Geometry of Aloff-Wallach spaces

Ilka Agricola Jonas Henkel Henrik Naujoks August 24, 2023

Philipps-Universität Marburg

OUTLINE

- 1. The Aloff-Wallach Space(s) W^{k,l}
- 2. Sasaki and G2-Geometry
- 3. Geometric Structures on $W^{k,l}$
- 4. The Spectrum of a Normal Homogeneous Space
- 5. Normal Homogeneous Realizations of $(W^{k,l},g)$
- 6. The Spectrum on $(W^{1,1}, g_{t_1, t_2})$

MOTIVATION

- Aloff-Wallach spaces were introduced by S. Aloff and N. Wallach in 1974
 - · Family of manifolds of strictly positive curvature
- Family of manifolds with parameter-depending metric
 - · 'Playground' for different geometric structures
 - · Interesting examples for various applications
- Already lot of results:
 - Agricola, Ball, Baum, Dileo, Friedrich, Grunewald, Kath, A. Moroianu, Oliveira, Semmelmann, Stecker, ...

Goal: Understanding geometric structures in big picture; relation to spectral properties etc.

The Aloff-Wallach Space(s) W^{k,l}

ALOFF-WALLACH SPACE(S) W^{k,l}

- For $k, l \in \mathbb{Z}$ relatively prime we define $W^{k,l} := \frac{\mathrm{SU}(3)}{S_{k,l}^1}$ where $S_{k,l}^1 \hookrightarrow \mathrm{SU}(3), \quad z \mapsto \operatorname{diag}\left(z^k, z^l, z^{-(k+l)}\right)$
- Lie-Algebra decomposition: $\mathfrak{su}(3) = \mathfrak{s}^1 \oplus \mathfrak{m}$ where

$$\begin{split} \mathfrak{m} &= \mathfrak{m}_0 \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \\ \mathfrak{m}_0 &:= \operatorname{span} \left\{ \begin{pmatrix} (2l+k) \, \mathrm{i} & 0 & 0 \\ 0 & -(2k+l) \, \mathrm{i} & 0 \\ 0 & 0 & (k-l) \, \mathrm{i} \end{pmatrix} \right\}, \\ \dim(\mathfrak{m}_i) &= 2 \end{split}$$

• Using $B(X, Y) = -\frac{1}{2} \operatorname{Re} (\operatorname{tr}(XY))$ we get a family of metrics g on $W^{k,l}$, parametrized by $\lambda, x, y, z \in \mathbb{R}^+$:

$$g = g_{\mathfrak{m}} = \lambda \cdot B\big|_{\mathfrak{m}_0} + \frac{1}{x} \cdot B\big|_{\mathfrak{m}_1} + \frac{1}{y} \cdot B\big|_{\mathfrak{m}_2} + \frac{1}{z} \cdot B\big|_{\mathfrak{m}_3}.$$

ISOTROPY REPRESENTATION OF W^{k,l}

- We choose ONB: $X_1 \in \mathfrak{m}_0, X_i, X_{i+1} \in \mathfrak{m}_{i+1}$
- The isotropy representation $Ad_{S_{k,l}^1}$ on $W^{k,l}$ is given by

$$\operatorname{Ad}_{k,l}(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & R\left[(k-l)\,\theta\right] & 0 & 0 \\ 0 & 0 & R\left[(2k+l)\,\theta\right] & 0 \\ 0 & 0 & 0 & R\left[(k+2l)\,\theta\right] \end{pmatrix},$$

where
$$R[\alpha] = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix}$$
.

