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MOTIVATION

+ Aloff-Wallach spaces were introduced by S. Aloff and N. Wallach
in 1974

» Family of manifolds of strictly positive curvature
» Family of manifolds with parameter-depending metric

» "Playground’ for different geometric structures
* Interesting examples for various applications

* Already lot of results:

» Agricola, Ball, Baum, Dileo, Friedrich, Grunewald, Kath, A.
Moroianu, Oliveira, Semmelmann, Stecker, . ..

Goal: Understanding geometric structures in big picture; relation to
spectral properties etc.



The Aloff-Wallach Space(s) W&/



ALOFF-WALLACH SPACE(S) WX/

« For k,I € Z relatively prime we define Wk! .= SU(3)/5111 where
Sg; = SUB), z > diag (zk,zl,z’(kﬂ))
» Lie-Algebra decomposition: su(3) = s' © m where

m=mydm Omy dBmg

(I +k)i 0 0
mp := span 0 —(2k+1)i 0 )
0 0 (k—=1i

« Using B(X,Y) = —1 Re (tr(XY)) we get a family of metrics g on
Wk! parametrized by \, x,y,z € R*:

1 1 1

= m = . B _ B - B - B

g g A |m0+x |m1+y |m2+z

|m3'



ISOTROPY REPRESENTATION OF WK/

» We choose ONB: X; € mg, Xj, Xj11 € mj1q

» The isotropy representation Adg on WK is given by

1 0 0 0
_|o Rik=no 0 ;
Adg(0) = 0 0 R[(2k+1) 6] 0 7
0 0 0 R{(k+21) 6]

where Rlo] <cos(a) sin(a))I

sin(a)  cos(«)

+ Obviously: X; is always Adsll-invariant

« Ifk =1(=1), then Xz, X3 are also Ad-invariant



Sasaki and G,-Geometry




ALMOST CONTACT METRIC STRUCTURES

+ An almost contact metric structure (¢, &, n,g) on a Riemannian
manifold (M?'+1, ¢) is given by
+ a(1,1)-tensor field ¢,
» a Reeb vector field &,
* and a 1-form n

such that

o= —Id+n®¢ nE) =1, geX,eY)=g(X,Y)—-nX)n(Y).

« An almost contact metric structure is a-Sasaki iff
* dn =2a @, where ®(X,Y) := g(X, p(Y)),
» ¢isKilling,

* Ny, = [p,p] +dn ®& =0 (normal)



3-(c,0)-SASAKI STRUCTURES

» Almost 3-contact metric manifold: Mfd. M endowed with three
‘compatible’ almost contact metric structures (i, &, i, 9)-
e ThendimM =4n+3,n > 1 and
TM=Ha&V, H = ﬂ ker n;, V := span {&,&, 8} .

i=1,2,3

* Mis hypernormal if No,, = 0, i € {1,2,3}.

A 3-(«, 0)-Sasaki manifold is an almost 3-contact metric manifold
such that

dn; = 2a ®; +2(a = 5) i A Tk,

for some a € R*,§ € R, (i,/,k) any even permutation of (1,2, 3).
Subcases:

* a = ¢: 3-a-Sasaki manifold

* o = ¢ = 1: 3-Sasaki manifold



3-(c,0)-SASAKI STRUCTURES

Facts (Agricola, Dileo, 2020):
» Every 3-(«,0)-Sasaki manifold M is hypernormal, all &; are Killing.

« lts Ricci curvature in dimension 7 is given by

Ric® = 2a(65 — 3a)g + 2(av — 8) (5 — an ® .

= V4-Einstein iff 6 = o or 6 = 5a..

+ 3 adapted metric connection with skew torsion, the canonical
connection. It satisfies for 5 := 2(§ — 2«)

Vxei = B (m(X)oj — 1j(X)ex) ,  Vx& = B (m(X)& — nji(X)&) -

= We call the 3-(«,d)-Sasaki manifold parallel if 3 = 0.



3-(,0)-SASAKI AND G,

Facts (Agricola, Dileo, 2020):

» Every 7-dim. 3-(«,9)-Sasaki manifold admits cocalibrated
G;-structure such that characteristic connection coincides with
the canonical one

+ Cocalibrated Gy: w® € Q*(M’) such that §w® = 0 (Fernandez-Gray
W1 & Ws)

* (proper) nearly parallel G, iff § = 5«
o dw® = \ x w® (Fernandez-Gray W)
« nearly-parallel G, = (M’, g) is V3-Einstein



Geometric Structures on W*!



