The κ -nullity of Riemannian manifolds and their splitting tensors Joint work with Claudio Gorodski

Felippe Guimarães

August 21, 2023

Let T be an algebraic curvature tensor. A Riemannian manifold M is said to be *modelled* on T if its curvature tensor is, at each point, orthogonally equivalent to T.

Let T be an algebraic curvature tensor. A Riemannian manifold M is said to be *modelled* on T if its curvature tensor is, at each point, orthogonally equivalent to T.

A Riemannian manifold is called *semi-symmetric* if its curvature tensor is, at each point, orthogonally equivalent to the curvature tensor of a symmetric space.

In 1968, Nomizu conjectured that every complete irreducible semi-symmetric space of dimension greater than or equal to three would be locally symmetric. His conjecture was refuted by Takagi [Tak72] and Sekigawa [Sek72].

- In 1968, Nomizu conjectured that every complete irreducible semi-symmetric space of dimension greater than or equal to three would be locally symmetric. His conjecture was refuted by Takagi [Tak72] and Sekigawa [Sek72].
- The local classification of semi-symmetric spaces is the work of Z. I. Szabó [Sza85]: $M = S \times N$

For $\kappa \in \mathbb{R}$, the κ -nullitty distribution of M^n is the distribution \mathcal{N}_{κ} on M defined for each $p \in M^n$ by

$$\mathcal{N}_{\kappa}|_{p} = \{Z \in T_{p}M : R_{p}(X, Y)Z = -\kappa(\langle X, Z \rangle_{p}Y - \langle Y, Z \rangle_{p}X)\}$$

The number $\nu_{\kappa}(p) := \dim \mathcal{N}_{\kappa}|_{p}$ is called the *index of* κ -nullity at p.

5 Complete non-integrability of the conullity

Felippe Guimarães (KU Leuven)

Image: A matrix of the second seco

э

Consider the orthogonal splitting $TM = \mathcal{D} \oplus \mathcal{D}^{\perp}$. For a vector field $X \in \Gamma(TM)$, we shall write $X = X^h + X^v$. Now we can define the *splitting tensor* of \mathcal{D}^{\perp} as the map

$$\mathcal{C}: \Gamma(\mathcal{D}^{\perp}) imes \Gamma(\mathcal{D}) o \Gamma(\mathcal{D})$$

given by

$$C(T,X) = -(\nabla_X T)^h = C_T X$$

The splitting tensor satisfies a Ricatti-type ODE ([Fer70, Lem. 1]).

Proposition

The splitting tensor C of Δ satisfies

$$\nabla_T C_S = C_S C_T + C_{\nabla_T S} + \kappa \langle T, S \rangle I$$
(1.1)

for all S, $T \in \Gamma(\Delta)$. In particular, the operator $C_{\gamma'}$, along a unit speed geodesic γ in a leaf of Δ , satisfies

$$(C_{\gamma'})' = C_{\gamma'}^2 + \kappa I, \qquad (1.2)$$

イロト イポト イヨト イヨト

where the prime denotes covariant differentiation along γ .

Proposition

Let $\gamma : [0, b) \to M$ be a nontrivial unit speed geodesic with $p = \gamma(0)$ and $\gamma'(0) \in \Delta_p$ so that γ is a geodesic of the leaf of Δ through p. Then the splitting tensor $C_{\gamma'(t)} = C(t)$ of Δ at $\gamma(t)$ is given, in a parallel frame along γ , by

$$C(t) = -J'_0(t)J_0(t)^{-1}, \qquad (1.3)$$

where

$$J_{0}(t) = \begin{cases} \cos(\sqrt{\kappa}t)I - \frac{\sin(\sqrt{\kappa}t)}{\sqrt{\kappa}}C_{0} & \text{if } \kappa > 0, \\ \cosh(\sqrt{-\kappa}t)I - \frac{\sinh(\sqrt{-\kappa}t)}{\sqrt{-\kappa}}C_{0} & \text{if } \kappa < 0, \\ I - tC_{0} & \text{if } \kappa = 0, \end{cases}$$
(1.4)

and $C_0 = C(0)$.