- Obviously: X_1 is always $\operatorname{Ad}_{S_{k_1}^1}$ -invariant
- If k = l(= 1), then X_2, X_3 are also Ad-invariant

Sasaki and G₂-Geometry

ALMOST CONTACT METRIC STRUCTURES

- An almost contact metric structure (φ, ξ, η, g) on a Riemannian manifold (M²ⁿ⁺¹, g) is given by
 - a (1,1)-tensor field φ ,
 - a Reeb vector field *ξ*,
 - and a 1-form η

such that

$$\varphi^2 = -\operatorname{Id} + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y).$$

- An almost contact metric structure is α -Sasaki iff
 - $d\eta = 2\alpha \Phi$, where $\Phi(X, Y) := g(X, \varphi(Y))$,
 - ξ is Killing,
 - $N_{\varphi} := [\varphi, \varphi] + d\eta \otimes \xi = 0$ (normal)

3-(α , δ)-SASAKI STRUCTURES

 Almost 3-contact metric manifold: Mfd. *M* endowed with three 'compatible' almost contact metric structures (φ_i, ξ_i, η_i, g).

• Then dim
$$M = 4n + 3$$
, $n \ge 1$ and

$$TM = \mathcal{H} \oplus \mathcal{V}, \qquad \mathcal{H} := \bigcap_{i=1,2,3} \ker \eta_i, \qquad \mathcal{V} := \operatorname{span} \left\{ \xi_1, \xi_2, \xi_3 \right\}.$$

• *M* is hypernormal if $N_{\varphi_i} = 0, i \in \{1, 2, 3\}$.

Definition

A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold such that

$$d\eta_i = 2\alpha \, \Phi_i + 2(\alpha - \delta) \, \eta_j \wedge \eta_k,$$

for some $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}$, (i, j, k) any even permutation of (1, 2, 3).

Subcases:

- $\alpha = \delta$: 3- α -Sasaki manifold
- $\alpha = \delta = 1$: 3-Sasaki manifold

Facts (Agricola, Dileo, 2020):

- Every 3-(α , δ)-Sasaki manifold *M* is hypernormal, all ξ_i are Killing.
- · Its Ricci curvature in dimension 7 is given by

$$\operatorname{Ric}^{g} = 2\alpha (6\delta - 3\alpha)g + 2(\alpha - \delta) (5\alpha - \delta) \sum_{i=1}^{3} \eta_{i} \otimes \eta_{i}.$$

$$\Rightarrow \nabla^{g}$$
-Einstein iff $\delta = \alpha$ or $\delta = 5\alpha$.

∃ adapted metric connection with skew torsion, the canonical connection. It satisfies for β := 2(δ - 2α)

$$\nabla_X \varphi_i = \beta \left(\eta_k(X) \varphi_j - \eta_j(X) \varphi_k \right), \quad \nabla_X \xi_i = \beta \left(\eta_k(X) \xi_j - \eta_j(X) \xi_k \right).$$

 \Rightarrow We call the 3-(α , δ)-Sasaki manifold parallel if $\beta = 0$.

Facts (Agricola, Dileo, 2020):

- Every 7-dim. 3-(α , δ)-Sasaki manifold admits cocalibrated G₂-structure such that characteristic connection coincides with the canonical one
 - Cocalibrated G₂: $\omega^3 \in \Omega^3(M^7)$ such that $\delta \omega^3 = 0$ (Fernandez-Gray $W_1 \oplus W_3$)
- (proper) nearly parallel G_2 iff $\delta = 5\alpha$
 - $d\omega^3 = \lambda * \omega^3$ (Fernandez-Gray W_1)
 - nearly-parallel $G_2 \Rightarrow (M^7, g)$ is ∇^g -Einstein

Geometric Structures on *W*^{*k*,*l*}

The isotropy representation leads to two cases:

Case I: $k \neq l$ (one invariant vector field, $X_1 \in \mathfrak{m}_0$)

Theorem

The Aloff-Wallach space $(W^{k,l},g)$ admits an α -Sasaki structure if

$$0 < 2\alpha \sqrt{\frac{k^2 + kl + l^2}{3\lambda}} = x(k+l) = ky = lz,$$

where $\xi := X_1, \ \eta := g(\cdot, X_1), \ \varphi := -\frac{1}{\alpha} \nabla^g X_1.$

Subcase k = l(= 1) and $x = \alpha^2$:

$$x = \alpha^2 = \frac{1}{\lambda}, \quad y = z = 2\alpha^2$$

3-(α , δ)-SASAKI STRUCTURE ON $W^{1,1}$

Case II: k = l = 1 (3 invariant vector fields, $X_1 \in \mathfrak{m}_0, X_2, X_3 \in \mathfrak{m}_1$)