SASAKI STRUCTURE ON W11

The isotropy representation leads to two cases:

Case I: k # [ (one invariant vector field, X; € my)

The Aloff-Wallach space (WX, g) admits an a-Sasaki structure if

2 2
0<2a\/k+3#=x(k+l):ky:lz,

where ¢ := Xy, n:=g(-, X1), ¢ = —1 V8X;.

Subcase k = I(= 1) and x = o?:

1
= 2 = —
x=a'= 1,



3-(,6)-SASAKI STRUCTURE ON W1

Case ll: k = [ =1 (3 invariant vector fields, X; € my, X3, X3 € my)

The Aloff-Wallach space (W', g) admits a 3-(,§)-Sasaki structure
if >0, >0as well as

1
x=46= 2, Yy =z =209,

>

with & := X; and ¢; := —éVgXi — O‘Tf‘; [nk ®E—1n® fk]-

Special subcases:
* § = a: Reduction to 3-a-Sasaki structure which is V8-Einstein
1
x:azzx, y:z:2a2
* § = 2a: Parallel case (8 = 0); implies + = x =y =z = 4a?
= The metric scales all m; equally!



G,-STRUCTURE ON W1

Recall: Every 7-dim. 3-(«,d)-Sasaki manifold admits a cocalibrated
G;-structure

Corollary

The associated cocalibrated G,-structure is given by:

W = — W145 + W17 + Waae + Was7 — W34y + W3se

+ w123

It is nearly parallel if and only if 6 = 5a. The eigenvalue is given by
A =12a.



OVERVIEW: 3-(,6)-SASAKI GEOMETRY ON W!!

3-a-Sasaki

Einstein

y=2z=2ad

3—Sa_saki 0=«

nearly parallel Go
Einstein

0 = da positive curvature

z=A"1=4§2






The Spectrum of a Normal
Homogeneous Space




GENERAL SETTING AND NOTATION

General Setting:

+ G is a compact Lie group.
* (G/K,g) is a reductive Riemannian homogeneous space.

* G/Kis normal hom., i.e. g is the restriction of a biinvariant metric
on G.

* D(G) is the set of dominant G-integral weights.



FROBENIUS RECIPROCITY

K-spherical representations

A unitary, irred. G-rep. (o, V) associated to A € D(G) of dimension
d()) is called K-spherical if

m(A) = dim{v € V) | oa(K)v = v} # 0.

The set of dominant integral weights corresponding to K-spherical
rep. is denoted by D(G, K).



FROBENIUS RECIPROCITY

K-spherical representations

A unitary, irred. G-rep. (o, V) associated to A € D(G) of dimension
d()) is called K-spherical if

m(A) = dim{v € V) | oa(K)v = v} # 0.

The set of dominant integral weights corresponding to K-spherical
rep. is denoted by D(G, K).

Frobenius reciprocity theorem [Wallach, 1973]

L*(G/K) decomposes into K-spherical representations:

LG/K)= P Vad..oV,

AED(G.K) m() times

~» decomposition of the eigenspaces of the Laplacian. Each g,
occurs precisely in one eigenspace.



THE SPECTRUM OF (G/K,g)

Theorem [Urakawa 1984]

The spectrum of the Laplacian on (G/K, g) is given by:
5(G/K,g) = {8(A+25,) | A € D(G,K)},

where § = % ZueR+ w. The multiplicity corresponding to A€ D(G, K)
can be computed by: mult(A\) = m(\) dim(Vy) =: m(\)d(A).



Normal Homogeneous
Realizations of (W"! ¢)




THE REALIZATION SU(3)/S},

Recall: The Aloff-Wallach spaces are W*' = SU(3)/S} , and

1 1 1
SZA'B|m0+;'B|m1+g'B|mZ+;'B

|m3'

Lemma

Wk ¢) is a normal hom. space with resp. to SU(3) iff
8
1

A=-=-=-

11
x oy oz

» Urakawa (1984) computed the spectrum in this case.



THE METRIC 8t b

We introduce the parameters t; = A = 1, , = 1 = 1 and denote

Yy
8t = &
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+ Aloff and Wallach (1975) proved: If kIl > 0and 0 < #; < f, then
(WKl ¢y 1) has positive curvature.



