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» If 9Q is smooth: no problem in Sobolev spaces:
For all k>0

A: HY(Q) - H1(Q) @ H*2(00Q)
u (Au,ulsq)

is an isomorphism.

In particular: If £, g is smooth, then u is smooth.
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Motivation

Au = f inQ

> Diri . .
Dirichlet problem { = g indQ

» If 0 has singularities?

K Q=B1(0)\{p €(0,a)} CR?
: 5 f,g smooth

Solution to Dirichlet problem is always H*.

But for a € (0, 7) there are f, g with u & H?
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Theorem (Kondratiev/Mazya ~67)

- Q C R? polygonal domain with corners V
-0\ V =0pQU
- no adjacent edges have Neumann b.c.

\ \ -p: Q\V = (0,00) smooth, p = dist(., V) near V
S

Then

/)/\'}';,’ Q)N {ula,e = 0,0,ulsye =0} — P_le;_l(Q)
u— Au

is an isomorphism.

Goal: Understand this systematically using geometry,
hope to apply to other domains, boundary conditions, operators
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Geometric idea — conformal blowup

Conformal blowup: Change gy on Q to g = p~2gp.
(Implicitly in Kondratiev paper (by choice of coordinates))

)
e ——

\
|
|
|
|

go = dr? + r’dy? g =r=2dr’ + dy?
= ds® + dp? s=—Inr

v €(0,a),r€(0,r) v €(0,a),s € (sp=—1Inry,0)
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Geometric idea — conformal blowup

- N

(Qa gO)

_

M=Q\V,g=p"g)

a 'nice’
noncompact

Riemannian mfd
with boundary
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Translation of the well-posedness result to (M, g)?
> If p is g-admissible, i.e. p~tdp € W°>°(M, g), then

KL, g0) = p F H (M, g = p~2g).

> In dimension 2: A, = p 2A,.

)
\(@ (M, g)

AV pKﬁ+1(Q7g0) N {ulope = 0,0, uloye = 0} = pilKﬁil(QagO
)

Dg: HHY (M, g) N {ulopm = 0,0, uloym = 0} = H' ™1 (M, g)
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» curvature, second fundamental form of the boundary and all their
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» the boundary has a uniform tubular neighborhood

» 'injectivity radius’ bounded from below
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Good class of manifolds?
Manifolds of bounded geometry with boundary

» One of the main features: we can work with a countable set of
nice coordinates

polar coord.

e ; om
aM x [o, r){

cylindrical coordinates

> He-norm ||ul|s on M is equivalent to > [|(¢~u) o iy | ps(rr)
K~ — charts, ¢, — adapted partition of unity.

» implies regularity estimates, trace/extension theorems, ...
from the local versions on R".
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For the blown-up polygonal domain result we are
left with Poincare inequality

> In1Don [0,L) or [0,L]: £(0)=0 f£(t)= [, f'(s)ds
t 2 t L
|f(r)|2—( / |f'(s)|ds) <t [Ireras<t [ Ir(s)kas
12 < L2171

> Wrong on [0, c0)
> On the strip {(t,u) € R2 | t € [0,L)}: [|F|% = [ Jo F(t,u)?dt du

L L
(£ )2 < L/ 10,£(s, u)ds < L/ \df (s, u)2ds
0 0
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» Idea: Do the 1D case along geodesics perpendicular to p M (s.t.
they finitely cover M):

/ udvolgf/ / u(x, s)| detexp™ |ds dx
x€o0pM

> from 1D example: want L(x) < L for all x € 9pM
i.e. want finite distance to dp M

P need to get estimates on the volume element — comes from
comparison geometry for bounded geometry manifolds

» That's it ... up to some small technicalities, e.g.

onM

Vx

X

oM
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Well-posedness for Laplacian on bounded geometry
manifolds

Let (M, g) be a manifold with boundary 9M = dpM U OyM of bounded
geometry and finite width of (M, dpM).

Theorem (Ammann - G. - Nistor '16 (OpM = OM Sakai '16))

Then there is a constant ¢ > 0 such that for all f € H5(M) we have

1fll2 < cl|df |2

Theorem (Ammann - G. - Nistor '16)

A: HKI (M, g) — HY(M,g) & H** A (9pM) & H*} (M, g)
u— (Au, ulgym, Oy uloym)

is an isomorphism for all k > 1.