Theorem

The Aloff-Wallach space $(W^{1,1},g)$ admits a 3- (α,δ) -Sasaki structure if $\alpha > 0, \delta > 0$ as well as

$$x = \delta^2 = \frac{1}{\lambda}, \quad y = z = 2\alpha\delta,$$

with
$$\xi_i := X_i$$
 and $\varphi_i := -\frac{1}{\alpha} \nabla^g X_i - \frac{\alpha - \delta}{\alpha} \left[\eta_k \otimes \xi_j - \eta_j \otimes \xi_k \right].$

Special subcases:

• $\delta = \alpha$: Reduction to 3- α -Sasaki structure which is ∇^{g} -Einstein

$$x = \alpha^2 = \frac{1}{\lambda}, \quad y = z = 2\alpha^2$$

• $\delta = 2\alpha$: Parallel case ($\beta = 0$); implies $\frac{1}{\lambda} = x = y = z = 4\alpha^2$ \Rightarrow The metric scales all \mathfrak{m}_i equally! Recall: Every 7-dim. 3-(α , δ)-Sasaki manifold admits a cocalibrated G2-structure

Corollary

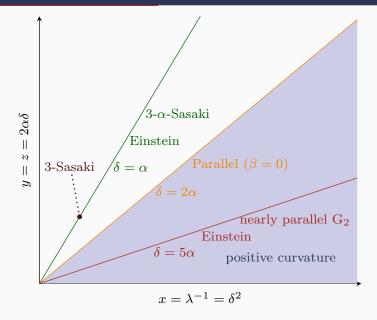
The associated cocalibrated G₂-structure is given by:

$$\omega = -\omega_{145} + \omega_{167} + \omega_{246} + \omega_{257} - \omega_{347} + \omega_{356}$$

 $+ \omega_{123}$

It is nearly parallel if and only if $\delta = 5\alpha$. The eigenvalue is given by $\lambda = 12\alpha$.

OVERVIEW: 3-(α , δ)-SASAKI **G**EOMETRY ON $W^{1,1}$



The Spectrum of a Normal Homogeneous Space

General Setting:

- *G* is a compact Lie group.
- (G/K,g) is a reductive Riemannian homogeneous space.
- *G*/*K* is normal hom., i.e. *g* is the restriction of a biinvariant metric on *G*.
- D(G) is the set of dominant G-integral weights.

K-spherical representations

A unitary, irred. *G*-rep. $(\varrho_{\lambda}, V_{\lambda})$ associated to $\lambda \in D(G)$ of dimension $d(\lambda)$ is called *K*-spherical if

$$m(\lambda) = \dim \{ v \in V_{\lambda} \mid \varrho_{\lambda}(K)v = v \} \neq 0.$$

The set of dominant integral weights corresponding to *K*-spherical rep. is denoted by D(G, K).

K-spherical representations

A unitary, irred. *G*-rep. $(\varrho_{\lambda}, V_{\lambda})$ associated to $\lambda \in D(G)$ of dimension $d(\lambda)$ is called *K*-spherical if

$$m(\lambda) = \dim \{ v \in V_{\lambda} \mid \varrho_{\lambda}(K)v = v \} \neq 0.$$

The set of dominant integral weights corresponding to *K*-spherical rep. is denoted by D(G, K).

Frobenius reciprocity theorem [Wallach, 1973]

 $L^2(G/K)$ decomposes into *K*-spherical representations:

$$L^{2}(G/K) \cong \bigoplus_{\lambda \in \mathcal{D}(G,K)} \underbrace{V_{\lambda} \oplus ... \oplus V_{\lambda}}_{m(\lambda) \text{ times}}$$

 \rightsquigarrow decomposition of the eigenspaces of the Laplacian. Each ρ_{λ} occurs precisely in one eigenspace.