Proposition

Let $\gamma : [0, b) \to M$ be a nontrivial unit speed geodesic with $p = \gamma(0)$ and $\gamma'(0) \in \Delta_p$ so that γ is a geodesic of the leaf of Δ through p. Then the splitting tensor $C_{\gamma'(t)} = C(t)$ of Δ at $\gamma(t)$ is given, in a parallel frame along γ , by

$$C(t) = -J'_0(t)J_0(t)^{-1}, \qquad (1.3)$$

4 日 2 4 伊 2 4 三 2 4 4

where

$$J_{0}(t) = \begin{cases} \cos(\sqrt{\kappa}t)I - \frac{\sin(\sqrt{\kappa}t)}{\sqrt{\kappa}}C_{0} & \text{if } \kappa > 0, \\ \cosh(\sqrt{-\kappa}t)I - \frac{\sinh(\sqrt{-\kappa}t)}{\sqrt{-\kappa}}C_{0} & \text{if } \kappa < 0, \\ I - tC_{0} & \text{if } \kappa = 0, \end{cases}$$
(1.4)

and $C_0 = C(0)$. In particular $J_0(t)$ is invertible for $t \in [0, b)$.

Corollary

- Let $\gamma : [0, b) \to M$ be as in Proposition 1.2, where $b = \infty$.
- (a) If $\kappa > 0$, then the splitting tensor $C_{\gamma'}$ has no real eigenvalues. It follows that $\rho(n-d) \ge d+1$, where $n = \dim M$ and $d = \dim \Delta$; (cf. [Fer70, Thm. 1])

(b) If $\kappa \leq 0$, then any real eigenvalue λ of $C_{\gamma'}$ satisfies $|\lambda| \leq \sqrt{-\kappa}$.

Radon-Hurwitz number: $\rho(m = (\text{odd})2^{c+4d}) = 2^c + 8d$ for $d \ge 0$ and $0 \le c \le 3$.

(日) (同) (三) (三)

Lemma

Let $\gamma : [0, b) \to M$ with $\gamma' = T \in \Delta$. Denote the scalar curvature of M by scal, and put $n = \dim M$ and $d = \dim \Delta$. Then

$$\frac{1}{2}\frac{d}{dt}\operatorname{scal} = -\kappa(n-d-1)\operatorname{tr} C_{T} + \sum_{i\neq j} \langle R(C_{T}X_{i},X_{j})X_{j},X_{i}\rangle, \quad (1.5)$$

where $\{X_i\}_{i=1}^{n-d}$ is a parallel orthonormal frame of Δ^{\perp} along γ . In particular, in case $\Delta = \mathcal{N}_{\kappa}$, and $\nu_{\kappa} = n-2$ along γ , we have

$$\frac{1}{2}\frac{d}{dt}\operatorname{scal} = \operatorname{tr} C_{\mathcal{T}}(K_{\mathcal{D}} - \kappa), \qquad (1.6)$$

where K_D denotes the sectional curvature of the 2-plane distribution $D = N^{\perp}$. Further, if in addition scal is constant, then tr $C_T = 0$ and det $C_T = \kappa$ along γ .

Splitting tensor Basic facts

Lemma

Assume $\kappa \leq 0$, γ is a complete κ -nullity geodesic, $\nu_{\kappa} = n - 2$ and $K_{\mathcal{D}}$ is bounded away from κ along γ . Then tr C(t) = 0 and det $C(t) = \kappa$ for all $t \in \mathbb{R}$.

Splitting tensor Basic facts

Lemma

Assume $\kappa \leq 0$, γ is a complete κ -nullity geodesic, $\nu_{\kappa} = n - 2$ and $K_{\mathcal{D}}$ is bounded away from κ along γ . Then tr C(t) = 0 and det $C(t) = \kappa$ for all $t \in \mathbb{R}$.

Proof.

Note that
$$\frac{1}{2}$$
scal = $K_D + m\kappa$, where $m = \frac{n^2 - n}{2} - 1$.

$$\frac{d}{dt}(K_{\mathcal{D}}-\kappa)=\operatorname{tr}(-J_0'J_0^{-1})(K_{\mathcal{D}}-\kappa)=-\frac{\frac{d}{dt}\det J_0}{\det J_0}(K_{\mathcal{D}}-\kappa).$$

Integration of this equation yields

$$\mathcal{K}_{\mathcal{D}}(t) - \kappa = (\mathcal{K}_{\mathcal{D}}(0) - \kappa) |\det J_0(t)|^{-1}.$$

25

Let M be a simply-connected complete Riemannian *n*-manifold with maximal 0-conullity 2. Assume the scalar curvature function s is positive and bounded away from zero. Then M splits as the Riemannian product $\mathbb{R}^{n-2} \times \Sigma$, where Σ is diffeomorphic to the 2-sphere.

