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MOTIVATION

• Aloff-Wallach spaces were introduced by S. Aloff and N. Wallach
in 1974

• Family of manifolds of strictly positive curvature

• Family of manifolds with parameter-depending metric
• ’Playground’ for different geometric structures
• Interesting examples for various applications

• Already lot of results:
• Agricola, Ball, Baum, Dileo, Friedrich, Grunewald, Kath, A.

Moroianu, Oliveira, Semmelmann, Stecker, . . .

Goal: Understanding geometric structures in big picture; relation to
spectral properties etc.
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The Aloff-Wallach Space(s) Wk,l



ALOFF-WALLACH SPACE(S) Wk,l

• For k, l ∈ Z relatively prime we define Wk,l := SU(3)
/

S1
k,l

where

S1
k,l ↪→ SU(3), z 7→ diag

(
zk, zl, z−(k+l)

)
• Lie-Algebra decomposition: su(3) = s1 ⊕m where

m = m0 ⊕m1 ⊕m2 ⊕m3

m0 := span


(2l + k) i 0 0

0 − (2k + l) i 0
0 0 (k − l) i


 ,

dim(mi) = 2

• Using B(X,Y) = − 1
2 Re (tr(XY)) we get a family of metrics g on

Wk,l, parametrized by λ, x, y, z ∈ R+:

g = gm = λ · B
∣∣
m0

+
1
x
· B
∣∣
m1

+
1
y
· B
∣∣
m2

+
1
z
· B
∣∣
m3
.
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ISOTROPY REPRESENTATION OF Wk,l

• We choose ONB: X1 ∈ m0, Xi,Xi+1 ∈ mi+1

• The isotropy representation AdS1
k,l

on Wk,l is given by

Adk,l(θ) =


1 0 0 0
0 R [(k − l) θ] 0 0
0 0 R [(2k + l) θ] 0
0 0 0 R [(k + 2l) θ]

 ,

where R[α] =

(
cos(α) − sin(α)

sin(α) cos(α)

)
.

• Obviously: X1 is always AdS1
k,l

-invariant

• If k = l(= 1), then X2,X3 are also Ad-invariant
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Sasaki and G2-Geometry



ALMOST CONTACT METRIC STRUCTURES

• An almost contact metric structure (φ, ξ, η, g) on a Riemannian
manifold (M2n+1, g) is given by

• a (1, 1)-tensor field φ,
• a Reeb vector field ξ,
• and a 1-form η

such that

φ2 = − Id+η ⊗ ξ, η(ξ) = 1, g(φX, φY) = g(X,Y)− η(X)η(Y).

• An almost contact metric structure is α-Sasaki iff
• dη = 2α Φ, where Φ(X,Y) := g(X, φ(Y)),

• ξ is Killing,

• Nφ := [φ,φ] + dη ⊗ ξ = 0 (normal)
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3-(α,δ)-SASAKI STRUCTURES

• Almost 3-contact metric manifold: Mfd. M endowed with three
’compatible’ almost contact metric structures (φi, ξi, ηi, g).

• Then dim M = 4n + 3, n ≥ 1 and

TM = H⊕ V, H :=
⋂

i=1,2,3

ker ηi, V := span {ξ1, ξ2, ξ3} .

• M is hypernormal if Nφi = 0, i ∈ {1, 2, 3}.

Definition
A 3-(α, δ)-Sasaki manifold is an almost 3-contact metric manifold
such that

dηi = 2αΦi + 2(α− δ) ηj ∧ ηk,

for some α ∈ R∗, δ ∈ R, (i, j, k) any even permutation of (1, 2, 3).

Subcases:
• α = δ: 3-α-Sasaki manifold
• α = δ = 1: 3-Sasaki manifold
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3-(α,δ)-SASAKI STRUCTURES

Facts (Agricola, Dileo, 2020):

• Every 3-(α,δ)-Sasaki manifold M is hypernormal, all ξi are Killing.

• Its Ricci curvature in dimension 7 is given by

Ricg = 2α
(
6δ − 3α

)
g + 2(α− δ)

(
5α− δ

) 3∑
i=1

ηi ⊗ ηi.

⇒ ∇g-Einstein iff δ = α or δ = 5α.

