Geometry of Aloff-Wallach Spaces

HENRIK NAUJOKS Ilka Agricola JONAS HENKEL

Philipps-Universität Marburg

1. Goals & Motivation

Since their first description in 1975, Aloff-Wallach spaces have turned out to be a rich source of examples in differential geometry:

- They admit a 1-parameter family of metrics of positive curvature,
- They are prominent examples of Sasaki, 3-Sasaki, and G_2 -manifolds,
- In 1999, Wilking showed that some Aloff-Wallach metrics are normal homogeneous and are thus missing in the 1961 classification of Berger. The goal of our project is:
- Give a *complete* description of the properties of AW metrics, in

The fundamental 2-form is defined by $\Phi(X, Y) = g(X, \varphi Y)$. The structure is called normal if $N_{\varphi} := [\varphi, \varphi] + d\eta \otimes \xi = 0$. Important subclasses are:

> α -contact metric $\supset \alpha$ -K-contact $\supset \alpha$ -Sasaki $d\eta = 2\alpha \Phi, \ \alpha \in \mathbb{R}^*$ add ξ Killing add $N_{\varphi} = 0$

An almost 3-contact metric manifold is a manifold M endowed with three almost contact metric structures $(\varphi_i, \xi_i, \eta_i, g), i = 1, 2, 3$, such that for any even permutation (i, j, k) of (1, 2, 3):

 $\varphi_k = \varphi_i \varphi_j - \eta_j \otimes \xi_i, \quad \xi_k = \varphi_i \xi_j = -\varphi_j \xi_i, \quad \eta_k = \eta_i \circ \varphi_j = -\eta_j \circ \varphi_i.$ Then dim M = 4n + 3, $n \ge 1$ and $TM = \mathcal{H} \oplus \mathcal{V}, \qquad \mathcal{H} := \bigcap \ker \eta_i, \qquad \mathcal{V} := \operatorname{span} \{\xi_1, \xi_2, \xi_3\}.$ i=1.2.3

He defined the space $V_3 := (SU(3) \times SO(3))/U^{\bullet}(2)$, where $U^{\bullet}(2) =$ $(\iota, \pi)(\mathrm{U}(2))$ and

 $\pi: \mathrm{U}(2) \to \mathrm{U}(2)/S^1 \cong \mathrm{SO}(3).$

For $B = -\frac{1}{2}$ tr, V_3 becomes a normal homogeneous space for the binvariant metrics on $SU(3) \times SO(3)$:

```
h_{r_1,r_2} := r_1 \cdot B \big|_{\mathfrak{so}(3)} + r_2 \cdot B \big|_{\mathfrak{su}(3)}, \quad r_1, r_2 \in (0,\infty).
```

Proposition. (Wilking, 1999) For each $r_1, r_2 \in \mathbb{R}^+$, $0 < t_1 < t_2$ the normal homogeneous space (V_3, h_{r_1,r_2}) is isometric to the Aloff-Wallach space $(W^{1,1}, g_{t_1,t_2})$ for $t_2 = r_2$ and $t_1 = \frac{4r_1r_2}{4r_1+r_2} < r_2 = t_2$.

particular in the newer context of G-structures with torsion & special spinors,

• Compute the spectrum of the Laplacian – this heavily relies on Wilking's alternative description.

2. The Aloff-Wallach Spaces $W^{k,l}$ as Riemannian Homogeneous Space

Definition. For $k, l \in \mathbb{Z}$ relatively prime the Aloff-Wallach spaces are defined by $W^{k,l} = SU(3)/S^1_{k,l}$ where we embed $S^1_{k,l}$ via

 $\iota \colon S^1_{k,l} \hookrightarrow \mathrm{SU}(3), \quad z \mapsto \mathrm{diag}\left(z^k, z^l, z^{-k+l}\right).$

Lemma. Let $k_1, l_1, k_2, l_2 \in \mathbb{Z}$ such that k_i, l_i are relatively prime. Then W^{k_1,l_1} is diffeomorphic to W^{k_2,l_2} if and only if

 (k_2, l_2) or $(l_2, k_2) \in \{(k_1, l_1), (-(k_1 + l_1), k_1), (-(k_1 + l_1), l_1)\}.$

