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G2 holonomy 1

There is the concept of a non-degenerate 3-form on R7 , but it can
be positive or negative.

The former (ϕ, varying smoothly) defines a G2 structure on M7 ,
an underlying Riemannian metric h, and a 4-form ∗ϕ .

Hol(h) ⊆ G2 ⇐⇒ ∇ϕ = 0 ⇐⇒
{

dϕ = 0
d∗ϕ = 0

In this case, h is Ricci-flat.

G2 manifolds are analogues of Calabi-Yau 3-folds. Many compact
manifolds admitting such metrics are known, but not (of course)
the exact metrics themsleves.



G2 metrics with symmetry 2

If (N6, k) is nearly-Kähler (weak holonomy SU(3)) then

I dr2 + r2k has holonomy G2 on R+×N

I dr2 + (sin r)2k has weak holonomy G2 on (0, π)× N

We can take

N = S3 × S3, CP3, F = SU(3)/T 2,

with isometry groups SU(2)3 , SO(5)'Sp(2), SU(3).

NK metrics with a co-homogeneous one action by SU(2)2 exist on
both S3 × S3 and S6 [Foscolo-Haskins-Nordström 2016].

Complete G2 metrics with SU(2)2×U(1) symmetry (so rank 3) are
also known [FHN 2018].



A nilpotent example 3

An ansatz has been described for G2 metrics with a T 3 action
[Madsen-Swann 2018].

Simplest example. Rather than a NK space, take a nilmanifold
N6 based on the Lie algebra (0, 0, 0, 23, 31, 12), so there is a basis
(ei ) of 1-forms so that de4 = e2 ∧ e3 etc. Then N has an SU(3)
structure that can be evolved into a metric

µ2(e21 + e22 + e23) +
1

µ
(e24 + e25 + e26) + µ3dµ2.

with holonomy equal to G2 on M = (0,∞)× N .

Here, µ is one component of a moment map M → R4 that arises
from the toric theory.



G2 and physics 4

“. . . all of physics has a completely geometric origin in M theory on
a singular G2 manifold” [Acharya 2016]

I string theories are modelled on 6 hidden dimensons in space

I the only known compact Ricci-flat 6-manifolds have special
holonomy SU(3), thus the importance of Calabi-Yau spaces

I M theory unifies the five supersymmetric string theories by
adding an 11th dimension

I G2 manifolds provide suitable models, and are expected to
come with circle fibrations

I singularities of codimension 4 and 7 are needed to produce
Yang-Mills fields and particles



5

I From the theory of ALE spaces, R+ × CP3
n,n,1,1 is conjectured

to carry a metric with holonomy G2 . This is true when n = 1,
and this lecture will focus on an S1 quotient of R+×CP3 that
resembles R6 with two singular R3 ’s meeting at the origin.



Technicalities 6

Suppose that U(1) acts on a (non-compact) manifold with a G2

holonomy metric h, and that LXϕ = 0. Set

1/t = ‖X‖ = h(X ,X )1/2 measures orbit size

η = t2Xy h dual 1-form with η(X ) = 1

F = dη so Xy F = 0 and dF = 0

σ = Xy ϕ so dσ = 0.

Then
ϕ = η ∧ σ + t3/2ψ+

∗ϕ = η ∧ (t1/2ψ−) + 1
2(tσ)2.

Here, Ψ = ψ+ + iψ− is an induced (3, 0)-form for the SU(3)
structures on the base, and F = dη is the curvature 2-form.



Today’s example: S1 acting on S4
7

S7 R8 = R4 × R4

↓ ↓

CP3 R+×CP3
yy

↓ ↘Q

S4 R3 × R3

↘
S4/S1 = D3

Q is induced from the action of SO(2) on S4 ⊂ R2 ⊕ R3 .

The action fixes two 2-spheres in CP3 , giving R3 ∪ R3 in R6 .



Goals 8

Consider
C = R+×CP3

↘Q

R6 \ 0 = M

We seek explicit descriptions of:

I the NK structure on CP3 and the G2 3-form ϕ on C

I the 2-torus action on R8 and the map Q : C →M

I the metric g induced on M from the G2 metric h on C

I the symplectic form σ on M and the curvature F of Q

I subvarieties of M on which Q or g is flat.



Hopf maps 9

Let e =
7∑

i=0
dxi

2 be the Euclidean metric, and R =
∑

xi
2 .

Right multiplication by Sp(1) gives Killing vector fields

Y1 = x1∂0 − x0∂1 − x3∂2 + x2∂3 + x5∂4 − x4∂5 − x7∂6 + x6∂7
Y2 = x2∂0 − x0∂2 − · · · − x5∂7 + x7∂5
Y3 = x3∂0 − x0∂3 − · · · − x6∂5 + x5∂6,

tangent to the fibres of

S7

↓ 1

CP3

↓ 2, 3

S4.