Let M be a simply-connected complete Riemannian *n*-manifold with maximal 0-conullity 2. Assume the scalar curvature function s is positive and bounded away from zero. Then M splits as the Riemannian product $\mathbb{R}^{n-2} \times \Sigma$, where Σ is diffeomorphic to the 2-sphere.

The 3-dimensional case of the following theorem is contained in [AMT19]. The sketch of the proof is also in [FZ20].

Let M be a simply-connected complete Riemannian *n*-manifold with maximal 0-conullity 2. Assume the scalar curvature function s is positive and bounded away from zero. Then M splits as the Riemannian product $\mathbb{R}^{n-2} \times \Sigma$, where Σ is diffeomorphic to the 2-sphere.

The 3-dimensional case of the following theorem is contained in [AMT19]. The sketch of the proof is also in [FZ20]. We can substitute the hypothesis about scalar curvature by finite volume (universal cover) [SW17].

Is there a simply-connected complete irreducible Riemannian *n*-manifold with constant 0-conullity 2 and nonnegative sectional curvature?

Is there a simply-connected complete irreducible Riemannian *n*-manifold with constant 0-conullity 2 and nonnegative sectional curvature?

We need the hypothesis of constant 0-conullity. ([FZ20])

Is there a simply-connected complete irreducible Riemannian *n*-manifold with constant 0-conullity 2 and nonnegative sectional curvature?

We need the hypothesis of constant 0-conullity. ([FZ20]) We need the hypothesis of nonnegative sectional curvature. ([Bro18])

Can we improve the hypothesis about the conullity when the volume is finite?

Can we improve the hypothesis about the conullity when the volume is finite?

Theorem

There exists an irreducible homogeneous Riemannian 5-manifold with 0-nullity 1 and finite volume.

The construction of this example follows the ideas of [SOF].

Lie algebra as a semidirect product $\mathfrak{g} = \mathbb{R} \ltimes_A V$, where V is an Abelian ideal and the action of \mathbb{R} on V is determined by the adjoint action of a fixed generator $\xi \in \mathbb{R}$, which we represent by an operator $A \in \mathfrak{gl}(V)$, so that $[\xi, X] = AX$ for all $X \in V$.

The construction of this example follows the ideas of [SOF].

Lie algebra as a semidirect product $\mathfrak{g} = \mathbb{R} \ltimes_A V$, where V is an Abelian ideal and the action of \mathbb{R} on V is determined by the adjoint action of a fixed generator $\xi \in \mathbb{R}$, which we represent by an operator $A \in \mathfrak{gl}(V)$, so that $[\xi, X] = AX$ for all $X \in V$.

Note that $G = \mathbb{R} \ltimes_{e^A} V$, G is unimodular if and only if tr A = 0, and $A \neq 0$ as G is non-Abelian.

Lemma (Filipkiewicz's criterion)

Suppose $G = \mathbb{R} \ltimes_A V$ is unimodular and non-nilpotent. Then there is a discrete subgroup Γ of G with G/Γ compact if and only if there exists $\lambda \in \mathbb{R}, \lambda \neq 0$, such that λA has a characteristic polynomial with integral coefficients.

Let M^n be a simply-connected complete Riemannian with constant (+1)-conullity equal to 2, and constant scalar curvature.

Let M^n be a simply-connected complete Riemannian with constant (+1)-conullity equal to 2, and constant scalar curvature. Then M is a 3-dimensional Sasakian space form, that is, isometric to one of the Lie groups SU(2) (the Berger sphere), $\widetilde{SL(2,\mathbb{R})}$ (the universal covering of the unit tangent bundle of the real hyperbolic space), or Nil^3 (the Heisenberg group). In all cases, the (+1)-nullity distribution is orthogonal to the contact distribution.

Corollary

A complete Riemannian manifold modelled on one of the left-invariant metrics listed on Table is locally isometric to the corresponding model.