Theorem [Urakawa 1984]

The spectrum of the Laplacian on (G/K, g) is given by:

$$\Sigma(G/K,g) = \{g(\lambda + 2\delta, \lambda) \mid \lambda \in \mathcal{D}(G,K)\},\$$

where $\delta = \frac{1}{2} \sum_{\mu \in \mathbb{R}^+} \mu$. The multiplicity corresponding to $\lambda \in D(G, K)$ can be computed by: $\operatorname{mult}(\lambda) = m(\lambda) \operatorname{dim}(V_{\lambda}) =: m(\lambda)d(\lambda)$.

Normal Homogeneous Realizations of $(W^{k,l},g)$

Recall: The Aloff-Wallach spaces are $W^{k,l} = SU(3)/S^1_{k,l}$ and

$$g = \lambda \cdot B\big|_{\mathfrak{m}_0} + \frac{1}{x} \cdot B\big|_{\mathfrak{m}_1} + \frac{1}{y} \cdot B\big|_{\mathfrak{m}_2} + \frac{1}{z} \cdot B\big|_{\mathfrak{m}_3}.$$

Lemma

 $(W^{k,l},g)$ is a normal hom. space with resp. to SU(3) iff

$$\lambda = \frac{1}{x} = \frac{1}{y} = \frac{1}{z}.$$

• Urakawa (1984) computed the spectrum in this case.

We introduce the parameters $t_1 = \lambda = \frac{1}{x}$, $t_2 = \frac{1}{y} = \frac{1}{z}$ and denote $g_{t_1,t_2} = g$.

We introduce the parameters $t_1 = \lambda = \frac{1}{x}$, $t_2 = \frac{1}{y} = \frac{1}{z}$ and denote $g_{t_1,t_2} = g$.

• Aloff and Wallach (1975) proved: If kl > 0 and $0 < t_1 < t_2$ then $(W^{k,l}, g_{t_1,t_2})$ has positive curvature.

We introduce the parameters $t_1 = \lambda = \frac{1}{x}$, $t_2 = \frac{1}{y} = \frac{1}{z}$ and denote $g_{t_1,t_2} = g$.

- Aloff and Wallach (1975) proved: If kl > 0 and $0 < t_1 < t_2$ then $(W^{k,l}, g_{t_1,t_2})$ has positive curvature.
- Wilking (1999) found a different realization (V_3, h_{r_1,r_2}) of $(W^{1,1}, g_{t_1,t_2})$ which is normal hom..

We introduce the parameters $t_1 = \lambda = \frac{1}{x}$, $t_2 = \frac{1}{y} = \frac{1}{z}$ and denote $g_{t_1,t_2} = g$.

- Aloff and Wallach (1975) proved: If kl > 0 and $0 < t_1 < t_2$ then $(W^{k,l}, g_{t_1,t_2})$ has positive curvature.
- Wilking (1999) found a different realization (V_3, h_{r_1,r_2}) of $(W^{1,1}, g_{t_1,t_2})$ which is normal hom..
 - → He closed a gap in Berger's classification from 1961 of simply connected, normal hom. spaces with positive curvature.

Consider the inclusion

$$\iota: \mathrm{U}(2) \to \mathrm{SU}(3), \quad A \mapsto \begin{pmatrix} A & 0 \\ 0 & \det(A)^{-1} \end{pmatrix}$$

and the projection $\pi:\mathrm{U}(2)\to\mathrm{U}(2)\!/_{\!S^1}\cong\mathrm{SO}(3).$

Consider the inclusion

$$\iota: \mathrm{U}(2) \to \mathrm{SU}(3), \quad A \mapsto \begin{pmatrix} A & 0\\ 0 & \det(A)^{-1} \end{pmatrix}$$

and the projection $\pi : U(2) \rightarrow U(2)/S^1 \cong SO(3)$.