Linear forms 10

Set αi = Yiy e , so for example

α1 = x1dx0 − x0dx1 − · · · − x7dx6 + x6dx7

−dα1 = 2(dx01 − dx23 + dx45 − dx67)

Each 1-form α̂i = αi/R is invariant by R∗ , and the 2-forms
τ1 = dα̂1 − 2α̂23

τ2 = dα̂2 − 2α̂31

τ3 = dα̂3 − 2α̂12

pass to S4, where they form a basis of ASD forms.

Moreover, dα̂1 = τ1 + 2α̂23 is a Kähler form on (CP3, J1).



Nearly-Kähler data 11

Lemma. The NK structure of (CP3, J2) is given by

ω = τ1 − α̂23 = dα̂1 − 3α̂23

Υ = (α̂2 − i α̂3) ∧ (τ2 + iτ3)

These forms satisfy the identities{
dω = 3ImΥ,

dΥ = 2ω2.

Note. The conical G2 structure on C now has

ϕ = dR ∧ R2ω + R3 ImΥ = d(13R3ω),

∗ϕ = dR ∧ R3ReΥ + 1
2(R2ω)2 = d(14R4ReΥ)



The G2 metric 12

Recall that e =
7∑

i=0
dx2

i and R =
7∑

i=0
x2
i .

Proposition. The G2 metric h on C = R+×CP3 pulls back to

1
2dR2 + 2R e − 2α2

1 − α2
2 − α2

3

on R8 \ 0.

This is invariant by Sp(2) and we want to “push it down” to M .

Problems.

1. Use the proposition to prove by computer that g is Ricci-flat.

2. Is there a version for weighted CP3
n,n,1,1?

PS. Consider also metrics obtained by changing coefficients of the
αi preserving the degeneracy condition Y1y h = 0.



A 2-torus action on R8
13

Left multiplication by U(1) on H2 generates

X = X1 = x1∂0 − x0∂1+x3∂2−x2∂3 + · · ·+x7∂6−x6∂7,

and one observes that

1
2(X + Y1) = x1∂0 − x0∂1 + x5∂4 − x4∂5
1
2(X − Y1) = x3∂2 − x2∂3 + x7∂6 − x6∂7.

These define standard U(1) actions on each of R4
0145 and R4

2367 .

Using hyperkähler moment maps, it follows that

R+ × CP3

U(1)
∼=

R4

U(1)
× R4

U(1)
∼= R3 × R3,

modulo the origin.



Gibbons-Hawking ansatz 14

Let q = x0 + x1i + x4j + x5k . The Killing field X + Y1 induces a
tri-holomorphic action on R4

0145 with moment map

q 7→ q i q = u1i−u3j +u2k ,

invariant by q  e itq , where
u1 = x2

1 +x2
2−x2

5−x2
6

u2 = 2(−x1x6 + x2x5)

u3 = 2(x1x5 + x2x6).

Note that u = |u| satisfies u2 = u2
1 + u2

2 + u2
3 .

Using R4
2367, we define v1, v2, v3 and v in the same way.



Invariant functions 15

Our left U(1) in Sp(2) commutes with SU(2) which acts as
SO(3) as follows:

I trivially on the first factor of R2 ⊕ R3 ⊃ S4

I diagonally on the quotient R6 = R3 ⊕ R3 .

The induced SU(3) structure on R6 can be expressed in terms of
SO(3) invariant quantities manufactured from the coordinates

(u, v)=(u1, u2, u3, v1, v2, v3),

the radii u, v (and R = u + v ), using scalar and triple products.

The involution j on CP3 generates an isometry ε : u↔ v.



A first application 16

We compute the symplectic form

σ = X y ϕ = dζ,

where ζ = 1
3R3X y (dα̂1 − 3α̂23). It can be expressed in terms of
µ1 = x2

1 + x2
2 − x2

3 − x2
4 + x2

5 + x2
6 − x2

7 − x2
8

µ2 = 2(−x1x4 + x2x3 − x5x8 + x6x7)

µ3 = 2(x1x3 + x4x2 + x5x7 + x6x8).

where µj = X y αj . Recall that R = u + v .

Theorem.

σ = R(12du ∧ dv − du ∧· dv) + 1
2dR ∧ (v·du− u·dv).



A Lagrangian foliation 17

Corollary. The mapping M → R3 given by (u, v) 7→ u + v has
Lagrangian fibres.

Set x = u + v. The result follows from a computation:

dx1 ∧ dx2 ∧ dx3 ∧ σ = 0.

The single subspace u=v is also Lagrangian.

Problems.

3. Find Darboux coordinates for ω. In particular, is there a there a
map y=φ(u, v) so that ω=dx ∧· dy?

4. Describe the reduced twistor fibration M → S4/U(1) = D3 . Is
it given by (u, v) 7→ (u + v)/R ?



The curvature 2-form F 18

The connection 1-form η equals t2X y h, where t = 1/‖X‖.

Proposition.

t−2 = 6uv − 2u·v
η = 2R Xy e − 2µ1α1 − µ2α2 − µ3α3.

The curvature F = dη is invariant by R+×R+ , and so determined
by its restriction F̂ to S2 × S2 .