We have the Lie algebra decomposition: $\mathfrak{su}(3) = \mathfrak{s}^1 \oplus \mathfrak{m}$. Moreover, \mathfrak{m} splits as $\mathfrak{m} = \mathfrak{m}_0 \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3$, where

 $\mathfrak{m}_0 = \operatorname{span}\{\operatorname{i}\operatorname{diag}[2l+k, -2k-l, k-l]\},\$ $\dim(\mathfrak{m}_i) = 2, \quad [\mathfrak{m}_0, \mathfrak{m}_i] \subset \mathfrak{m}_i, \quad [\mathfrak{m}_i, \mathfrak{m}_i] \subset \mathfrak{s}^1 \oplus \mathfrak{m}_0, \quad [\mathfrak{m}_i, \mathfrak{m}_j] \subset \mathfrak{m}_k,$

where (i, j, k) is an even permutation of (1, 2, 3). Using the negative re-scaled Killing form $B = -\frac{1}{2}$ tr we get a family of metrics g on $W^{k,l}$, parametrized by $\lambda, x, y, z \in \mathbb{R}^+$:

 $g = g_{\mathfrak{m}} = \lambda \cdot B \big|_{\mathfrak{m}_0} + \frac{1}{x} \cdot B \big|_{\mathfrak{m}_1} + \frac{1}{y} \cdot B \big|_{\mathfrak{m}_2} + \frac{1}{z} \cdot B \big|_{\mathfrak{m}_3}.$

The manifold is said to be hypernormal if $N_{\varphi_i} = 0, i \in \{1, 2, 3\}$.

Definition. A 3- (α, δ) -Sasaki manifold is an almost 3-contact metric manifold such that $d\eta_i = 2\alpha \Phi_i + 2(\alpha - \delta)\eta_i \wedge \eta_k$ for some $\alpha \in \mathbb{R}^*, \delta \in \mathbb{R}, (i, j, k)$ any even permutation of (1, 2, 3).

For $\alpha = \delta$, this reduces to a 3- α -Sasaki manifold, and for $\alpha = \delta = 1$ to a 3-Sasaki manifold.

Facts (Agricola, Dileo, 2020):

• Every 3- (α, δ) -Sasaki manifold M is hypernormal, all ξ_i are Killing.

• Its Ricci curvature in dimension 7 is given by

 $\operatorname{Ric}^{g} = 2\alpha (6\delta - 3\alpha)g + 2(\alpha - \delta) (5\alpha - \delta) \sum_{i=1}^{j} \eta_{i} \otimes \eta_{i}.$

In particular, it is ∇^g -Einstein iff $\delta = \alpha$ or $\delta = 5\alpha$.

• It admits an adapted metric connection with skew torsion, the canonical connection. It satisfies for $\beta := 2(\delta - 2\alpha)$

 $\nabla_X \varphi_i = \beta \left(\eta_k(X) \varphi_j - \eta_j(X) \varphi_k \right), \ \nabla_X \xi_i = \beta \left(\eta_k(X) \xi_j - \eta_j(X) \xi_k \right).$

Thus, we call the 3- (α, δ) -Sasaki manifold parallel if $\beta = 0$.

• Every 7-dim. 3- (α, δ) -Sasaki manifold admits a cocalibrated G₂ structure whoose characteristic conn. coincides with the canonical one.

4. G_2 and Sasaki Structures on $W^{k,l}$

6. The Spectrum on Normal Homogeneous Spaces

Let G be a compact Lie group, g a biinvariant metric and $K \subset G$. **Dfn.** A unitary, irred. G-rep. $(\varrho_{\lambda}, V_{\lambda})$ of dimension $d(\lambda)$ is called *K-spherical* if $m(\lambda) = \dim \{v \in V_{\lambda} \mid \varrho_{\lambda}(K)v = v\} \neq 0.$ The set of highest weights corresponding to K-spherical representations is denoted by D(G, K).

Thm. The Δ -spectrum $\Sigma(G/K, g)$ on D(G/K, g) is :

 $\Sigma(G/K,g) = \{g(\lambda + 2\delta, \lambda) \mid \lambda \in D(G,K)\}.$

The multiplicity associated to $\lambda \in D(G, K)$ is given by $m(\lambda)d(\lambda)$.

