1. Goals & Motivation |

Since their first description in 1975, Aloff-Wallach spaces have turned
out to be a rich source of examples in differential geometry:

e They admit a 1-parameter family of metrics of positive curvature,
e They are prominent examples of Sasaki, 3-Sasaki, and Go-manifolds,

e In 1999, Wilking showed that some Alofl-Wallach metrics are normal
homogeneous and are thus missing in the 1961 classification of Berger.

The goal of our project is:

e Give a complete description of the properties of AW metrics, in
particular in the newer context of G-structures with torsion & special
SPINOrs,

e Compute the spectrum of the Laplacian — this heavily relies on Wilk-
ing’s alternative description.

2. The Aloff-Wallach Spaces W"*' as
Riemannian Homogeneous Space
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Definition. For k,[ € 7Z relatively prime the Alofl-Wallach spaces
are defined by Wl = SU(S)/S% ; Where we embed S]i ) via

L: Sl%l — SU(3), 2z — diag (zk, zl, z_kH) .

Lemma. Let ky,ly, ko, lo € Z such that k;,[; are relatively prime.
Then W¥l is diffeomorphic to W22 if and only if

(ko,l2) or (lo, ko) € {(k1,11), (— (k1 + 11), k1), (—(k1 +11), 1) }-

We have the Lie algebra decomposition: su(3) = s' @ m. Moreover, m
splits as m = my & my & mo  ms, where

mg = span{idiag|2l + k, =2k — [, k — ]},
dim(m;) =2, [mg,m;] Cmy, [m;,m] Cs Smy, [my,m;] Cmy,
where (7,7, k) is an even permutation of (1,2,3). Using the negative

re-scaled Killing form B = —%tr we get a tamily of metrics g on Wk ,
parametrized by A\, z,y,z € R™:

1 1 1
g:gm:)\'B|m0‘|‘E'Bml—|—§'Bm2—|—;°Bm3.

In an appropriate ONB X1 € mq, X;, X;11 € m;. 1, the isotropy rep-
resentation Ad g1 on Wkl i oiven by

1 0 0 0
{0 R[(k—1)0] 0 0
Adra(0) =1 0 R[(2k+1)6] 0 ’
0 0 0 R|(k+20)0]
cos() — sin(« . .
where R|a] = sin((oz)) o (é)q Obviously: X7 is always AdS,i’[

invariant. If £ =1[(= 1), then X5, X3 are also Ad sl l—invariant.

Here is a rough overview in the case £ = [ = 1 of the known and of our
new results for a subfamily of metrics:
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3. Gy and 3-(«a, d)-Sasaki Manifolds

A Riemannian manifold (M7, ¢) admits a Go structure 0 # w €
O3 (M7 with torsion if it is of Fernandez-Gray class Wy @ Wa & Wi,
This is equivalent to:
e dxw =0 A *w for some 1-form 0,
e There exists a characteristic connection V., i.e. a metric conn. with
skew torsion s. t. Vw = 0, and hence Hol(V) C Gas.
Important subclasses are:

Go with torsion D
Wi e Wy e Wy

O nearly parallel Go
Wi dow=A*xw

cocalibrated Go
Wi W3 ow=0

An almost contact metric structure (¢, &, 1, g) on a Riemannian
manifold (M?" 1 g) is given by a (1, 1)-tensor field ¢, a Reeb vector
field &, and a 1-form 7 such that

p'= —Id+n®E nE) =1, geX,eY)=gX,Y)-nX)mnY).
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The fundamental 2-form is defined by ®(X,Y) = g(X, ¢Y).
The structure is called normal if Ny, == [, ¢] +dn ®@ & = 0.
Important subclasses are:

a-contact metric O a-K-contact O  «a-Sasaki
dn=2a®, a € R* add ¢ Killing add Ny =0

An almost 3-contact metric manifold is a manifold M endowed with
three almost contact metric structures (v;,&;,1;,9), © = 1,2,3, such
that for any even permutation (i, 7, k) of (1,2, 3):

Pk = Pip; — N ®&, &k =wi§§=—pi&, N ="10%j=—"Nj0;.
Then dim M =4n+ 3, n > 1 and

TM =H&YV, V = span{&1,£2,£3} -

The manifold is said to be hypernormal if N, =0, ¢ € {1, 2, 3}.

Definition. A 3-(«a, d)-Sasaki manifold is an almost 3-contact met-
ric manifold such that dn; = 2a®; + 2(a — d)n; A ng for some
a € R* 0 € R, (2,7, k) any even permutation of (1,2, 3).

For av = 0, this reduces to a 3-a-Sasaki manifold, and for « =90 =1 to
a 3-Sasaki manifold.

Facts (Agricola, Dileo, 2020):
o Every 3-(a,0)-Sasaki manifold M is hypernormal, all §; are Killing.

e [ts Riccl curvature in dimension 7 is given by
3
Ric? = 20(66 — 3a) g + 2(cc — 6) (5o — 6) Y m; @ m.
1=1

In particular, it is VY-Einstein iff 6 = o or 0 = ba.

e [t admits an adapted metric connection with skew torsion, the canon-
ical connection. It satisfies for g := 2(§ — 2«)

Vxei =8 (m(X)e; —ni(X)er), Vx& =8 (mp(X)E —ni(X)E) -

Thus, we call the 3-(«v,0)-Sasaki manifold parallel if 3 = 0.

e Fvery 7-dim. 3-(«v,0)-Sasaki manifold admits a cocalibrated Go struc-
ture whoose characteristic conn. coincides with the canonical one.

