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1. Goals & Motivation

Since their first description in 1975, Aloff-Wallach spaces have turned
out to be a rich source of examples in differential geometry:

• They admit a 1-parameter family of metrics of positive curvature,
• They are prominent examples of Sasaki, 3-Sasaki, and G2-manifolds,
• In 1999, Wilking showed that some Aloff-Wallach metrics are normal
homogeneous and are thus missing in the 1961 classification of Berger.

The goal of our project is:

• Give a complete description of the properties of AW metrics, in
particular in the newer context of G-structures with torsion & special
spinors,
• Compute the spectrum of the Laplacian – this heavily relies on Wilk-
ing’s alternative description.

2. The Aloff-Wallach Spaces W k,l as
Riemannian Homogeneous Space

Definition. For k, l ∈ Z relatively prime the Aloff-Wallach spaces
are defined by W k,l = SU(3)/S1

k,l where we embed S1
k,l via

ι : S1
k,l ↪→ SU(3), z 7→ diag

(
zk, zl, z−k+l

)
.

Lemma. Let k1, l1, k2, l2 ∈ Z such that ki, li are relatively prime.
Then W k1,l1 is diffeomorphic to W k2,l2 if and only if

(k2, l2) or (l2, k2) ∈ {(k1, l1), (−(k1 + l1), k1), (−(k1 + l1), l1)}.

We have the Lie algebra decomposition: su(3) = s1⊕m. Moreover, m
splits as m = m0 ⊕m1 ⊕m2 ⊕m3, where

m0 = span{i diag[2l + k,−2k − l, k − l]},
dim(mi) = 2, [m0,mi] ⊂ mi, [mi,mi] ⊂ s1 ⊕m0,

[
mi,mj

]
⊂ mk,

where (i, j, k) is an even permutation of (1, 2, 3). Using the negative
re-scaled Killing form B = −1

2 tr we get a family of metrics g on W k,l,
parametrized by λ, x, y, z ∈ R+:

g = gm = λ ·B
∣∣
m0

+
1

x
·B

∣∣
m1

+
1

y
·B

∣∣
m2

+
1

z
·B

∣∣
m3
.

In an appropriate ONB X1 ∈ m0, Xi, Xi+1 ∈ mi+1, the isotropy rep-
resentation AdS1

k,l
on W k,l is given by

Adk,l(θ) =


1 0 0 0
0 R [(k − l) θ] 0 0
0 0 R [(2k + l) θ] 0
0 0 0 R [(k + 2l) θ]

 ,

where R[α] =

[
cos(α) − sin(α)
sin(α) cos(α)

]
. Obviously: X1 is always AdS1

k,l
-

invariant. If k = l(= 1), then X2, X3 are also AdS1
k,l
-invariant.

Here is a rough overview in the case k = l = 1 of the known and of our
new results for a subfamily of metrics:

3. G2 and 3-(α, δ)-Sasaki Manifolds

Dfn. A Riemannian manifold (M7, g) admits a G2 structure 0 ̸= ω ∈
Ω3(M7) with torsion if it is of Fernandez-Gray class W1 ⊕W3 ⊕W4.
This is equivalent to:
• d ∗ ω = θ ∧ ∗ω for some 1-form θ,
• There exists a characteristic connection ∇, i. e. a metric conn. with
skew torsion s. t. ∇ω = 0, and hence Hol(∇) ⊂ G2.
Important subclasses are:

G2 with torsion ⊃ cocalibrated G2 ⊃ nearly parallel G2
W1 ⊕W3 ⊕W4 W1 ⊕W3 ⇔ δω = 0 W1 ⇔ dω = λ ∗ ω

Dfn. An almost contact metric structure (φ, ξ, η, g) on a Riemannian
manifold (M2n+1, g) is given by a (1, 1)-tensor field φ, a Reeb vector
field ξ, and a 1-form η such that

φ2 = − Id+η ⊗ ξ, η(ξ) = 1, g(φX,φY ) = g(X, Y )− η(X)η(Y ).

