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A 2-dimensional example

Consider

Aff+(R): group of orientation preserving motions of the real line

f(x) = ax+ b, a, b ∈ R, a > 0

Aff+(R) = R+ ⋉ R =

{(
x y
0 1

)
: x, y ∈ R, x > 0

}

Left-invariant vector fields: X1 = x ∂
∂x

, X2 = x ∂
∂y

Left-invariant metrics: g(Xi, Xj) = const., i, j = 1.2

g =
1

x2
(c1dx

2 + c2(dxdy + dydx) + c3dy
2), c1c3 − c22 ̸= 0.

−→ Question: Which of these metrics are complete?
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Geodesic equations

(M, g) (connected) pseudo-Riemannian manifold
Xγ(M): vector fields along a curve γ in M

Covariant derivative: ∇γ̇ : Xγ(M) −→ Xγ(M)

γ is called a geodesic if it satisfies ∇γ̇ γ̇ = 0.

In local coordinates (x1, ..., xn)

γ̈k(t) + γ̇i(t)γ̇j(t)Γk
ij(γ(t)) = 0

where Γk
ij are the Christoffel symbols (of the Levi-Civita connection).

A geodesic γ is called

→ complete if it is defined in R.

−→ (M, g) is said to be complete if all of its geodesics are complete.
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Remark

P Q

→ There might not be a
geodesic between two arbitrary
points.

P

Q

→ There might be more than one
geodesic between two points.
→ A geodesic is not necessarily
minimizing.
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Riemannian vs. pseudo-Riemannian geometry

Hopf-Rinow theorem

For a Riemannian manifold (M, g) the following condition are equivalent:

(MC) As a metric space with Riem. distance d, (M,d) is Cauchy-complete.

(GC) (M, g) is geodesically complete.

(HB) Every closed and bounded subset of M is compact.

Companion results:
For a complete Riemannian manifold (M, g)

→ Any two points can be joined by a minimizing geodesic segment.

→ The length of any diverging curve is infinite.

Theorem

(G, g): G a Lie group with g a left-invariant Riemannian metric is
geodesically complete.
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However:

PR manifolds can fail to be complete even in the compact case!

Example: Clifton-Pohl torus

(M = R2\{(0, 0)}, g), g = 2
dxdy

x2 + y2

Geodesic equations: ẍ = 2x
x2+y2 (ẋ)

2, ÿ = 2y
x2+y2 (ẏ)

2

The curve α(t) =
(

1
1−t

, 0
)
is an incomplete (null) geodesic.

µ(x, y) = 2(x, y) is an isometry, Γ = {µn} is properly discontinuous.

T =M/Γ is a torus which is incomplete with the induced metric.

Nevertheless... (Marsden, 1973)

Compact PR homogeneous spaces are geodesically complete.
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Euler-Arnold formalism on Lie groups

Euler and later Arnold:

→ described the motions of a rigid body as geodesics of a Lie group in the
context of perfect fluids.

→ Key idea:

Geodesic curves
1:1←→ Integral curves of vector field

on Lie group on Lie algebra

→ Key advantage:

geodesics seen as curves in Rn with standard topology;

easier to control behaviour at infinity.
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γ(t) curve in G and x(t) the associated curve in g given by x(t) = γ−1(t)γ̇(t)

Figure: Associate curve in g

Theorem (Arnold, 1966)

Then γ(t) is a geodesic iff x(t) is an integral curve of

ẋ(t) = ad†
x(t)x(t)
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Clairaut first integrals

Interesting facts:

→ If γ is geodesic, X is Killing field, then g(γ̇(t), Xγ(t)) = constant.

→ If X is a right-invariant vector field, then X is Killing for any LI metric.

The construction:

Let (ei) be a basis of g.
Denote by Yi the extension of ei as a right-invariant vector field.

Then ωi = g(Yi, ·) is a first integral of the geodesic equations.
The (ωi) span T ∗G.

Definition (Elshafei, F., Sánchez, Zeghib, 2023)

The Clairaut metric associated to g from (ei) is the Riemannian metric
defined by

h =
∑
i

ωi ⊗ ωi
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Transformation law:

For u, v ∈ g

ωi(p.u) = gp(Yi(p), p.u) = gp(ei.p, p.u) = g1(Adp−1(ei), u)

= g1(ei, ((Adp)
−1)†)(u)) = ωi

1(((Adp)
†)−1(u))

and a concrete expression for h is

h(p.u, p.v) =
∑

i g1((Adp−1)(ei), u) g1((Adp−1)(ei), v).

→ h is not left-invariant (nor right-invariant unless g is bi-invariant)

Definition Two Riemannian metrics R and R̂ are said to be bi-Lipschitz
bounded if there exists a constant c > 0 s.t. cR ≤ R̂ ≤ R/c.

Proposition (EFSZ, 23)

Let h and ĥ be two Clairaut metrics associated to g from the bases (ei) and
(êi), resp., then h and ĥ are bi-Lipschitz bounded.
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(êi), resp., then h and ĥ are bi-Lipschitz bounded.