4. G, and Sasaki Structures on W |

The isotropy representation leads to two cases:
Case I: k£ # [ (one invariant vector field, X7 € my)

Theorem. The Alofl-Wallach spaces (Wk 1 g) admit an a-Sasaki

structure if

k2 + Kkl + (2
O<2a\/ L =z(k+1)=ky =z,

A

where f — Xl, N ‘= g(-,Xl), Q = —é VXl.

Case II: £ = [ =1 (3 invariant vector fields, X; € mg, Xo, X3 € my)

Theorem. The Aloff-Wallach space (Wl’l, g) admits a 3-(,d)-
Sasaki structure if o > 0, 0 > 0 as well as

where & == X, n; == g(-, X;

1 o — 0
Qi = ——VXZ' —

@

We have some special subcases:
e 0 = o Reduction to 3-a-Sasaki structure which is V9-Einstein

e ) = 2a: Parallel case ( = 0); implies % —r=y=2z=40"
= The metric scales all m; equally
= Wh! becomes normal homogeneous with respect to SU(3)

Corollary. The associated cocalibrated GGo structure is given by:
W = —W145 T W67 T W246 + W257 — W347 1T W356 T W123-

It is nearly parallel if and only if 0 = 5a; eigenvalue: A = 12a.

5. The Aloff-Wallach Space and Its
Realizations

For this special case we introduce new parameters: t; = A = %,
to = % = % and denote the metric by g¢, +,. Alofl and Wallach proved:

Thm. Assume that k,[,t1,to satisfy k[l > 0 and 0 < ¢t < t9. Then
(WM, gt, t,) has positive curvature.

e The manifolds (W5, gt, t,) are normal homogencous (with respect
to SU(3)) iff t; = t9.  Urakawa described how the spectrum of the
Laplacian can be computed on normal homogeneous spaces and did
this for t1 = t9, both in 1984.

e In 1999, Wilking found a diffferent realization of the Aloff-Wallach
space (lel, gt, t,) Which is normal homogeneous, thus closing a gap in
Berger’s classification of simply connected, normal homogeneous spaces
with positive curvature (1961).

Geometry of Aloff-Wallach Spaces
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He defined the space V3 = (SU(3) x 80(3))/U‘(2), where U®(2) =
(¢, 7)(U(2)) and

m:U(2) — U(2)/51 2 80(3).

For B = —%tr, V3 becomes a normal homogeneous space for the biin-
variant metrics on SU(3) x SO(3):

hrl,TQ e Tl B’50<3>—|—7°QB|511<3>, 7“1,7“2 E <0,00)

Proposition. (Wilking, 1999) For each 71,79 € RT, 0 < t] < t3

the normal homogeneous space (V3, by, r,) is isometric to the Aloft-
47“17“2

< 19 = t9.

Wallach space (Wl’l, gt t,) for to = ro and t) =

— Adri+re

6. The Spectrum on Normal
Homogeneous Spaces

Let G be a compact Lie group, g a biinvariant metric and K C G.

A unitary, irred. G-rep. (o), V)) of dimension d(\) is called
K-spherical it m(\) =dim{v € V) | o\(K)v =v} #0.
The set of of highest weights corresponding to K-spherical representa-
tions is denoted by D(G, K).

Thm. The A-spectrum (G /K, g) on D(G/K, g) is :
S(G/K.g) = {g(A+20.0) | A€ D(C.K)}.
The multiplicity associated to A € D(G, K) is given by m(\)d(X).

Calculation of the spectrum on (V3, hy, 1,):

Lemma. The dominant integral weights are given by A = z1A; +
29X+ 23141 € D(SU(3) x SO(3)) where z; € Ny : 21 > 290 > 0, 23 > 0.
The main difficulty is to obtain the subset of all spherical representa-
tions A(z1, 29, z3). With them one can compute the spectrum directly:

Theorem. The spectrum on (V3, by, r,) is obtained by

2

N 4 (22 + 25 — z1(20 — 3))
8 39

2(V3, h"“1,"”2) — { m(21, 22, 23) > O} °

The multiplicity associated to A is given by:

— 1 2 1 1
mult()\) _ m()\)d()\) _ m()\) (Zl 29+ )(Zl —|_2 )(22 + )(Z3 + )
Using the branching rules for G = SU(3) x SO(3) and K = U®(2), the
spherical representations can be calculated with a computer:

Lemma. First A € D(SU(3) x SO(3), U®(2)) with multiplicities are:

21 022 3 3 44 4 5 5 5 5H 6 6 6 6
29 cr1 03 22 2 1 1 4 4 3 3 3 3
23 co1 1101 2 1 2 1 2 0 1 2 3
mult| 1 8 24 30 30 27 81 135 105 175 105 175 64 192 320 448

We computed n(A) € S(WhH1, gt, 2) of the initial 70 representations:
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Observations. The calculated n € (W11 gt, 2) suggest:

o S(Va, g1,2) — S(WL goo) for t1 — 2, where S(W 1, g9 o)
has been computed by Urakawa in 1984.

e Multiplicities of Z<W1,179272) split into those of X(V3, g, 2).
For any p € D(SU(3),S; ), mult(y) = > mult(\;) where
Aj € D(SU(3) x 50(3), U*(2)) and e, (Aj) — nlp).

o (WhHi g2,2) (ie., 8= 0) appears most symmetrical.

e D(Whi, gy o) # (WL, g; o) for t1,81 < 1Tand t1 # #;.

e The nearly parallel Gy case (t; = 0.8) can not be seen in the
spectrum.

o 1)(t1) is constant < 7(t]) € L(CP?) as the canonical proj. is a
Riem. submersion with totally geodesic fibers over C P2,