• ∃ adapted metric connection with skew torsion, the canonical
connection. It satisfies for β := 2(δ − 2α)

∇Xφi = β
(
ηk(X)φj − ηj(X)φk

)
, ∇Xξi = β

(
ηk(X)ξj − ηj(X)ξk

)
.

⇒ We call the 3-(α,δ)-Sasaki manifold parallel if β = 0.
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3-(α,δ)-SASAKI AND G2

Facts (Agricola, Dileo, 2020):

• Every 7-dim. 3-(α,δ)-Sasaki manifold admits cocalibrated
G2-structure such that characteristic connection coincides with
the canonical one

• Cocalibrated G2: ω3 ∈ Ω3(M7) such that δω3 = 0 (Fernandez-Gray
W1 ⊕ W3)

• (proper) nearly parallel G2 iff δ = 5α
• dω3 = λ ∗ ω3 (Fernandez-Gray W1)
• nearly-parallel G2 ⇒

(
M7, g

)
is ∇g-Einstein

9



Geometric Structures on Wk,l



SASAKI STRUCTURE ON W1,1

The isotropy representation leads to two cases:

Case I: k ̸= l (one invariant vector field, X1 ∈ m0)

Theorem

The Aloff-Wallach space
(
Wk,l, g

)
admits an α-Sasaki structure if

0 < 2α

√
k2 + kl + l2

3λ
= x(k + l) = ky = lz,

where ξ := X1, η := g(·,X1), φ := − 1
α ∇gX1.

Subcase k = l(= 1) and x = α2:

x = α2 =
1
λ
, y = z = 2α2
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3-(α,δ)-SASAKI STRUCTURE ON W1,1

Case II: k = l = 1 (3 invariant vector fields, X1 ∈ m0, X2,X3 ∈ m1)

Theorem

The Aloff-Wallach space
(
W1,1, g

)
admits a 3-(α,δ)-Sasaki structure

if α > 0, δ > 0 as well as

x = δ2 =
1
λ
, y = z = 2αδ,

with ξi := Xi and φi := − 1
α∇

gXi − α−δ
α

[
ηk ⊗ ξj − ηj ⊗ ξk

]
.

Special subcases:
• δ = α: Reduction to 3-α-Sasaki structure which is ∇g-Einstein

x = α2 =
1
λ
, y = z = 2α2

• δ = 2α: Parallel case (β = 0); implies 1
λ = x = y = z = 4α2

⇒ The metric scales all mi equally!
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G2-STRUCTURE ON W1,1

Recall: Every 7-dim. 3-(α,δ)-Sasaki manifold admits a cocalibrated
G2-structure

Corollary
The associated cocalibrated G2-structure is given by:

ω =− ω145 + ω167 + ω246 + ω257 − ω347 + ω356

+ ω123

It is nearly parallel if and only if δ = 5α. The eigenvalue is given by
λ = 12α.
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OVERVIEW: 3-(α,δ)-SASAKI GEOMETRY ON W1,1

3-α-Sasaki

Einstein

δ = α Parallel (β = 0)

δ = 2α

Einstein
δ = 5α

nearly parallel G2

3-Sasaki

positive curvature

x = λ−1 = δ2

y
=

z
=

2
α
δ
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The Spectrum of a Normal
Homogeneous Space



GENERAL SETTING AND NOTATION

General Setting:

• G is a compact Lie group.

• (G/K, g) is a reductive Riemannian homogeneous space.

• G/K is normal hom., i.e. g is the restriction of a biinvariant metric
on G.

• D(G) is the set of dominant G-integral weights.
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FROBENIUS RECIPROCITY

K-spherical representations
A unitary, irred. G-rep. (ϱλ,Vλ) associated to λ ∈ D(G) of dimension
d(λ) is called K-spherical if

m(λ) = dim {v ∈ Vλ | ϱλ(K)v = v} ≠ 0.

The set of dominant integral weights corresponding to K-spherical
rep. is denoted by D(G,K).