Transformation law:

For u, v ∈ g

ωi(p.u) = gp(Yi(p), p.u) = gp(ei.p, p.u) = g1(Adp−1(ei), u)

= g1(ei, ((Adp)
−1)†)(u)) = ωi

1(((Adp)
†)−1(u))

and a concrete expression for h is

h(p.u, p.v) =
∑

i g1((Adp−1)(ei), u) g1((Adp−1)(ei), v).

→ h is not left-invariant (nor right-invariant unless g is bi-invariant)

Definition Two Riemannian metrics R and R̂ are said to be bi-Lipschitz
bounded if there exists a constant c > 0 s.t. cR ≤ R̂ ≤ R/c.

Proposition (EFSZ, 23)
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Completeness

→ ωi(γ̇(t)) is constant for any inextensible geodesic γ of g

→ thus h(γ̇(t), γ̇(t)) is constant

Theorem (EFSZ, 23)

The left-invariant pseudo-Riemannian metric g is complete if its associated
Clairaut metric h is complete.

Proof: The curve γ restricted to any bounded interval I ⊂ R has finite h-length. Thus,

by the completeness of h, γ is continuously extensible to the closure of I and, then, it is

extensible as a geodesic of g.

Corollary

Any bi-invariant PR metric g on G is complete.

Corollary (Marsden, 1973)

Any left-invariant PR metric g on a compact Lie group G is complete.
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Wick rotation

(G, g) PR Lie group.

→ Choose an ON basis (ei) for g1

→ Construct a LI Riem. metric g̃ by imposing that (ei) is ON for g̃1.

−→ g̃ is obtained from g by Wick rotation.

More precisely, consider

→ the linear map ψ such that ψ(ei) = ϵiei

→ g̃ be the LI Riem. metric such that g̃1(ei, ej) = δij = g1(ei, ψ(ej)).

Proposition (EFSZ, 23)

Let g, g̃ be Wick rotated metrics and h the Clairaut metric associated to g
from (ei). Then, h is unique (independent of the chosen (ei)) and

hp(p.u, p.v) = g̃1(Ad∗
p−1(ψ(u)),Ad∗

p−1(ψ(v)))

Remark: If g is Riemannian then g̃ = g.
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The action of Aut(G)

Lie’s second theorem : Aut(g) is in 1:1 correspondence with Aut(G̃).

−→ Aut(g) acts on Sym(g) by

(φ.m)(u, v) = m(φ−1u, φ−1v).

with φ ∈ Aut(g),m ∈ Sym(g) and u, v ∈ g.

Proposition (EFSZ, 23)

G connected Lie group, g LI PR metric, φ ∈ Aut(g), gφ the LI metric such
that (gφ)1 = φ.g1. Then:

(1) gφ is complete if and only if so is g.

(2) LI PR metrics in each orbit of Sym(g) are all complete or incomplete.

(3) Clairaut metrics associated to LI metrics on the same orbit are all
bi-Lipschitz bounded.
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2-dimensional example revisited

Recall

G = Aff+(R) = R+ ⋉ R =

{(
x y
0 1

)
: x, y ∈ R, x > 0

}
and the LI PR metrics

g =
1

x2
(c1dx

2 + c2(dxdy + dydx) + c3dy
2), c1c3 − c22 ̸= 0.

−→ Three special metrics

g(1) =
1

x2
(dx2 + dy2) (c1 = 1, c2 = 0, c3 = 1)

g(−1) =
1

x2
(dx2 − dy2) (c1 = 1, c2 = 0, c3 = 1)

g(0) =
1

x2
(dxdy + dydx) (c1 = 0, c2 = 1, c3 = 0)

−→ Can be studied to characterize completeness on G, as shall be seen.
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−→ g(1) = 1
x2 (dx

2 + dy2)

LI Riemannian (hyperbolic) metric, therefore complete.

Clairaut metric: h(1) = 1
x4

(
x2dx2 + (1 + y2)dy2 + xy(dxdy + dydx)

)
After some work: h(1) is proved to be complete.
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Three classes and their (in)completeness

Consider the action Aut(g) on Sym(g).

→ Basis (e1, e2) s.t. [e1, e2] = e2.

→ φ : g −→ g ∈ Aut(g) satisfies [φ(e1), φ(e2)] = φ(e2)

→ W.r.t basis (e1, e2), φ is represented by the matrix

M =

(
1 0
α β

)
, β ̸= 0.

−→ φ−1 ∈ Aut(g) acts on Sym(g) by MTBM , for a bilinear form B.

→ Orbit of B =

(
1 0
0 1

)
:

MTBM =

(
1 0
α β

)T (
1 0
0 1

)(
1 0
α β

)
=

(
1 + α2 αβ
αβ β2

)
Up to (positive or negative) scaling, this orbit contains Euclidean (or
negative definite) scalar products and, moreover, all of them.
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)T (
1 0
0 −1

)(
1 0
α β
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(
1− α2 −αβ
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)
Up to scaling, this orbit corresponds to all Lorentzian scalar products
such that ⟨e2, e2⟩ ̸= 0.