Theorem.

F̂ = 1
4{u, du, du}+ d

(
1
2 t2{u, v, du}

)
= means we have to add on terms after applying ε to the RHS, so
it becomes symmetric in u, v.



The induced complex volume form 19

The space of (3, 0) forms on M is generated by Ψ = ψ+ + iψ− .

Theorem.

−tψ+ = 1
2v(t−2 + 4v2){du, du, du}
−v(4u2 + 3uv + u·v){dv, du, du}
+((u + 2v)v·dv + vu·dv) ∧ {u, du, du}
+(vu·dv − uv·dv) ∧ {v, du, du}.

1
2uvψ

− =̂ (t−2 + 4v2){du, du, du}
+((3 + u

v )u·v − 3u2 − 5uv){du, dv, dv}
+2v·dv ∧ {u, du, du}
+2u

v v·du ∧ {v, dv, dv}
+((1− u

v )v·dv + (3 + v
u )u·dv) ∧ {v, du, du}.

One presumes that J is not integrable, i.e. that d(t1/2ψ+) 6= 0!



The induced metric 20

The metric g on M ∼= R6 \ 0 for which

Q : (C , h) −→ (M , g)

is a Riemannian submersion on an open set of its domain can be
computed via Q∗g = h − η⊗η.

Theorem [Bryant].

g =
1

2

[
(du + dv)·(du + dv) + (du + dv)2

]
+

t2

4

[
8(v du− u dv)·(v du− u dv)

+2(v du + u dv − u·dv − v·du)2

− (v du − u dv − u·dv + v·du)2
]
.



Restricting to subspaces 21

The restriction of g to the quadrant {(0, 0, u, 0, 0, v)} with
u, v > 0 equals

g =
(
1 + v

4u

)
du2 + 3

2dudv +
(
1 + u

4v

)
dv2.

This has Gaussian curvature K ≡ 0. We’ll explain why.

Extend the domain R2 to {u1 = 0, v1 = 0} ∼= R4 , which contains
representatives of each SO(3) orbit. Here we set{

u = (0, u cos(θ+χ),−u sin(θ+χ))

v = (0, v cos(θ−χ), v sin(θ−χ)),

with
u = R cos2(φ/2), v = R sin2(φ/2),

to ensure that u + v = R .
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Corollary. The circle bundle is flat over R4 = R2×R2 . The
restriction of g to R4 equals dR2 + R2 ĝ , where

2 ĝ = dθ2 + 1
4(3− cos 2θ)dφ2

+1
8(7 + cos 2θ + 2 sin2 θ cos 2φ)dχ2

+2 cosφdθdχ− 1
2 sin 2θ sinφdφdχ.

Invariants of the SO(3) action are u, v , θ, since u·v = uv cos 2θ.

When χ = 0, we obtain a slice S1×[0, π] to the SO(3) orbits on
which

2 ĝ = dθ2 + 1
4(3− cos 2θ)dφ2.

Adding an isometric slice with χ = π/2 gives



A surface of revolution 23

The 2-sphere represents
Q−1 of a single semi-circle:

Top and bottom circles
are identified, and M is
foliated by cones over 2-tori
of this shape:

The blue plane corresponds
to points where u, v are
aligned:



PABS 24

The function

θ 7→ 1√
2

∫ π

0
f (θ)dφ =

π

2

√
3
2 −

1
2 cos 2θ

can be interpreted as a measure of the angles between the
subspaces u = 0 and v = 0, i.e. the two R3 ’s whose union is
image of the fixed point set in C .

It varies from π/2 to π/
√

2 ∼ 127o, and the bulge in the surface
of revolution reflects the fact that a circle of radius R = 1 has
circumference 2

√
2π when θ = π/2 (and u, v are anti-aligned).



Coassociative 4-folds 25

Finally, take θ = 0 and consider

B = {(0,−u sinχ,−u cosχ, 0, v sinχ, v cosχ)} ⊂M

A = Q−1(B) ⊂ C .

Theorem. A is coassociative (i.e. calibrated by ∗ϕ , so ϕ|A = 0)
and projects to a 3-sphere in S4 .

Recall that ∗ϕ = d(14R4ReΥ). In fact Υ |A = 0. For

A /R+ = {|z0|= |z2|, |z1|= |z3|, z0z1 + z2z3 = 0}

is a real hypersurface S1×S2 of a complex quadric in CP3 . The
S2 factor is a horizontal complex curve annihilated by

α2 − iα3 = −2iλµe i(α+β)dχ.



Further problems 26

C = R+×CP3

↘Q

R6 \ 0 = M

5. The 2-form σ on M is simplest, but J is intractible. Can one
characterize the induced SU(3) structure and monopole equations,
and use it to reconstruct metrics with holonomy G2?

6. M is foliated by SO(3) orbits, but the induced left-invariant
metrics vary in a complicated way. Does the projection M → D3

(or some other) give a better description of g ?

7. Extend the previous analysis to the U(1) quotient of Λ2
−T ∗S4

with its complete G2 metric.


