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G, holonomy 1

There is the concept of a non-degenerate 3-form on R’, but it can
be positive or negative.

The former (¢, varying smoothly) defines a G, structure on M7,
an underlying Riemannian metric h, and a 4-form xp.

dp =20

Hol(h) C G <= Vp =0 <= { digp = 0

In this case, h is Ricci-flat.

G, manifolds are analogues of Calabi-Yau 3-folds. Many compact
manifolds admitting such metrics are known, but not (of course)
the exact metrics themsleves.



G, metrics with symmetry 2

If (N®, k) is nearly-Kahler (weak holonomy SU(3)) then

» dr? + r’k has holonomy G, on Rtx N
» dr? + (sin r)?k has weak holonomy G, on (0,7) x N

We can take
N=53xs%  CP3 F = SU(3)/ T2,
with isometry groups SU(2)3, SO(5)~Sp(2), SU(3).

NK metrics with a co-homogeneous one action by SU(2)? exist on
both S3 x S$3 and S® [Foscolo-Haskins-Nordstrom 2016].

Complete G, metrics with SU(2)2x U(1) symmetry (so rank 3) are
also known [FHN 2018].



A nilpotent example 3

An ansatz has been described for G, metrics with a T3 action
[Madsen-Swann 2018].

Simplest example. Rather than a NK space, take a nilmanifold
N® based on the Lie algebra (0,0,0,23,31,12), so there is a basis
(ej) of 1-forms so that de; = ex A e3 etc. Then N has an SU(3)
structure that can be evolved into a metric

1
p2(ef 4 e3 4 e3) + ;(ef +e2 +eg) + puiduc.

with holonomy equal to G» on M = (0,00) x N.

Here, 1 is one component of a moment map M — R* that arises
from the toric theory.



G, and physics 4

“...all of physics has a completely geometric origin in M theory on
a singular Gy manifold” [Acharya 2016]

> string theories are modelled on 6 hidden dimensons in space
> the only known compact Ricci-flat 6-manifolds have special
holonomy SU(3), thus the importance of Calabi-Yau spaces

» M theory unifies the five supersymmetric string theories by
adding an 11th dimension

» G, manifolds provide suitable models, and are expected to
come with circle fibrations

> singularities of codimension 4 and 7 are needed to produce
Yang-Mills fields and particles



5

» From the theory of ALE spaces, RT x (CIF’?,J,’M is conjectured
to carry a metric with holonomy Gy. This is true when n =1,
and this lecture will focus on an S quotient of RTxCP3 that
resembles R® with two singular R3's meeting at the origin.
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Technicalities

Suppose that U(1) acts on a (non-compact) manifold with a G,
holonomy metric h, and that .2y = 0. Set

1/t =
’[’] =

g =

Then

| X]| = h(X,X)Y2 measures orbit size

t>XJh dual 1-form with n(X) =1
dn so XaF=0and dF =0
Xdip so do = 0.

© = nho+t¥t

xp = nA(E2)7) + 5(to)

Here, W = 4™ + i)~ is an induced (3,0)-form for the SU(3)
structures on the base, and F = dn is the curvature 2-form.



Today’s example: S! acting on S*

s7 RS — R*xR*
{ {
CP R+ x CP? u
{ Q@
St R3 x R3
¢
$*/51 = D3

Q is induced from the action of SO(2) on S* C R? @ R3.

The action fixes two 2-spheres in CP3, giving R3 UR3 in R®.



Goals

Consider
¢ = RTxCP3

NQ
RO\ O = ./

We seek explicit descriptions of:

» the NK structure on CP3? and the G, 3-form ¢ on €

» the 2-torus action on R® and the map Q: € — .#

» the metric g induced on .# from the Gy, metric h on ¥
> the symplectic form o on .# and the curvature F of @

» subvarieties of .#Z on which @ or g is flat.



Hopf maps

7
Let e = ) dx? be the Euclidean metric, and R = x?.
i=0

Right multiplication by Sp(1) gives Killing vector fields

Yo = x,0p) — X0 — e — X507 + X705
Y3 =30y — xp03 — e — X505 + %50,
57
31
tangent to the fibres of Ccp3
12,3

st



Linear forms

Set a; = YjJ e, so for example
a1 = Xy dxg — Xpdxg — -+ — X7dxg + XgdX;
Each 1-form &; = «;/R is invariant by R*, and the 2-forms
7, = dé1 — 2423
T, = dbo — 2431
T3 = db3 — 2412
pass to S*, where they form a basis of ASD forms.