The space V_3

$$V_3 := (\mathrm{SU}(3) \times \mathrm{SO}(3)) / U^{\bullet}(2), \quad U^{\bullet}(2) = (\iota, \pi)((\mathrm{U}(2)))$$

For $B = -\frac{1}{2}$ tr, V_3 is equipped with the restriction of the biinvariant metrics on SU(3) × SO(3):

$$h_{r_1,r_2} := r_1 \cdot B \big|_{\mathfrak{so}(3)} + r_2 \cdot B \big|_{\mathfrak{su}(3)}, \quad r_1, r_2 \in (0,\infty).$$

Proposition [Wilking, 1999]

For each $r_1, r_2 \in \mathbb{R}^+$ the SU(3) × SO(3)-normal hom. space (V_3, h_{r_1, r_2}) is isometric to the non-SU(3)-normal hom. space $(W^{1,1}, g_{t_1, t_2})$. The maching of coeff. is $t_1 = \frac{4r_1r_2}{4r_1+r_2} < r_2$ and $t_2 = r_2$. All metrics on $W^{1,1}$ with $0 < t_1 < t_2$ are covered!

Proposition [Wilking, 1999]

For each $r_1, r_2 \in \mathbb{R}^+$ the SU(3) × SO(3)-normal hom. space (V_3, h_{r_1, r_2}) is isometric to the non-SU(3)-normal hom. space $(W^{1,1}, g_{t_1, t_2})$. The maching of coeff. is $t_1 = \frac{4r_1r_2}{4r_1+r_2} < r_2$ and $t_2 = r_2$. All metrics on $W^{1,1}$ with $0 < t_1 < t_2$ are covered!

- → Spectrum can be calculated
 - $t_1 = t_2$ is not covered by the proposition! (would correspond to $r_1 \rightarrow \infty$)

The Spectrum on $(W^{1,1}, g_{t_1,t_2})$

 The dominant integral weights λ ∈ D(SU(3) × SO(3)) are parameterized by z₁, z₂, z₃ ∈ N₀ with z₁ ≥ z₂. • The dominant integral weights $\lambda \in D(SU(3) \times SO(3))$ are parameterized by $z_1, z_2, z_3 \in \mathbb{N}_0$ with $z_1 \ge z_2$.

Theorem

The spectrum on (V_3, h_{r_1, r_2}) is obtained by

$$\Sigma(V_3, h_{r_1, r_2}) = \left\{ \frac{z_3^2 + z_3}{r_1} + \frac{4(z_1^2 + z_2^2 - z_1(z_2 - 3))}{3r_2} \left| m(z_1, z_2, z_3) > 0 \right\}.$$

• The dominant integral weights $\lambda \in D(SU(3) \times SO(3))$ are parameterized by $z_1, z_2, z_3 \in \mathbb{N}_0$ with $z_1 \ge z_2$.

Theorem

The spectrum on (V_3, h_{r_1, r_2}) is obtained by

$$\Sigma(V_3, h_{r_1, r_2}) = \left\{ \frac{z_3^2 + z_3}{r_1} + \frac{4(z_1^2 + z_2^2 - z_1(z_2 - 3))}{3r_2} \right| m(z_1, z_2, z_3) > 0 \right\}.$$

Theorem

The spectrum on $(W^{1,1}, g_{2,2})$ has been calculated by Urakawa (1984):

$$\Sigma(W^{1,1},g_{2,2}) = \left\{ \frac{2(z_1^2 + z_2^2 - z_1(z_2 - 3))}{3} \, \middle| \, m(z_1,z_2) > 0 \right\}.$$

• The difficulty is to compute the subset of spherical representations.

- The difficulty is to compute the subset of spherical representations.
- This can be done using the branching rules.
 - → Complicated combinatorial problem. Can be solved using a computer.

