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Let M" be a double disk bundle such that 7;(M") = 0 and

H.(M"; Q) = H.(S"; Q).

Then

- neven =—> M" homeo to S".

-n=2m+1, M" (m — 1)-connected = H,,(M"; Z) finite cyclic.

Theorem optimal because:
- n even: 3 exotic spheres for n > 8

- n=2m+ 1: Every S™-bundle over S™*! is a double disk bundle.
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- [DeVito, Galaz-Garcia, K- 20] dim(M) =6, (M) =0
- by(M)=0 = M=S%orS°®xS3
(M) #£0 = M=S*xS?
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- Discovery of exotic 7-spheres [Milnor ‘56]

- Manifolds with all geodesics from a point simply closed of same length
(exotic S0, fake HP?) [Bérard-Bergery ‘77, Tang, Zhang '14]

- Isoparametric and Dupin hypersurfaces

- Morse-Bott functions with two critical values

- Manifolds with sec > 0 or sec > 0 and having large isometry groups
- All known closed manifolds M with m1(M) = 0 and sec > 0

- Codimension-1 singular Riemannian foliations
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- Cohomogeneity-one manifolds:
G ~ M such that M/G = [-1,1]
= M= D(G/K_)Ug/n D(G/K,) with Ky /H = S**
- [Wilking ‘'07] If A C G acts freely on M, then
A\M = D(A\G/K_) Ua\g/n D(A\G/KY)

- Ric > 0 <= m finite [Schwachhdfer, Tuschmann ‘04]
- sec 2 0 if £+ =1 [Grove, Ziller ‘00, Wilking ‘07]
- All S3-bundles over S* [D all Milnor exotic 7-spheres] [Grove, Ziller ‘00]
- Family of 2-conn. 7-manifolds [D all exotic 7-spheres] [Goette, K, Shankar ‘20]
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- [Grove ‘02] Double-Soul Conjecture:
Every M with 71(M) = 0 and admitting sec > 0 is a double disk bundle

- False if w1 (M) # 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

- Say M 3-dimensional double disk bundle with sec > 0.
= M admits sec = 1, w1 (M) finite, M =2 S3. [Bonnet-Myers; Hamilton]
But 71 (M) finite = WLOG ¢4 € {1,2}.
— L connected, orientable 2-manifold with S+ — L — B+
= Le{S?% T?}
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MOTIVATION

- [Grove ‘02] Double-Soul Conjecture:
Every M with 71(M) = 0 and admitting sec > 0 is a double disk bundle

- False if w1 (M) # 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]



MOTIVATION

- [Grove ‘02] Double-Soul Conjecture:
Every M with 71(M) = 0 and admitting sec > 0 is a double disk bundle

- False if w1 (M) # 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

. Say T finite perfect group (i.e. [[,[]=T).



MOTIVATION

- [Grove ‘02] Double-Soul Conjecture:
Every M with 71(M) = 0 and admitting sec > 0 is a double disk bundle

- False if w1 (M) # 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

. Say T finite perfect group (i.e. [[,[]=T).
—> d perfect group G with no finite subgroups such that
3SES0—+Z" -G —T —0.

[Auslander, Kuranishi ‘57] & folklore



MOTIVATION

- [Grove ‘02] Double-Soul Conjecture:
Every M with 71(M) = 0 and admitting sec > 0 is a double disk bundle

- False if w1 (M) # 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

. Say T finite perfect group (i.e. [[,[]=T).
—> d perfect group G with no finite subgroups such that
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[Auslander, Kuranishi ‘57] & folklore
— d closed, flat manifold M such that
Hol(M) =T, 71 (M) = G and Hi(M) =0.

[Bieberbach ‘11, Auslander, Kuranishi ‘57]
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- [Grove ‘02] Double-Soul Conjecture:
Every M with 71(M) = 0 and admitting sec > 0 is a double disk bundle

- False if (M) # 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

- Are compact Lie groups double disk bundles?

- Unknown for E7, Eg!

- [Grove] Are there general obstructions to being a double disk bundle?
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THE HOMOTOPY FIBRATION

Associated to inclusion L < M 3 homotopy fibration

F—L— M.

If P ={(x,a) € Lx M| a(0) = x}, then
L~P = M; (x,a) = «al)

is a fibration.

Homotopy fibre: unique homotopy type F of fibres of P — M
Fy={(x,a)e Lx MO | a(0) =x,a(1) =y} CP, yeM.

[Grove, Halperin '87] Studied F in very general setting.



TOPOLOGY OF HOMOTOPY FIBRE

{a, B} = {5} O;f:_tsz)::jtlye;f m1(F) Q-model for F
Both Z2 S! x St x QS3

e One 02, S x §% x QS5
‘ Neither Qs S3 % S3 x QS7
l=a<§p Both 7 St x S§F x QSFA+2
l=a<g 8 odd S!-bundle ST x §24H1 . §28+3
l<a<p S x §P x QSath+l
l<a=8 S x QSatt
SU(3)/T? x QS”

2=a=4 Sp(2)/T? x QS°
Both 0 Gy /T2 x 8

Sp(3)/Sp(1)° x QS*

4=a=24 Aq(4) x QSY
Ao(4) x QSB

8=a=p F, / Spin(8) x Q8%




TOPOLOGY OF HOMOTOPY FIBRE

R e
y Both Z, j=0,0rje{a,f} moda+p
Z2 j>0and j=0mod a+
a=pf Both z j=e
z2, j>0andj=0mod «a
z, j=0,0rj=+1mod 23 +2
l=a<p St-bundle Z3} j>0and j=0mod 28 +2
2, je{B+1,8+2} mod2B+2
Z, j=0,0rj=1mod 4
Z,, j=2mod 4
lse=p e Z$Z,, j=3mod4
z2, j>0and =0 mod 4
z, j=0
l=a=4 Neither Z23 j>0andj=0mod3
z2 j=2mod3

10



RANK THEOREM

[DeVito, Galaz-Garcia, K- "20] If F ~q N x QS¥, then 3 non-trivial
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Ts11(M) @ Q = mas(F) @ Q
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where 2s + 1 =
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RANK THEOREM

[DeVito, Galaz-Garcia, K- "20] If F ~q N x QS¥, then 3 non-trivial

homomorphism
7T2s+1(M) ®Q— 7'('25(’:) ®Q

k, if k odd

where 2s + 1 =
2k — 1, if k even.

: l\/,2r,7-~_1ngan_1 — k=2m+lork=m+1=0 mod?2
- H™(F;Z) = Z> = H*(F;Z) torsion free OR n=7, {+ =1 and

Z ;=0
HI(F;Z)={22, j>0and =0 mod3
ZZ, j=2mod3

11



SPECTRAL SEQUENCE FOR HOMOTOPY FIBRATION

Spectral sequence for F — L — M?m+1:

F * 0 - 0 0
m  H™F) 0 - 0 0
m—1| H"'(F) 0 - 0 0
2| HYF) 0O - 0 0 o N
1 H(F) 0 - 0 o 0 i
0 Z 0o - 0 0 0 H™(M)

0 1 m—2 m-—1 m m+1 ]\,{2m+1
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- H™ Y (M; Z)/im(dpy1) < H™(L; Z)

PD & UCT = H™(L;Z), H™"(L; Z) isomorphic torsion subgroups
. H™1(L; Z) free abelian = H™Y(M;Z)/im(dpny1) =0

— H™Y(M; Z) = im(dms1) = H™(F; Z)/H™(L; Z)

= H™(M; Z) generated by < 2 elements

and rank(H™(L; Z)) = rank(H™(F; Z))
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Thanks for your attention!
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