THE METRIC 8t b
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+ Aloff and Wallach (1975) proved: If kIl > 0and 0 < #; < f, then
(WKl ¢y 1) has positive curvature.

+ Wilking (1999) found a different realization (V3, h, ,,) of
(WL ¢ 1) which is normal hom..



THE METRIC 8t 1y

We introduce the parameters t; = A = 1, , = 1 = 1 and denote

Yy
8t = &

+ Aloff and Wallach (1975) proved: If kIl > 0and 0 < #; < f, then
(WKl ¢y 1) has positive curvature.

+ Wilking (1999) found a different realization (V3, h, ,,) of
(WL ¢ 1) which is normal hom..

~» He closed a gap in Berger’s classification from 1961 of simply
connected, normal hom. spaces with positive curvature.



Consider the inclusion

t:U((2) - SU(3), A~ (A 0

0 det(A)~!

and the projection 7 : U(2) — U(2)/s1 = SO(3).

)

20



Consider the inclusion
¢:U(2) - SU@B), A~ A 0
' ’ 0 det(A)!
and the projection 7 : U(2) — U(2)/s1 = SO(3).
The space V;

Vs = (SUG3) x SO(3))/U-(2), Uu*(2) = (1, m)((U(2)))

For B = —% tr, V3 is equipped with the restriction of the biinvariant
metrics on SU(3) x SO(3):

hrlﬂ’z =T B|5a(3) + 71 B| r1,12 € (0,00)

su(3)’

20



For each r,, € RT the SU(3) x SO(3)-normal hom. space
(V3, hy, 1,) is isometric to the non-SU(3)-normal hom. space
(W ¢4, 1,). The machting of coeff. is t; = 12 < rp and t, = 1.

4ri4n
All metrics on W with 0 < #; < #, are covered!

21



For each r,, € RT the SU(3) x SO(3)-normal hom. space
(V3, hy, 1,) is isometric to the non-SU(3)-normal hom. space
(W ¢4, 1,). The machting of coeff. is t; = 12 < rp and t, = 1.

4ri4n
All metrics on W with 0 < #; < #, are covered!

~» Spectrum can be calculated

* 1 = t, is not covered by the proposition! (would correspond to
r — OO)

21



The Spectrum on (W'! ¢, )




» The dominant integral weights A € D(SU(3) x SO(3)) are
parameterized by z1, 2, z3 € Ny with z; > z;.

22



» The dominant integral weights A € D(SU(3) x SO(3)) are
parameterized by z1, 2, z3 € Ny with z; > z;.

Theorem
The spectrum on (V3, k,, ,,) is obtained by

E(V37 hrl7r2)

[ z? + 23 N 4(z1%2 + 2% — z1(z2 — 3))
a r 31"2

‘m(zl,zz,zg) > 0} .

22



» The dominant integral weights A € D(SU(3) x SO(3)) are
parameterized by z1, 2, z3 € Ny with z; > z;.

Theorem
The spectrum on (V3, k,, ,,) is obtained by

E(V37 hi’lﬂ’z)

_ 232 + z3 n 4(212 +22 — 7 (zo —3))
a 1 37y

‘m(zl,zz,zg) > 0} .

Theorem

The spectrum on (W1, g2.2) has been calculated by Urakawa
(1984):

2 2 _ _
E(wl,l,gzz) _ {2(21 + 23 3 Zl(Zz 3)) ‘m(zl,zz) > O} )

22



» The difficulty is to compute the subset of spherical
representations.

23



» The difficulty is to compute the subset of spherical
representations.
» This can be done using the branching rules.

~» Complicated combinatorial problem. Can be solved using a
computer.
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Theorem
First A € D(SU(3) x SO(3), U*(2)) with multiplicities are:

Z1 02 2 3 3 4 4 4 5 5 5 5 6
zZ |01 1 0 3 2 2 2 1 1 4 4 0
zz (00 1 1 1 0 1 2 1 2 1 2 2
mult|l 8 24 30 30 27 81 135 105 175 105 175 140

24



First A € D(SU(3) x SO(3), U*(2)) with multiplicities are:

Z1 02 2 3 3 4 4 4 5 5 5 5 6
zZ |01 1 0 3 2 2 2 1 1 4 4 0
zz (00 1 1 1 0 1 2 1 2 1 2 2
mult|l 8 24 30 30 27 81 135 105 175 105 175 140