Calculation of the spectrum on (V_3, h_{r_1, r_2}) :

Lemma. The dominant integral weights are given by $\lambda = z_1\lambda_1 + z_1\lambda_2$ $z_2\lambda_2 + z_3\mu_1 \in D(SU(3) \times SO(3))$ where $z_i \in \mathbb{N}_0 : z_1 \ge z_2 \ge 0, z_3 \ge 0$. The main difficulty is to obtain the subset of all spherical representations $\lambda(z_1, z_2, z_3)$. With them one can compute the spectrum directly:

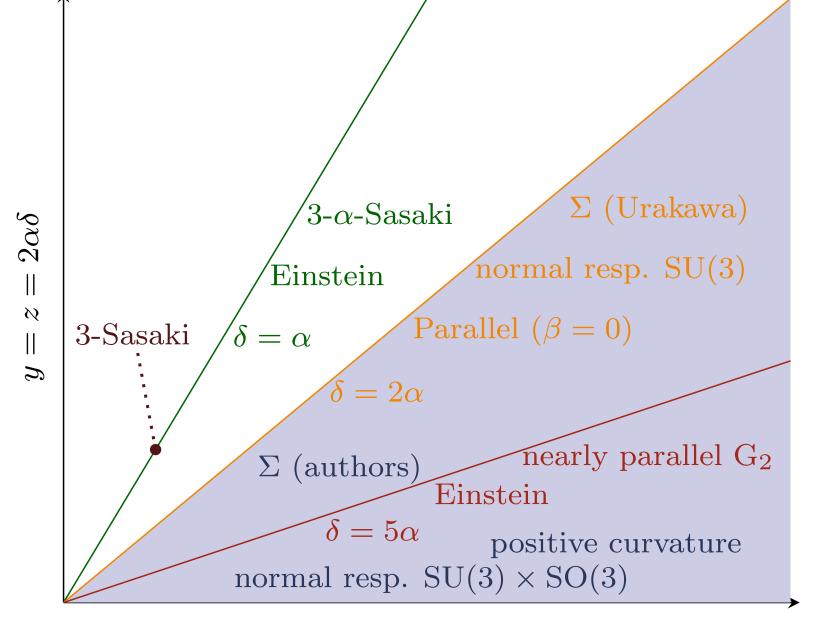
Theorem. The spectrum on (V_3, h_{r_1, r_2}) is obtained by

$$\Sigma(V_3, h_{r_1, r_2}) = \left\{ \frac{z_3^2 + z_3}{r_1} + \frac{4\left(z_1^2 + z_2^2 - z_1(z_2 - 3)\right)}{3r_2} \middle| m(z_1, z_2, z_3) > 0 \right\}$$

The multiplicity associated to λ is given by:

In an appropriate ONB $X_1 \in \mathfrak{m}_0, X_i, X_{i+1} \in \mathfrak{m}_{i+1}$, the isotropy representation $\operatorname{Ad}_{S^1_{k,l}}$ on $W^{k,l}$ is given by

 $\mathrm{Ad}_{k,l}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & R\left[(k-l)\,\theta\right] & 0 & 0 \\ 0 & 0 & R\left[(2k+l)\,\theta\right] & 0 \\ 0 & 0 & 0 & R\left[(k+2l)\,\theta\right] \end{bmatrix},$ where $R[\alpha] = \begin{bmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{bmatrix}$. Obviously: X_1 is always $\operatorname{Ad}_{S_{k,l}^1}$ invariant. If k = l(=1), then X_2 , X_3 are also $\operatorname{Ad}_{S_{k_1}^1}$ -invariant. Here is a rough overview in the case k = l = 1 of the known and of our new results for a subfamily of metrics:



 $x = \lambda^{-1} = \delta^2$

The isotropy representation leads to two cases: **Case I:** $k \neq l$ (one invariant vector field, $X_1 \in \mathfrak{m}_0$)

Theorem. The Aloff-Wallach spaces $(W^{k,l}, g)$ admit an α -Sasaki structure if

$$0 < 2\alpha \sqrt{\frac{k^2 + kl + l^2}{3\lambda}} = x(k+l) = ky = lz,$$

where $\xi := X_1$, $\eta := g(\cdot, X_1)$, $\varphi := -\frac{1}{\alpha} \nabla X_1$.