Well-posedness for Laplacian on bounded geometry
manifolds

Let (M, g) be a manifold with boundary M = dpM LU Oy M of bounded
geometry and finite width of (M,dpM)?

» No Poincare on euclidean half-space.

/\//\/\/\
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Our original example?

.y

\(ng) \ \V.g=p "g)
pis g- adm|55|ble ﬁ
PICE(S, 80)

choice of p ensures that (M, g) is mfd of bdd geo and distance to OM is finite

no adjacent edges in OnQ2 —> distance to dpM is finite



Example for a domain with cusps

<

- NN

p ~ dist (., cusp point)2 near the cusp point
p ~ dist (., corners) near the corners
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'Strange’ singularities in planar domains

(» image(f;) C R> — bdd sec.fund.f.

Let fo,i: R — (0,27) be bounded smooth functions with bounded
derivatives and f; — fo € [¢,€ 1], for some € > 0. Let

Q:={(rcosf,rsinf)| fy(logr) < 6 < f(logr)}.

py ~r. (v ~r’g)

_

—1
Se ] >e€ tub. nbhd.

finite width \/\\/\/ f

R

blow-down by r? - an oscillating singularity: i
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Higher dimensions

need to blow up corners and
edges

(M, g) mfd of bounded geo-
metry and finite width to OM

But a new difficulty arises:(ge.. Euclidean metric, g = p~2g¢.)

n -1
A u= a2
ge U P ( n—>2

n42 n—2

FLy(p "7 )

Ag(p*n%2 u) + scalgp*nz;2 u)=:p

— well-posedness of L, on Sobolev scale gives well-pos. of Ag on
Kondratiev scale
— immediate if scal; > 0



Higher dimensions

Theorem (Ammann-G.-Nistor)

Let (M, go) be such that there is a p: M — (0, 1] such that

(M, g := p~2gy) is a manifold with boundary OM = dpM LI OyM and of
bounded geometry and finite width to Op M. Assume that p is
g-admissible and that (M, go) satifies a Hardy-Poincaré inequality, i.e.
there is a ¢ > 0 such that for all u € H} (M, go) with ulg,m = 0 we have
Jyy o202 < c [y, |dul.

Then

Dg,: plCﬁ*l(M, 20) N{ulopm = 0,8, uloym =0} = p_lle;_l(M,go)

is an isomorphism.
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Theorem (Ammann-G.-Nistor)

Let (M, go) be such that there is a p: M — (0, 1] such that

(M, g := p~2gy) is a manifold with boundary OM = dpM LI OyM and of
bounded geometry and finite width to Op M. Assume that p is
g-admissible and that (M, go) satifies a Hardy-Poincaré inequality, i.e.
there is a ¢ > 0 such that for all u € H} (M, go) with ulg,m = 0 we have
Jyy o202 < c [y, |dul.

Then

Dg,: plCﬁ*l(M, 20) N{ulopm = 0,8, uloym =0} = p_lle;_l(M,go)

is an isomorphism.

Example

In the above setting, for 'singular spaces’ with Euclidean metric (and with
a nice blow-up as before) we have a Hardy-Poincaré inequality. (e.g. ok
for the cube)
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Higher dimensions - this is currently written down

» Iterative definition of a stratified space such that

> the blow-up is bounded geometry with finite width to OM
» one gets the Hardy-Poincaré inequality

» Model near a point of the singularity set: For some € > 0 and an
admissible stratified domain B C R¢~1:

K{(B) x R" .= {(t, th(t)y) e R* | 0 < t < ¢,y € B} x R",

where h: (0, €] — (0,00) is a smooth function such that all
derivatives (td;)*h are bounded (k > 0).



Finding the weight function

o

C Kp (point) x R? = {(t, thc(t)) € R* | t € (0,€)} x R?
weight function near C ~ (dist to face) - he(dist to face)

B Kj (interval) x R = {(t, thg(t)y) € R® | t € (0,¢),y € [0,1]} xR
weight function near B ~ (dist to edge) - hg(dist to edge)

A Kp (D) = {(t, tha(t)y) e R* | t € (0,¢),y € A}
weight function near A
~ (dist to corner) - ha(dist to corner) - (weight fct of A)



Thank you for your attention!