Theorem [Urakawa 1984]
First A € D(SU(3), S} ;) with multiplicities are:

zz |0 2 3 3 4 5 5 6
z (01 0 3 2 1 4 0
mult |1 32 30 30 243 280 280 140

24



Theorem
First A\ € D(SU(3) x SO(3), U*(2)) with multiplicities are:

Z1 0 2 2 3 4 4 4 5 3 5 5 6
Zp 01 1 O 2 2 2 1 1 4 4 0
Z3 00 1 1 0o 1 2 1 2 1 2 2
mult|1 8 24 30 27 81 135 105 175 105 175 140

Theorem [Urakawa 1984]
First A € D(SU(3), S} ;) with multiplicities are:

Z1 0 2 3 4 5 5 6
Zp 0 1 0 2 1 4 0
mult| 1 32 30 243 280 280 140

25



The first eigenvalues and their multiplicities suggest:

« Multiplicities of Z(W'1, ¢, ,) split into those of (W1, ¢; »).
82, 8h,

26



The first eigenvalues and their multiplicities suggest:

« Multiplicities of S(W'1, ¢, 5) split into those of (W1, ¢4, 5).

o X(WHL g 0) — S(WHL ¢y 5) for t; — 2, where S(Wh1, ¢2,) has
been computed by Urakawa in 1984.

26



The first eigenvalues and their multiplicities suggest:

« Multiplicities of ©(WH1, ¢, 5) split into those of S(WH1L, ¢4 5).

o X(WHL g 0) — S(WHL ¢y 5) for t; — 2, where S(Wh1, ¢2,) has
been computed by Urakawa in 1984.

« SWH, g1 2)#A S(WH g; 5) for t1, 5 <1and t; # b.

* In case z; = 0, the eigenvalue does not depend on ¢;. This is
precisely the spectrum of C P? as the canonical projection has
base space CP?.

26



600 1

100 1
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The first eigenvalues and their multiplicities suggest:

s (WLl gy5) (i.e., B = 0) appears most symmetrical.
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The first eigenvalues and their multiplicities suggest:

s (WLl gy5) (i.e., B = 0) appears most symmetrical.

» The nearly parallel G, case (#; = 0.8) can not be seen in the
spectrum.

28



y=2z=2ad

3-a-Sasaki

Finstein

3-Sa_saki

29
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THE DIFFEOMORPHISM W1 — V/,

We denote by U*(2) = (+,1d)(U(2))
SU(3) /5%,1 (SU3)/S1; x U(2)) /UA @)
(SU(3) x U(2)/SY) /UA 2
(SU(3) x SO(3)) /U-(z)

1

1%



BERGER’S CLASSIFICATION CORRECTED BY WILKING

Berger [Berger, 1961] asserted that any simply connected, normal
homogeneous space with positive sectional curvature is
diffeomorphic to a CROSS S, C P", HP", CalP? or

1. Vi =5p2)/su()
2. v, = SU(5)/4, where H is given by

|

Berger’s theorem is not correct. He missed a third exceptional space
which has been found by Wilking [Wilking, 1999]:

zA 0

0 5i||A€SP2) CSUM)ze S'c C} c U(4) c SU(5).

3. (V3v hrlﬂ’z)

Wilking proved that this completes the classification.



COMPUTATION OF m1(\)?

* In general, one can use the Branching rules [Goodman, Wallach
1998].

* Those are combinatorially challenging:

Z sgn(w)p(w(A + 0) |t(E) 5’t(u(2))
weW

* o denotes the Kostant partition function, W is the Weyl group and
t(u(2)) the maximal torus of the complexification of
u(2) C su(3) x so0(3)



GENERIC PROPERTIES OF THE SPECTRUM

* M is a manifold without boundary of dimension n
* M is the set of all Riemannian metrics on M.

Theorem [Bando, Urakawa 1983]

1. The spectrum counted with multiplicities depends uniformly
continuous on the metric ¢ € M with resp. to the C* topology.

2. The multiplicities my(g) = #{i | ni(g) = nk(g)} of each eigenvalue
() depends upper semi-continuously on ¢ € M : For each
geMandk=0,1,2,... there exists a § > 0 such that d(g,¢’) < ¢
implies m (') < my(g).
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