Frobenius reciprocity theorem [Wallach, 1973]

L2(G/K) decomposes into K-spherical representations:

L2(G/K) ∼=
⊕

λ∈D(G,K)

Vλ ⊕ ...⊕ Vλ︸ ︷︷ ︸
m(λ) times

⇝ decomposition of the eigenspaces of the Laplacian. Each ϱλ
occurs precisely in one eigenspace.
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THE SPECTRUM OF (G/K, g)

Theorem [Urakawa 1984]
The spectrum of the Laplacian on (G/K, g) is given by:

Σ(G/K, g) = {g(λ+ 2δ, λ) | λ ∈ D(G,K)},

where δ = 1
2

∑
µ∈R+ µ. The multiplicity corresponding to λ∈ D(G,K)

can be computed by: mult(λ) = m(λ) dim(Vλ) =: m(λ)d(λ).
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Normal Homogeneous
Realizations of (Wk,l, g)



THE REALIZATION SU(3)/S1
k,l

Recall: The Aloff-Wallach spaces are Wk,l = SU(3)/S1
k,l and

g = λ · B
∣∣
m0

+
1
x
· B
∣∣
m1

+
1
y
· B
∣∣
m2

+
1
z
· B
∣∣
m3
.

Lemma

(Wk,l, g) is a normal hom. space with resp. to SU(3) iff

λ =
1
x
=

1
y
=

1
z
.

• Urakawa (1984) computed the spectrum in this case.
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THE METRIC gt1,t2

Notation

We introduce the parameters t1 = λ = 1
x , t2 = 1

y = 1
z and denote

gt1,t2 = g.

• Aloff and Wallach (1975) proved: If kl > 0 and 0 < t1 < t2 then
(Wk,l, gt1,t2) has positive curvature.

• Wilking (1999) found a different realization (V3, hr1,r2) of
(W1,1, gt1,t2) which is normal hom..
⇝ He closed a gap in Berger’s classification from 1961 of simply

connected, normal hom. spaces with positive curvature.
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Consider the inclusion

ι : U(2) → SU(3), A 7→

(
A 0
0 det(A)−1

)

and the projection π : U(2) → U(2)/S1 ∼= SO(3).

The space V3

V3 := (SU(3)× SO(3))
/

U•(2) , U•(2) = (ι, π)((U(2)))

For B = − 1
2 tr, V3 is equipped with the restriction of the biinvariant

metrics on SU(3)× SO(3):

hr1,r2 := r1 · B
∣∣
so(3) + r2 · B

∣∣
su(3), r1, r2 ∈ (0,∞).
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Proposition [Wilking, 1999]

For each r1, r2 ∈ R+ the SU(3)× SO(3)-normal hom. space
(V3, hr1,r2) is isometric to the non-SU(3)-normal hom. space
(W1,1, gt1,t2). The machting of coeff. is t1 = 4r1r2

4r1+r2
< r2 and t2 = r2.

All metrics on W1,1 with 0 < t1 < t2 are covered!

⇝ Spectrum can be calculated

• t1 = t2 is not covered by the proposition! (would correspond to
r1 → ∞)
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The Spectrum on (W1,1, gt1,t2)



• The dominant integral weights λ ∈ D(SU(3)× SO(3)) are
parameterized by z1, z2, z3 ∈ N0 with z1 ≥ z2.

Theorem
The spectrum on (V3, hr1,r2) is obtained by

Σ(V3, hr1,r2)

=

{
z3

2 + z3

r1
+

4(z1
2 + z2

2 − z1(z2 − 3))
3r2

m(z1, z2, z3) > 0
}
.

Theorem

The spectrum on (W1,1, g2,2) has been calculated by Urakawa
(1984):

Σ(W1,1, g2,2) =

{
2(z1

2 + z2
2 − z1(z2 − 3))

3
m(z1, z2) > 0

}
.

22



• The dominant integral weights λ ∈ D(SU(3)× SO(3)) are
parameterized by z1, z2, z3 ∈ N0 with z1 ≥ z2.

Theorem
The spectrum on (V3, hr1,r2) is obtained by

Σ(V3, hr1,r2)

=

{
z3

2 + z3

r1
+

4(z1
2 + z2

2 − z1(z2 − 3))
3r2

m(z1, z2, z3) > 0
}
.

Theorem

The spectrum on (W1,1, g2,2) has been calculated by Urakawa
(1984):

Σ(W1,1, g2,2) =

{
2(z1

2 + z2
2 − z1(z2 − 3))

3
m(z1, z2) > 0

}
.

22



• The dominant integral weights λ ∈ D(SU(3)× SO(3)) are
parameterized by z1, z2, z3 ∈ N0 with z1 ≥ z2.