→ Orbit of B =

(
0 1
1 0

)
:

MTBM =

(
1 0
α β

)T (
0 1
1 0

)(
1 0
α β

)
=

(
2α β
β 0

)
This orbit corresponds to all Lorentzian scalar products such that
⟨e2, e2⟩ = 0.

Therefore:

Prop.(2) proves that all the LI Lorentzian metrics on G are incomplete.
Prop.(3) shows the existence of only 3 bi-Lipschitz Clairaut classes.
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A question

−→ What classes of Lie groups have all of their PR LI metrics complete?

Positive answers

→ Abelian

→ Compact (Marsden, 1973)

→ 2-step nilpotent (Guediri, 1994)

→ SO(2)⋉ R2
(Bromberg-Medina, 2008)

Negative answer (Elshafei, F., Reis, 2023)

G non-compact semisimple real Lie group.
G can be equipped with (many) incomplete LI PR metrics

However...

Proposition (Elshafei, F., Reis, 2023)

G quadratic Lie group.
For every possible signature, there is a open set of LI PR complete metrics.
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Preservation of completeness

Proposition

(M,R) connected complete Riemannian manifold.
Choose x0 ∈M and let M ∋ x 7→ dR(x) be the distance function from x0.
If h is a Riemannian metric on M with pointwise norm ∥ · ∥h satisfying:

∥vx∥h ≥
∥vx∥R

a+ b dR(x)
, ∀x ∈M, vx ∈ TxM

for some constants a, b ≥ 0, then h is complete.

Remarks

→ φ(r) = a+ b r can be replaced with any Lipschitz function φ s.t.∫∞
0

1
φ(r)

dr =∞.

→ similiar types of bounds have been known since the 70s
[Abraham-Marsden, Foundations of mechanics, 1987]
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Groups of linear growth

Let R be a LI Riemannian metric on a Lie group G.

Consider the map

r : G −→ R where r(p) = dR(1, p)

and dR is the distance induced by the Riemannian metric R.

Definition (EFSZ, 23)

A Lie group G has (at most) linear growth if there exist

→ a LI Riemannian metric R on G

→ a Euclidean scalar product with norm ∥ · ∥ on g

s.t.
∥u∥

a+ b r(p)
≤ ∥Adp(u)∥ ≤ (a+ b r(p))∥u∥

for some constants a, b ≥ 0, for every p ∈ G and for every u ∈ g.

Remark: since R is LI, r(p) = r(p−1), the two inequalities are equivalent,
linear growth is independent of choice of LI R and ∥ · ∥.
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Linear growth of Clairaut metrics

Theorem (EFSZ, 23)

All the left-invariant pseudo-Riemannian metrics of a Lie group with
linear growth are geodesically complete.

Proof

Take LI PR g, choose ON basis, construct Wick rotated g̃ and Clairaut h.
From the definition of h, can be computed that

hp(p.u, p.u) ≥
g̃1(u, u)

∥Adp∥2

Since ∥Adp∥ ≤ a+ b r(p) then

∥vp∥h ≥
∥vp∥g̃

a+ b r(p)

and the result follows.

Remark: Aff+(R) is not of linear growth.
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Some groups of linear growth

Theorem (EFSZ, 23)

The following classes of Lie groups have linear growth

→ abelian, compact [in fact, bounded growth]

→ 2-step nilpotent

→ the semidirect product K ⋉ρ Rn where K is pseudo-compact and ρ(K)
is pre-compact in GL(n,R)

→ a subgroup or the direct product of the groups above

Corollary

All of the groups above have all their LI PR metrics geodesically complete.

Proposition (EFSZ, 23)

A k-step nilpotent Lie group, with k ≥ 3, does not have linear growth.
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An aside

Lemma (F., Agricola, 2017)

G a compact Lie group.
There exists a Riemannian metric which is left-invariant for both
G× g and G⋉Ad g.

Lemma (EFSZ, 23)

K be a pseudo-compact Lie group, H be another Lie group s.t.
there is a homomorphism ρ : K −→ Aut(H) with ρ(K) pre-compact.

There exists a LI Riemannian metric on K ⋉ρ H which is also LI for the
direct product K ×H.

Corollary (EFSZ, 23)

Let K and H be two Lie groups as in Lemma above.
Then any pair of LI Riemannian metrics on K ⋉ρ H and K ×H are
bi-Lipschitz bounded.
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Thank you very much for the attention !



Proof of Lemma

Sketch.

→ G = K ⋉ρ H

→ K is pseudo-compact ⇒ a bi-invariant metric on K

→ Moreover, ρ(K) pre-compact ⇒ an Ad(K)-invariant positive definite
inner product on g

→ R Riemannian metric on G induced by left translations

→ Isometry group of (G,R) contains K ×G
→ The map

(K ×G)×G −→ G such that (k, x, y) 7−→ xyk−1

is an action of K ×G on G which preserves the Riemannian metric R.

→ Restrict this action to K ×H.

→ The action of K ×H on G is transitive and free

→ Yields G as the principal homog. space (K ×H)/{1G}) ∼= K ×H.