Moreover, d& = 7y + 2da23 is a Kahler form on (CIP’3, J).
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Nearly-Kahler data 11

Lemma. The NK structure of (CP3, J,) is given by

w = T —6423 = ddl —3@23

These forms satisfy the identities

dw = 3ImT,
dT = 2uw2

Note. The conical G, structure on 4 now has

¢ = dRAR?w+R3ImT = d(3Rw),
xp = dRAR3ReT + 3(Rw)?> = d(1R*ReT)



The G, metric 12
7 7
Recall that e = >~ dx? and R = Y x2.
i=0 i=0
Proposition. The G, metric h on € = Rt xCP3? pulls back to
%dF\’2 +2Re — 2a% — a% — oz%
on R&\ 0.

This is invariant by Sp(2) and we want to “push it down” to .Z .

Problems.
1. Use the proposition to prove by computer that g is Ricci-flat.
2. Is there a version for weighted (C]P)in,l’l?

PS. Consider also metrics obtained by changing coefficients of the
«; preserving the degeneracy condition Y74 h =0.



A 2-torus action on R® 13

Left multiplication by U(1) on H? generates
X = X1 = x10y) — X901 +x30,—X203 + - - - +x705— X507,
and one observes that
S(X + Y1) =x0y — %001 + x504 — %405
2(X = Y1) =530, — %05 + x;05 — x50
These define standard U(1) actions on each of R¢;,5 and R3¢ .

Using hyperkahler moment maps, it follows that

CP3 R* R*
R-l- o~ o~ R?’ R?)
U@~ ua) C ) s

modulo the origin.



Gibbons-Hawking ansatz
Let g = xy + X1/ + X4j + x5k. The Killing field X + Y7 induces a
tri-holomorphic action on R3145 with moment map
q—qiq=uji—usj+uk,

invariant by g ~ e'tq, where

— 2 2 2 2
uy = 2(=x1% + X%5)

Note that u = |u| satisfies u? = u? + u3 + 3.

Using R3347, we define vy, v,, v3 and v in the same way.
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Invariant functions

Our left U(1) in Sp(2) commutes with SU(2) which acts as
S0(3) as follows:

» trivially on the first factor of R? & R3 O S§*
» diagonally on the quotient R® = R3 @ R3.

The induced SU(3) structure on R® can be expressed in terms of
SO(3) invariant quantities manufactured from the coordinates

(u7v):(u17 Uy, Uz, Vy, Vo, V3)7
the radii u,v (and R = u+ v), using scalar and triple products.

The involution j on CP3 generates an isometry &: u <+ v.
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A first application 16

We compute the symplectic form
o=Xd1¢=4d(,
where ( = %R:“XJ (dé1 — 3dA23). It can be expressed in terms of
1 :x12+x22—x32—xf+x§+x62—x72—x§

p2 = 2(=x1% + XoX3 — X5Xg + X6X7)
13 = 2(xx3 + XX + X5X7 + X6 Xg)-

where pj = X . Recall that R =u+v.

Theorem.

o = R(3duAdv —dundv)+ 3dR A (v-du — u-dv).



A Lagrangian foliation 17

Corollary. The mapping .# — R3 given by (u,v) — u -+ v has
Lagrangian fibres.

Set x = u+ v. The result follows from a computation:
dx; ANdxo Adxg Ao = 0.

The single subspace u=v is also Lagrangian.

Problems.

3. Find Darboux coordinates for w. In particular, is there a there a
map y=¢(u,v) so that w=dx Ady?

4. Describe the reduced twistor fibration .# — S*/U(1) = D3. Is
it given by (u,v) — (u+v)/R?



The curvature 2-form F 18

The connection 1-form 7 equals t?> X1 h, where t = 1/ X|.

Proposition.
t72 = 6uv —2uwv
n= 2RXJe—2ujoy — poaz — [303.
The curvature F = dn is invariant by RTxR™, and so determined
by its restriction F to 52 x S2.

Theorem.