Case II: k = l = 1 (3 invariant vector fields, $X_1 \in \mathfrak{m}_0, X_2, X_3 \in \mathfrak{m}_1$)

Theorem. The Aloff-Wallach space $(W^{1,1}, g)$ admits a 3- (α, δ) -Sasaki structure if $\alpha > 0$, $\delta > 0$ as well as

$$x = \delta^2 = \frac{1}{\lambda}, \quad y = z = 2\alpha\delta$$

where $\xi_i := X_i, \ \eta_i := g(\cdot, X_i)$ and

 $\varphi_i := -\frac{1}{\alpha} \nabla X_i - \frac{\alpha - \delta}{\alpha} \left[\eta_k \otimes \xi_j - \eta_j \otimes \xi_k \right].$

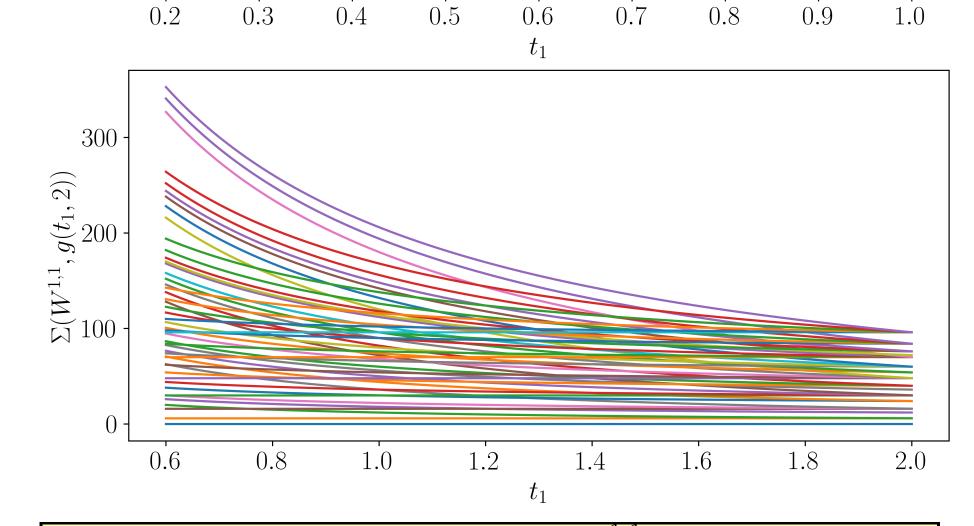
We have some special subcases:

• $\delta = \alpha$: Reduction to 3- α -Sasaki structure which is ∇^{g} -Einstein • $\delta = 2\alpha$: Parallel case ($\beta = 0$); implies $\frac{1}{\lambda} = x = y = z = 4\alpha^2$ \Rightarrow The metric scales all \mathfrak{m}_i equally $\Rightarrow W^{1,1}$ becomes normal homogeneous with respect to SU(3)

Corollary. The associated cocalibrated G_2 structure is given by:

 $\text{mult}(\lambda) = m(\lambda)d(\lambda) = m(\lambda)\frac{(z_1 - z_2 + 1)(z_1 + 2)(z_2 + 1)(z_3 + 1)}{(z_1 - z_2 + 1)(z_1 + 2)(z_2 + 1)(z_3 + 1)}$

Using the branching rules for $G = SU(3) \times SO(3)$ and $K = U^{\bullet}(2)$, the spherical representations can be calculated with a computer: **Lemma.** First $\lambda \in D(SU(3) \times SO(3), U^{\bullet}(2))$ with multiplicities are: 0 2 2 3 3 4 4 4 5 5 5 5 6 6 z_1 $0 \quad 3 \quad 2 \quad 2 \quad 2 \quad 1$ z_2 $1 \quad 2 \quad 1$ z_3 1 8 24 30 30 27 81 135 105 175 105 175 64 192 320 448 mult We computed $\eta(\lambda) \in \Sigma(W^{1,1}, g_{t_1,2})$ of the initial 70 representations: 1000 800 $\Sigma(W^{1,1}, g(t_1, 2))$ 600 200