λ_1	λ_2	λ_3	М	scal	φ -sect curv	Condition
heta+1/ heta	θ	1/ heta	<i>SU</i> (2)	2	-1	heta > 0
2	θ	θ	<i>SU</i> (2)	$-2+4\theta$	$-3+2\theta$	heta > 0
			$\widetilde{SL(2,\mathbb{R})}$			heta < 0
			Nil ³			$\theta = 0$

$$[e_1, e_2] = \lambda_3 e_3, \ [e_2, e_3] = \lambda_1 e_1, \ [e_3, e_1] = \lambda_2 e_2.$$

Felippe Guimarães (KU Leuven) The *k*-nullity of Riemannian manifolds

Let *M* be a Riemannian *n*-manifold $(n \ge 3)$ with (max) (-1)-conullity 2.

- (a) If the scalar curvature is constant and D = N[⊥]₋₁ is integrable on an open subset U of (-1)-conullity 2 then U is locally isometric to the group of ridig motions of the Minkowski plane,
 E(1,1) = SO₀(1,1) × ℝ², with a left-invariant metric.
- (b) Assume M is complete and has finite volume. Assume, in addition, that either n = 3 or the scalar curvature bounded away from -n(n-1). Then the universal covering of M is homogeneous.
- (c) If *M* is homogeneous and simply-connected, then *M* is isometric to $\widetilde{E(1,1)}$ or $\widetilde{SL(2,\mathbb{R})}$ with a left-invariant metric.

イロト 不得下 イヨト イヨト

n = 3:

$$C_{\mathcal{T}} = \begin{pmatrix} -1 & 0 \\ 2F & 1 \end{pmatrix},$$

We can write the Levi-Cività connection as follows:

$$\nabla_T T = \nabla_T X = \nabla_T Y = 0, \ \nabla_X T = X - 2FY, \ \nabla_Y T = -Y,$$

$$\nabla_X X = -T + \alpha Y, \ \nabla_Y Y = T + \beta X, \ \nabla_X Y = 2FT - \alpha X, \ \nabla_Y X = -\beta Y,$$

The bracket relations follow:

$$[X, Y] = 2FT - \alpha X + \beta Y, \ [T, X] = -X + 2FY, \ [T, Y] = Y.$$

Using the curvature relations:

$$egin{aligned} &lpha = -eta F, \ &T(eta) = eta, \ &Y(F) = -eta(1+F^2), \ &X(eta) - FY(eta) = K_{\mathcal{D}} - 1. \end{aligned}$$

21 / 25

Let M be either:

- (a) a connected complete Riemannian manifold of with nonzero constant index of κ -nullity, where $\kappa > 0$; or
- (b) a connected simply-connected irreducible locally homogeneous Riemannian manifold with nonzero index of 0-nullity.

Then any two points of M can be joined by a piecewise smooth curve which is orthogonal to the distribution of κ -nullity at smooth points.

- A. B. Aazami and C. M. Melby-Thompson, On the principal Ricci curvatures of a Riemannian 3-manifold, Adv. Geom. 19 (2019), no. 2, 251–262.
- T. G. Brooks, *Riemannian geometry of the curvature tensor*, Ph.D. thesis, University of Pennsylvania, 2018.
- D. Ferus, *Totally geodesic foliations*, Math. Ann. 188 (1970), 313–316.
- L. Florit and W. Ziller, *Manifolds with conullity at most two as graph manifolds*, Ann. Sci. Éc. Norm. Supèr. (4) 53 (2020), no. 5, 1313–1333.
- K. Sekigawa, On some hypersurfaces satisfying $R(X, Y) \cdot R = 0$, Tensor 25 (1972), 133–136.

- Antonio Jose Di Scala, Carlos Olmos, and Vittone Francisco, *Homogeneous riemannian manifolds with non-trivial nullity*, Transformation Groups.
- B. Schmidt and J. Wolfson, Three-manifolds of constant vector curvature one, C. R. Math. Acad. Sci. Paris 355 (2017), no. 4, 460–463.
- Z. I. Szabó, Structure theorems on riemannian spaces satisfying R(X, Y) · R = 0, ii. global versions, Geom. Dedicata 19 (1985), no. 1, 65–108.
- H. Takagi, An example of Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$ but not $\nabla R = 0$, Tohoku Math. J. (2) 24 (1972), 105–108.

24 / 25

Thank you for your attention!

< 一型