F o %{u,du,du}%—d(%tz{u,v,du})

© means we have to add on terms after applying € to the RHS, so
it becomes symmetric in u,v.



The induced complex volume form 19

The space of (3,0) forms on .Z is generated by W = ¢ + j3p~.

Theorem.
—tyT @  2v(t72+4v?){du,du,du}
—v(4u? + 3uv + u-v){dv, du, du}
+((u + 2v)v-dv + vu-dv) A {u, du, du}
+(vu-dv — uv-dv) A {v, du, du}.

™ & (t72 +4v?){du,du, du}
+((3+ %)u-v — 3u? — 5uv){du, dv, dv}
+2v-dv A {u, du, du}
+2¢v-du A {v,dv, dv}
+((1 = {)v-dv + (3 + ¥)u-dv) A {v, du, du}.

One presumes that J is not integrable, i.e. that d(t'/2y%) # 0!



The induced metric

The metric g on .# =2 R®\ 0 for which
Q: (657/7) — (‘%7g)

is a Riemannian submersion on an open set of its domain can be
computed via Q*g = h — n®n.

Theorem [Bryant].

1
£=5 [(du + dv)-(du + dv) + (du + dv)ﬂ
£2
t [S(Vdu — udv)-(vdu — udv)
+2(vdu + udv — u-dv — v-du)?

— (vdu — udv — u-dv +v-du)2].
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Restricting to subspaces 21

The restriction of g to the quadrant {(0,0, u,0,0,v)} with
u,v > 0 equals

g=(1+2%)du*+ %dudv + (14 £)dv2.
This has Gaussian curvature K = 0. We'll explain why.

Extend the domain R? to {u; = 0,v; = 0} = R*, which contains
representatives of each SO(3) orbit. Here we set

{u = (0, ucos(0+X), —usin(0+X))
v = (0, vcos(0—X), vsin(0—X)),

with
u= Rcos?(¢/2), v = Rsin?(¢/2),

to ensure that u + v = R.



22

Corollary. The circle bundle is flat over R* = R2xR?. The
restriction of g to R* equals dR? + R?g, where
2g = d6?+ 3(3 — cos26)d¢?
+3(7 + cos 20 + 25sin? § cos 2¢)dX>
+2cospdfdX — % sin20sin pdo dX.

Invariants of the SO(3) action are u, v, 0, since u-v = uv cos?26.

When X = 0, we obtain a slice S1x[0, 7] to the SO(3) orbits on
which
2g = d6? + 1(3 — cos20)d¢>.

Adding an isometric slice with X = 7/2 gives



A surface of revolution

The 2-sphere represents
Q71! of a single semi-circle:

Top and bottom circles
are identified, and # is
foliated by cones over 2-tori
of this shape:

The blue plane corresponds
to points where u,v are
aligned:
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PABS

The function

can be interpreted as a measure of the angles between the
subspaces v =0 and v = 0, i.e. the two R3’s whose union is
image of the fixed point set in %

It varies from /2 to m/+/2 ~ 127°, and the bulge in the surface
of revolution reflects the fact that a circle of radius R =1 has
circumference 2/27 when § = 7/2 (and u,v are anti-aligned).
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Coassociative 4-folds 25
Finally, take 8 = 0 and consider
# = {(0,—usinX,—ucosX,0, vsinX, vcosX)} C .4

g = QNB)CE.

Theorem. < is coassociative (i.e. calibrated by *p, so ¢|<Z = 0)
and projects to a 3-sphere in S%.

Recall that *¢ = d(3R*ReT). In fact T|« = 0. For
o R ={|z|=|z,|, |z|=|z|, 2z + 22z =0}

is a real hypersurface S1xS? of a complex quadric in CP3. The
S? factor is a horizontal complex curve annihilated by

ap — iz = —2i)\uei(a+ﬂ)dX.



Further problems 26

€ = RtxCP3

NQ
RO\ O =.#

5. The 2-form ¢ on .# is simplest, but J is intractible. Can one
characterize the induced SU(3) structure and monopole equations,
and use it to reconstruct metrics with holonomy G,?

6. . is foliated by SO(3) orbits, but the induced left-invariant
metrics vary in a complicated way. Does the projection .# — D3
(or some other) give a better description of g7

7. Extend the previous analysis to the U(1) quotient of A2 T*S*
with its complete G, metric.