Theorem

First $\lambda \in D(SU(3) \times SO(3), U^{\bullet}(2))$ with multiplicities are:													
z_1	0	2	2	3	3	4	4	4	5	5	5	5	6
z_2	0	1	1	0	3	2	2	2	1	1	4	4	0
z_3	0	0	1	1	1	0	1	2	1	2	1	2	2
z_1 z_2 z_3 mult	1	8	24	30	30	27	81	135	105	175	105	175	140

Theorem

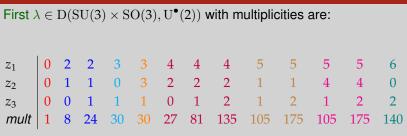
First $\lambda \in D(SU(3) \times SO(3), U^{\bullet}(2))$ with multiplicities are:													
z_1	0	2	2	3	3	4	4	4	5	5	5	5	6
z_2	0	1	1	0	3	2	2	2	1	1	4	4	0
z_3													
mult	1	8	24	30	30	27	81	135	105	175	105	175	140

Theorem [Urakawa 1984]

First $\lambda \in D(SU(3), S^1_{1,1})$ with multiplicities are:

z_1	0	2	3	3	4	5	5	6
z_2	0	1	0	3	2	1	4	0
z ₁ z ₂ mult	1	32	30	30	243	280	280	140

Theorem



Theorem [Urakawa 1984]

First $\lambda \in D(SU(3), S_{1,1}^1)$ with multiplicities are:

The first eigenvalues and their multiplicities suggest:

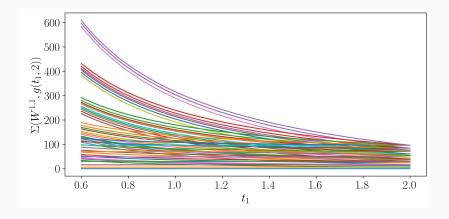
• Multiplicities of $\Sigma(W^{1,1}, g_{2,2})$ split into those of $\Sigma(W^{1,1}, g_{t_1,2})$.

The first eigenvalues and their multiplicities suggest:

- Multiplicities of $\Sigma(W^{1,1}, g_{2,2})$ split into those of $\Sigma(W^{1,1}, g_{t_1,2})$.
- $\Sigma(W^{1,1}, g_{t_1,2}) \longrightarrow \Sigma(W^{1,1}, g_{2,2})$ for $t_1 \rightarrow 2$, where $\Sigma(W^{1,1}, g_{2,2})$ has been computed by Urakawa in 1984.

The first eigenvalues and their multiplicities suggest:

- Multiplicities of $\Sigma(W^{1,1}, g_{2,2})$ split into those of $\Sigma(W^{1,1}, g_{t_1,2})$.
- $\Sigma(W^{1,1}, g_{t_1,2}) \longrightarrow \Sigma(W^{1,1}, g_{2,2})$ for $t_1 \rightarrow 2$, where $\Sigma(W^{1,1}, g_{2,2})$ has been computed by Urakawa in 1984.
- $\Sigma(W^{1,1}, g_{t_1,2}) \neq \Sigma(W^{1,1}, g_{\tilde{t}_1,2})$ for $t_1, \tilde{t}_1 \leq 1$ and $t_1 \neq \tilde{t}_1$.
- In case *z*₃ = 0, the eigenvalue does not depend on *t*₁. This is precisely the spectrum of C P² as the canonical projection has base space C P².

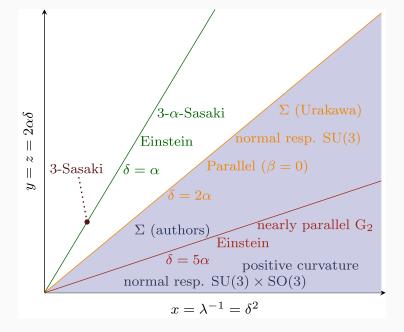


The first eigenvalues and their multiplicities suggest:

• $(W^{1,1}, g_{2,2})$ (i.e., $\beta = 0$) appears most symmetrical.

The first eigenvalues and their multiplicities suggest:

- $(W^{1,1}, g_{2,2})$ (i.e., $\beta = 0$) appears most symmetrical.
- The nearly parallel G_2 case ($t_1 = 0.8$) can not be seen in the spectrum.



REFERENCES I

- Aloff, S., Wallach, N.R. (1975). An infinite family of distinct 7-manifolds admitting positively curved Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (Zbl 0362.53033)
- Bando, S., Urakawa, H. (1983). Generic properties of the eigenvalue of the Laplacian for compact Riemannian manifolds. Tohoku Math. J. (2) 35(2): 155-172 (1983). DOI: 10.2748/tmj/1178229047
- Berger, M. (1961). Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive.
 Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.3 (1961): 179-246.