3. G₂ and 3- (α, δ) -Sasaki Manifolds

Dfn. A Riemannian manifold (M^7, g) admits a G₂ structure $0 \neq \omega \in$ $\Omega^3(M^7)$ with torsion if it is of Fernandez-Gray class $W_1 \oplus W_3 \oplus W_4$. This is equivalent to:

• $d * \omega = \theta \wedge * \omega$ for some 1-form θ ,

• There exists a characteristic connection ∇ , i.e. a metric conn. with skew torsion s. t. $\nabla \omega = 0$, and hence $\operatorname{Hol}(\nabla) \subset G_2$. Important subclasses are:

 G_2 with torsion \supset cocalibrated $G_2 \supset$ nearly parallel G_2 $W_1 \oplus W_3 \oplus W_4$ $W_1 \oplus W_3 \Leftrightarrow \delta \omega = 0$ $W_1 \Leftrightarrow d\omega = \lambda * \omega$

Dfn. An almost contact metric structure (φ, ξ, η, g) on a Riemannian manifold (M^{2n+1}, g) is given by a (1, 1)-tensor field φ , a Reeb vector field ξ , and a 1-form η such that

 $\varphi^2 = -\operatorname{Id} + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y).$

 $\omega = -\omega_{145} + \omega_{167} + \omega_{246} + \omega_{257} - \omega_{347} + \omega_{356} + \omega_{123}.$ It is nearly parallel if and only if $\delta = 5\alpha$; eigenvalue: $\lambda = 12\alpha$.

5. The Aloff-Wallach Space and Its Realizations

For this special case we introduce new parameters: $t_1 = \lambda = \frac{1}{r}$, $t_2 = \frac{1}{y} = \frac{1}{z}$ and denote the metric by g_{t_1,t_2} . Aloff and Wallach proved: **Thm.** Assume that k, l, t_1, t_2 satisfy kl > 0 and $0 < t_1 < t_2$. Then $(W^{k,l}, g_{t_1,t_2})$ has positive curvature.

• The manifolds $(W^{k,l}, g_{t_1,t_2})$ are normal homogeneous (with respect to SU(3)) iff $t_1 = t_2$. Urakawa described how the spectrum of the Laplacian can be computed on normal homogeneous spaces and did this for $t_1 = t_2$, both in 1984.

• In 1999, Wilking found a different realization of the Aloff-Wallach space $(W^{1,1}, g_{t_1,t_2})$ which is normal homogeneous, thus closing a gap in Berger's classification of simply connected, normal homogeneous spaces with positive curvature (1961).

Observations. The calculated $\eta \in \Sigma(W^{1,1}, g_{t_1,2})$ suggest: • $\Sigma(V_3, g_{t_1,2}) \longrightarrow \Sigma(W^{1,1}, g_{2,2})$ for $t_1 \to 2$, where $\Sigma(W^{1,1}, g_{2,2})$ has been computed by Urakawa in 1984.

• Multiplicities of $\Sigma(W^{1,1}, g_{2,2})$ split into those of $\Sigma(V_3, g_{t_1,2})$. For any $\mu \in D(SU(3), S_{1,1}^1)$, $mult(\mu) = \sum mult(\lambda_i)$ where $\lambda_j \in D(SU(3) \times SO(3), U^{\bullet}(2)) \text{ and } \eta_{t_2}(\lambda_j) \to \eta(\mu).$ • $(W^{1,1}, g_{2,2})$ (i.e., $\beta = 0$) appears most symmetrical. • $\Sigma(W^{1,1}, g_{t_1,2}) \neq \Sigma(W^{1,1}, g_{\tilde{t}_1,2})$ for $t_1, \tilde{t}_1 \leq 1$ and $t_1 \neq \tilde{t}_1$. • The nearly parallel G₂ case $(t_1 = 0.8)$ can not be seen in the spectrum.

• $\eta(t_1)$ is constant $\Leftrightarrow \eta(t_1) \in \Sigma(\mathbb{C}\mathbb{P}^2)$ as the canonical proj. is a Riem. submersion with totally geodesic fibers over $\mathbb{C} \mathbb{P}^2$.