The fundamental 2-form is defined by Φ(X, Y ) = g(X,φY ).
The structure is called normal if Nφ := [φ, φ] + dη ⊗ ξ = 0.
Important subclasses are:

α-contact metric ⊃ α-K-contact ⊃ α-Sasaki
dη = 2αΦ, α ∈ R∗ add ξ Killing add Nφ = 0

An almost 3-contact metric manifold is a manifold M endowed with
three almost contact metric structures (φi, ξi, ηi, g), i = 1, 2, 3, such
that for any even permutation (i, j, k) of (1, 2, 3):

φk = φiφj − ηj ⊗ ξi, ξk = φiξj = −φjξi, ηk = ηi ◦ φj = −ηj ◦ φi.

Then dimM = 4n + 3, n ≥ 1 and

TM = H⊕ V , H :=
⋂

i=1,2,3

ker ηi, V := span {ξ1, ξ2, ξ3} .

The manifold is said to be hypernormal if Nφi = 0, i ∈ {1, 2, 3}.

Definition. A 3-(α, δ)-Sasaki manifold is an almost 3-contact met-
ric manifold such that dηi = 2αΦi + 2(α − δ) ηj ∧ ηk for some
α ∈ R∗, δ ∈ R, (i, j, k) any even permutation of (1, 2, 3).

For α = δ, this reduces to a 3-α-Sasaki manifold, and for α = δ = 1 to
a 3-Sasaki manifold.

Facts (Agricola, Dileo, 2020):

� Every 3-(α,δ)-Sasaki manifold M is hypernormal, all ξi are Killing.

� Its Ricci curvature in dimension 7 is given by

Ricg = 2α
(
6δ − 3α

)
g + 2(α− δ)

(
5α− δ

) 3∑
i=1

ηi ⊗ ηi.

In particular, it is ∇g-Einstein iff δ = α or δ = 5α.

� It admits an adapted metric connection with skew torsion, the canon-
ical connection. It satisfies for β := 2(δ − 2α)

∇Xφi = β
(
ηk(X)φj − ηj(X)φk

)
, ∇Xξi = β

(
ηk(X)ξj − ηj(X)ξk

)
.

Thus, we call the 3-(α,δ)-Sasaki manifold parallel if β = 0.

� Every 7-dim. 3-(α,δ)-Sasaki manifold admits a cocalibrated G2 struc-
ture whoose characteristic conn. coincides with the canonical one.

4. G2 and Sasaki Structures on W k,l

The isotropy representation leads to two cases:

Case I: k ̸= l (one invariant vector field, X1 ∈ m0)

Theorem. The Aloff-Wallach spaces
(
W k,l, g

)
admit an α-Sasaki

structure if

0 < 2α

√
k2 + kl + l2

3λ
= x(k + l) = ky = lz,

where ξ := X1, η := g(·, X1), φ := − 1
α∇X1.

Case II: k = l = 1 (3 invariant vector fields, X1 ∈ m0, X2, X3 ∈ m1)

Theorem. The Aloff-Wallach space
(
W 1,1, g

)
admits a 3-(α,δ)-

Sasaki structure if α > 0, δ > 0 as well as

x = δ2 =
1

λ
, y = z = 2αδ,

where ξi := Xi, ηi := g(·, Xi) and

φi := −1

α
∇Xi −

α− δ

α

[
ηk ⊗ ξj − ηj ⊗ ξk

]
.

We have some special subcases:

� δ = α: Reduction to 3-α-Sasaki structure which is ∇g-Einstein

� δ = 2α: Parallel case (β = 0); implies 1
λ = x = y = z = 4α2

⇒ The metric scales all mi equally
⇒ W 1,1 becomes normal homogeneous with respect to SU(3)

Corollary. The associated cocalibrated G2 structure is given by:

ω = −ω145 + ω167 + ω246 + ω257 − ω347 + ω356 + ω123.

It is nearly parallel if and only if δ = 5α; eigenvalue: λ = 12α.

5. The Aloff-Wallach Space and Its
Realizations

For this special case we introduce new parameters: t1 = λ = 1
x,

t2 =
1
y = 1

z and denote the metric by gt1,t2. Aloff and Wallach proved:

Thm. Assume that k, l, t1, t2 satisfy kl > 0 and 0 < t1 < t2. Then
(W k,l, gt1,t2) has positive curvature.

• The manifolds (W k,l, gt1,t2) are normal homogeneous (with respect
to SU(3)) iff t1 = t2. Urakawa described how the spectrum of the
Laplacian can be computed on normal homogeneous spaces and did
this for t1 = t2, both in 1984.
• In 1999, Wilking found a diffferent realization of the Aloff-Wallach
space (W 1,1, gt1,t2) which is normal homogeneous, thus closing a gap in
Berger’s classification of simply connected, normal homogeneous spaces
with positive curvature (1961).

