→ M := (M × R∗) ∪ (Tx0M × {0}) .

For λ ∈ R∗ define fx0,λ : Uλx0
= expx0

Br/|λ| −→ Ux0 = expx0
Brby

fx0,λ(expx0
u) = expx0

(λ u).

Rescaled operators (with G. HABIB (2008))

A differential operator A is geometric of degree deg(A) if deg(A) is the largest real

number d (so such a number should exist!) such that for any x0 ∈ M, λ−d f ]x0,λ
A

converges as λ→ 0 and we denote the rescaled limit operator by

Aresc
x0

:= lim
λ→0

(
λ−deg(A) f ]x0,λ

A
)
. (3)

Relation to Gilkey’s invariant polynomials

A differential operator A(g) =
∑
|α|≤a Aα(X , g) ∂αx whose coefficients are invariant

polynomials Aα(X , g) in the metric g , is geometric with degree

deg(A(g)) = minαdα; dα = degGi(Aα)− |α|.

At a point x0 ∈ M, the limit rescaled differential operator reads

A(g)rescx0
=

 ∑
dα=deg(A)

Aα(X , g) ∂αx


|

x0 . (4)
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Examples

The Laplace-Beltrami operator

Let (M, g) be a Riemannian manifold. The Laplace-Beltrami operator
∆g = −

∑n
i,j=1

1√
g
∂ig

ij √g∂j on M is geometric of degree −4. In normal

coordinates around a point x0 ∈ M, we have

lim
λ→0

(
λ4 f]x0,λ

∆g

)
= −

n∑
i=1

∂2
i |x0 . (5)

The Dirac operator

Let (M, g) be a spin manifold.The Dirac operator D =
∑n

i=1 c(ei )∇ei and its
square D2 are geometric of degree −2:

(
D2
)resc
x0

= −

(
n∑

j=1

(
∂j −

1

4
Rjl(x0) x l

))2

, (6)

where Rjl(x) = Rjlαβ(x) c(eα)c(eβ).

Remark

The degree of a geometric operator is not additive on compositions!
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Rescaled defect formula (with G. HABIB 2018)

Let A(z) ∈ Ψcl(M,E) be a holomorphic family of order −q z + a.

Rescaled holomorphic families

If there is some d(z) such that lim
λ→0

(
λ−d(z) f ]x0,λ

A(z)
)

= A(z)rescx0
, then

lim
λ→0

(
λ−d(0) fp

z=0

(
TR

(
f ]x0,λ

A(z)
)))

=
1

q
Res

∂z (A(z)rescx0

)
|z=0︸ ︷︷ ︸

NON local!


︸ ︷︷ ︸

local!

.

Rescaled index formula (S. SCOTT 2012)

ind(D+) = −1

2
sRes

log∆resc
x0︸ ︷︷ ︸

NON local!


︸ ︷︷ ︸

local!

.
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TRACE DEFECT FORMULAE FOR GEOMETRIC OPERATORS New trends and open problems in Global Analysis and Geometry 15 of 17



Rescaled defect formula (with G. HABIB 2018)

Let A(z) ∈ Ψcl(M,E) be a holomorphic family of order −q z + a.

Rescaled holomorphic families

If there is some d(z) such that lim
λ→0

(
λ−d(z) f ]x0,λ

A(z)
)

= A(z)rescx0
, then

lim
λ→0

(
λ−d(0) fp

z=0

(
TR

(
f ]x0,λ

A(z)
)))

=
1

q
Res

∂z (A(z)rescx0

)
|z=0︸ ︷︷ ︸

NON local!


︸ ︷︷ ︸

local!

.

Rescaled index formula (S. SCOTT 2012)

ind(D+) = −1

2
sRes

log∆resc
x0︸ ︷︷ ︸

NON local!


︸ ︷︷ ︸

local!

.

Sylvie Paycha, University of Potsdam, on leave from Université Clermont-Auvergne
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Open questions

How to compute the residue of a logarithm:

Res(logA) =

∫
M

dx

(∫
|ξx |=1

trx (σ−n(logA)(x , ·)) dSξ

)
;

Why go to non local objects in order to build local expressions from a local
operator D:

D︸︷︷︸
local

−→ logD2︸ ︷︷ ︸
NON local !

−→ Res(logD2)︸ ︷︷ ︸
local

.

Analogy with:

the heat-kernel approach:

D︸︷︷︸
local

−→ e−εD
2︸ ︷︷ ︸

NON local !

−→ fp
ε=0

Tr
(
e−εD

2
)

︸ ︷︷ ︸
local

quantisation procedures, here functional quantisation:

A(φ) = 〈φ,∆φ〉︸ ︷︷ ︸
local classical action

−→ Z :=

∫
φ

eA(φ)Dφ︸ ︷︷ ︸
NON local effective action

−→ 〈φ(x1) · · ·φ(xk)〉︸ ︷︷ ︸
local amplitudes

.
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