Theorem
The spectrum on (V3, hr1,r2) is obtained by

Σ(V3, hr1,r2)

=

{
z3

2 + z3

r1
+

4(z1
2 + z2

2 − z1(z2 − 3))
3r2

m(z1, z2, z3) > 0
}
.

Theorem

The spectrum on (W1,1, g2,2) has been calculated by Urakawa
(1984):

Σ(W1,1, g2,2) =

{
2(z1

2 + z2
2 − z1(z2 − 3))

3
m(z1, z2) > 0

}
.

22



• The difficulty is to compute the subset of spherical
representations.

• This can be done using the branching rules.
⇝ Complicated combinatorial problem. Can be solved using a

computer.
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Theorem
First λ ∈ D(SU(3)× SO(3),U•(2)) with multiplicities are:

z1 0 2 2 3 3 4 4 4 5 5 5 5 6
z2 0 1 1 0 3 2 2 2 1 1 4 4 0
z3 0 0 1 1 1 0 1 2 1 2 1 2 2
mult 1 8 24 30 30 27 81 135 105 175 105 175 140

Theorem [Urakawa 1984]

First λ ∈ D(SU(3),S1
1,1) with multiplicities are:

z1 0 2 3 3 4 5 5 6
z2 0 1 0 3 2 1 4 0
mult 1 32 30 30 243 280 280 140
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Observations
The first eigenvalues and their multiplicities suggest:

• Multiplicities of Σ(W1,1, g2,2) split into those of Σ(W1,1, gt1,2).

• Σ(W1,1, gt1,2) −→ Σ(W1,1, g2,2) for t1 → 2, where Σ(W1,1, g2,2) has
been computed by Urakawa in 1984.

• Σ(W1,1, gt1,2) ̸=Σ(W1,1, g̃t1,2) for t1, t̃1 ≤ 1 and t1 ̸= t̃1.

• In case z3 = 0, the eigenvalue does not depend on t1. This is
precisely the spectrum of CP2 as the canonical projection has
base space CP2.
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Observations
The first eigenvalues and their multiplicities suggest:

• (W1,1, g2,2) (i.e., β = 0) appears most symmetrical.

• The nearly parallel G2 case (t1 = 0.8) can not be seen in the
spectrum.
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THE DIFFEOMORPHISM W1,1 → V3

We denote by U▲(2) = (ι, Id)(U(2))

SU(3)
/

S1
1,1

∼= (SU(3)/S1
1,1 ×U(2))

/
U▲(2)

= (SU(3)×U(2)/S1)
/
U▲(2)

∼= (SU(3)× SO(3))
/
U•(2)



BERGER’S CLASSIFICATION CORRECTED BY WILKING

Berger [Berger, 1961] asserted that any simply connected, normal
homogeneous space with positive sectional curvature is
diffeomorphic to a CROSS Sn,CPn,HPn,CaP2 or

1. V1 = Sp(2)
/

SU(2)

2. V2 = SU(5)/H , where H is given by

H =

{[
zA 0
0 z̄4

]
A ∈ Sp(2) ⊂ SU(4), z ∈ S1 ⊂ C

}
⊂ U(4) ⊂ SU(5).

Berger’s theorem is not correct. He missed a third exceptional space
which has been found by Wilking [Wilking, 1999]:

3. (V3, hr1,r2)

Wilking proved that this completes the classification.



COMPUTATION OF m(λ)?

• In general, one can use the Branching rules [Goodman, Wallach
1998].

• Those are combinatorially challenging:

m(λ) =
∑
w∈W

sgn(w)℘(w(λ+ δ)
∣∣
t(k)

− δ
∣∣
t(u(2))).

• ℘ denotes the Kostant partition function, W is the Weyl group and
t(u(2)) the maximal torus of the complexification of
u(2) ⊂ su(3)× so(3)



GENERIC PROPERTIES OF THE SPECTRUM

• M is a manifold without boundary of dimension n

• M is the set of all Riemannian metrics on M.

Theorem [Bando, Urakawa 1983]

1. The spectrum counted with multiplicities depends uniformly
continuous on the metric g ∈ M with resp. to the C∞ topology.

2. The multiplicities mk(g) = #{i | ηi(g) = ηk(g)} of each eigenvalue
ηk(g) depends upper semi-continuously on g ∈ M : For each
g ∈ M and k = 0, 1, 2, ... there exists a δ > 0 such that d(g, g′) < δ

implies mk(g′) ≤ mk(g).
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