He defined the space V3 := (SU(3)× SO(3))/U•(2), where U•(2) =
(ι, π)(U(2)) and

π : U(2) → U(2)/S1 ∼= SO(3).

For B = −1
2 tr, V3 becomes a normal homogeneous space for the biin-

variant metrics on SU(3)× SO(3):

hr1,r2 := r1 ·B
∣∣
so(3) + r2 ·B

∣∣
su(3), r1, r2 ∈ (0,∞).

Proposition. (Wilking, 1999) For each r1, r2 ∈ R+, 0 < t1 < t2
the normal homogeneous space (V3, hr1,r2) is isometric to the Aloff-

Wallach space (W 1,1, gt1,t2) for t2 = r2 and t1 =
4r1r2
4r1+r2

< r2 = t2.

6. The Spectrum on Normal
Homogeneous Spaces

Let G be a compact Lie group, g a biinvariant metric and K ⊂ G.

Dfn. A unitary, irred. G-rep. (ϱλ, Vλ) of dimension d(λ) is called
K-spherical if m(λ) = dim {v ∈ Vλ | ϱλ(K)v = v} ≠ 0.
The set of of highest weights corresponding to K-spherical representa-
tions is denoted by D(G,K).

Thm. The ∆-spectrum Σ(G/K, g) on D(G/K, g) is :

Σ(G/K, g) = {g(λ + 2δ, λ) | λ ∈ D(G,K)}.

The multiplicity associated to λ ∈ D(G,K) is given by m(λ)d(λ).

Calculation of the spectrum on (V3, hr1,r2):

Lemma. The dominant integral weights are given by λ = z1λ1 +
z2λ2+ z3µ1 ∈ D(SU(3)×SO(3)) where zi ∈ N0 : z1 ≥ z2 ≥ 0, z3 ≥ 0.
The main difficulty is to obtain the subset of all spherical representa-
tions λ(z1, z2, z3). With them one can compute the spectrum directly:

Theorem. The spectrum on (V3, hr1,r2) is obtained by

Σ(V3, hr1,r2) =

{
z23 + z3

r1
+
4
(
z21 + z22 − z1(z2 − 3)

)
3r2

m(z1, z2, z3) > 0

}
.

The multiplicity associated to λ is given by:

mult(λ) = m(λ)d(λ) = m(λ)
(z1 − z2 + 1)(z1 + 2)(z2 + 1)(z3 + 1)

2
.

Using the branching rules for G = SU(3)× SO(3) and K = U•(2), the
spherical representations can be calculated with a computer:
Lemma. First λ ∈ D(SU(3)× SO(3),U•(2)) with multiplicities are:

z1 0 2 2 3 3 4 4 4 5 5 5 5 6 6 6 6
z2 0 1 1 0 3 2 2 2 1 1 4 4 3 3 3 3
z3 0 0 1 1 1 0 1 2 1 2 1 2 0 1 2 3
mult 1 8 24 30 30 27 81 135 105 175 105 175 64 192 320 448

We computed η(λ) ∈ Σ(W 1,1, gt1,2) of the initial 70 representations:

Observations. The calculated η ∈ Σ(W 1,1, gt1,2) suggest:

� Σ(V3, gt1,2) −→ Σ(W 1,1, g2,2) for t1 → 2, where Σ(W 1,1, g2,2)
has been computed by Urakawa in 1984.

�Multiplicities of Σ(W 1,1, g2,2) split into those of Σ(V3, gt1,2).

For any µ ∈ D(SU(3), S1
1,1), mult(µ) =

∑
mult(λj) where

λj ∈ D(SU(3)× SO(3),U•(2)) and ηt2(λj) → η(µ).

� (W 1,1, g2,2) (i.e., β = 0) appears most symmetrical.

� Σ(W 1,1, gt1,2) ̸= Σ(W 1,1, gt̃1,2) for t1, t̃1 ≤ 1 and t1 ̸= t̃1.

� The nearly parallel G2 case (t1 = 0.8) can not be seen in the
spectrum.

� η(t1) is constant ⇔ η(t1) ∈ Σ(CP2) as the canonical proj. is a
Riem. submersion with totally geodesic fibers over CP2.