Baum, H., Friedrich, T., Grunewald, R., Kath, I. (1991). *Twistors* and *Killing Spinors on Riemannian Manifolds*

REFERENCES II

- Goodman, R., Wallach, N. R. (2009). *Symmetry, representations, and invariants.* Based on the book "Representations and invariants of the classical groups" originally published by Cambridge University Press, 1998. New York, NY: Springer (Zbl 1173.22001).
- Urakawa, H. (1984). Numerical Computations of the Spectra of the Laplacian on 7-Dimensional Homogeneous Manifolds SU(3)/T(k,l). SIAM Journal on Mathematical Analysis, 15(5) 979-987. DOI: 10.1137/0515074

Wallach, N. R. (2018). *Harmonic analysis on homogeneous spaces*. 2nd edition, revised and updated republication of the 1973 original published by Marcel Dekker. Mineola, NY: Dover Publications (Zbl 1406.22001)

Wilking, B. (1999). The Normal Homogeneous Space $(SU(3) \times SO(3))/U^{\bullet}(2)$ Has Positive Sectional Curvature. Proceedings of the American Mathematical Society, 127(4), 1191–1194. http://www.jstor.org/stable/119243 We denote by $U^{\blacktriangle}(2) = (\iota, \operatorname{Id})(U(2))$ $SU(3)/S_{1,1}^{1} \cong (SU(3)/S_{1,1}^{1} \times U(2))/U^{\bigstar}(2)$ $= (SU(3) \times U(2)/S^{1})/U^{\bigstar}(2)$ $\cong (SU(3) \times SO(3))/U^{\bullet}(2)$ Berger [Berger, 1961] asserted that any simply connected, normal homogeneous space with positive sectional curvature is diffeomorphic to a CROSS S^n , $\mathbb{C} \mathbb{P}^n$, \mathbb{HP}^n , $Ca\mathbb{P}^2$ or

1. $V_1 = \frac{Sp(2)}{SU(2)}$ 2. $V_2 = \frac{SU(5)}{H}$, where *H* is given by $H = \left\{ \begin{bmatrix} zA & 0\\ 0 & \overline{z}^4 \end{bmatrix} \middle| A \in Sp(2) \subset SU(4), z \in S^1 \subset \mathbb{C} \right\} \subset U(4) \subset SU(5).$

Berger's theorem is not correct. He missed a third exceptional space which has been found by Wilking [Wilking, 1999]:

3.
$$(V_3, h_{r_1, r_2})$$

Wilking proved that this completes the classification.

- In general, one can use the Branching rules [Goodman, Wallach 1998].
- · Those are combinatorially challenging:

$$m(\lambda) = \sum_{w \in W} \operatorname{sgn}(w) \wp(w(\lambda + \delta)\big|_{\mathfrak{t}(\mathfrak{k})} - \delta\big|_{\mathfrak{t}(\mathfrak{u}(2))}).$$

• \wp denotes the Kostant partition function, W is the Weyl group and $\mathfrak{t}(\mathfrak{u}(2))$ the maximal torus of the complexification of $\mathfrak{u}(2) \subset \mathfrak{su}(3) \times \mathfrak{so}(3)$

- *M* is a manifold without boundary of dimension *n*
- \mathcal{M} is the set of all Riemannian metrics on M.

Theorem [Bando, Urakawa 1983]

- 1. The spectrum counted with multiplicities depends uniformly continuous on the metric $g \in M$ with resp. to the C^{∞} topology.
- 2. The multiplicities $m_k(g) = \#\{i \mid \eta_i(g) = \eta_k(g)\}$ of each eigenvalue $\eta_k(g)$ depends upper semi-continuously on $g \in \mathcal{M}$: For each $g \in \mathcal{M}$ and k = 0, 1, 2, ... there exists a $\delta > 0$ such that $d(g, g') < \delta$ implies $m_k(g') \le m_k(g)$.