DOUBLE DISK BUNDLES

[joint with J. DeVito (Tennessee)]

Martin Kerin (Durham)

24 August 2023

Prospects in Geometry and Global Analysis Schloss Rauischholzhausen, Marburg

 $M \cong DB_{-} \cup_{L} DB_{+}$

where

- B_{\pm} , L smooth, closed manifolds
- $\mathbf{D}^{\ell_{\pm}+1}
 ightarrow DB_{\pm}
 ightarrow B_{\pm}$ smooth disk bundles such that

 $L \cong \partial DB_{-} \cong \partial DB_{+}$

 $M \cong DB_{-} \cup_{L} DB_{+}$

where

- B_{\pm} , L smooth, closed manifolds
- . $\mathbf{D}^{\ell_{\pm}+1}
 ightarrow DB_{\pm}
 ightarrow B_{\pm}$ smooth disk bundles such that

 $\mathbf{S}^{\ell_{\pm}} \to L \cong \partial DB_{-} \cong \partial DB_{+} \to B_{\pm}$

 $M \cong DB_{-} \cup_{L} DB_{+}$

where

- B_{\pm} , L smooth, closed manifolds
- · $\mathbf{D}^{\ell_{\pm}+1}$ → DB_{\pm} → B_{\pm} smooth disk bundles such that $\mathbf{S}^{\ell_{\pm}}$ → $L \cong \partial DB_{-} \cong \partial DB_{+}$ → B_{\pm}

Examples:

• (Homotopy) spheres: $\Sigma^n = \mathbf{D}^n \cup_{\mathbf{S}^{n-1}} \mathbf{D}^n$

 $M \cong DB_{-} \cup_{L} DB_{+}$

where

- B_{\pm} , L smooth, closed manifolds
- · $\mathbf{D}^{\ell_{\pm}+1}$ → DB_{\pm} → B_{\pm} smooth disk bundles such that $\mathbf{S}^{\ell_{\pm}}$ → $L \cong \partial DB_{-} \cong \partial DB_{+}$ → B_{\pm}

Examples:

· (Homotopy) spheres: $\Sigma^n = \mathbf{D}^n \cup_{\mathbf{S}^{n-1}} \mathbf{D}^n$

·
$$\mathbf{S}^3 = (\mathbf{D}^2 imes \mathbf{S}^1) \cup_{\mathcal{T}^2} (\mathbf{S}^1 imes \mathbf{D}^2)$$

 $M \cong DB_{-} \cup_{L} DB_{+}$

where

- B_{\pm} , L smooth, closed manifolds
- · $\mathbf{D}^{\ell_{\pm}+1}$ → DB_{\pm} → B_{\pm} smooth disk bundles such that $\mathbf{S}^{\ell_{\pm}}$ → $L \cong \partial DB_{-} \cong \partial DB_{+} \rightarrow B_{\pm}$

Examples:

· (Homotopy) spheres: $\Sigma^n = \mathbf{D}^n \cup_{\mathbf{S}^{n-1}} \mathbf{D}^n$

·
$$\mathbf{S}^3 = (\mathbf{D}^2 \times \mathbf{S}^1) \cup_{\mathcal{T}^2} (\mathbf{S}^1 \times \mathbf{D}^2)$$

- CROSSes: S^n , RP^n , CP^n , HP^n , CaP^2

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

 \cdot *n* even $\implies M^n$ homeo to **S**^{*n*}.

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

- \cdot *n* even $\implies M^n$ homeo to **S**^{*n*}.
- $\cdot n = 2m + 1$, $M^n (m 1)$ -connected $\implies H_m(M^n; \mathbb{Z})$ finite cyclic.

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

- $\cdot n \text{ even } \implies M^n \text{ homeo to } \mathbf{S}^n.$
- $\cdot n = 2m + 1$, $M^n (m 1)$ -connected $\implies H_m(M^n; \mathbb{Z})$ finite cyclic.

Theorem optimal because:

• *n* even: \exists exotic spheres for $n \ge 8$

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

- $\cdot n \text{ even } \implies M^n \text{ homeo to } \mathbf{S}^n.$
- $\cdot n = 2m + 1$, $M^n (m 1)$ -connected $\implies H_m(M^n; \mathbb{Z})$ finite cyclic.

Theorem optimal because:

• *n* even: \exists exotic spheres for $n \ge 8$

n = 2m + 1: Every **S**^{*m*}-bundle over **S**^{*m*+1} is a double disk bundle.

 $\cdot \dim(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle

- $dim(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle
- · [Perelman '02] dim(M) = 3, $\pi_1(M) = 0 \implies M \cong \mathbf{S}^3$

- $dim(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle
- · [Perelman '02] dim(M) = 3, $\pi_1(M) = 0 \implies M \cong \mathbf{S}^3$

 $(\exists S^3/\Gamma \text{ which are not double disk bundles [Grove '02, DeVito '23]})$

- \cdot dim $(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle
- [Perelman '02] dim(M) = 3, $\pi_1(M) = 0 \implies M \cong \mathbf{S}^3$ ($\exists \mathbf{S}^3/\Gamma$ which are not double disk bundles [Grove '02, DeVito '23]) • [Ge, Radeschi '15] dim(M) = 4, $\pi_1(M) = 0$

$$\implies M \cong \mathbf{S}^4, \mathbf{CP}^2, \mathbf{S}^2 \times \mathbf{S}^2 \text{ or } \mathbf{CP}^2 \# \pm \mathbf{CP}^2$$

- \cdot dim $(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle
- [Perelman '02] dim(M) = 3, $\pi_1(M) = 0 \implies M \cong \mathbf{S}^3$ ($\exists \mathbf{S}^3/\Gamma$ which are not double disk bundles [Grove '02, DeVito '23]) • [Ge, Radeschi '15] dim(M) = 4, $\pi_1(M) = 0$ $\implies M \cong \mathbf{S}^4$, \mathbf{CP}^2 , $\mathbf{S}^2 \times \mathbf{S}^2$ or $\mathbf{CP}^2 \# \pm \mathbf{CP}^2$
- · [DeVito, Galaz-García, K– '20] dim(M) = 5, $\pi_1(M) = 0$

 $\implies M \cong \mathbf{S}^5, \mathrm{SU}(3)/\mathrm{SO}(3), \mathbf{S}^3 \times \mathbf{S}^2 \text{ or } \mathbf{S}^3 \tilde{\times} \mathbf{S}^2$

- \cdot dim $(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle
- [Perelman '02] dim(M) = 3, $\pi_1(M) = 0 \implies M \cong \mathbf{S}^3$ ($\exists \mathbf{S}^3/\Gamma$ which are not double disk bundles [Grove '02, DeVito '23]) • [Ge, Radeschi '15] dim(M) = 4, $\pi_1(M) = 0$ $\implies M \cong \mathbf{S}^4$, \mathbf{CP}^2 , $\mathbf{S}^2 \times \mathbf{S}^2$ or $\mathbf{CP}^2 \# \pm \mathbf{CP}^2$
- · [DeVito, Galaz-García, K– '20] dim(M) = 5, $\pi_1(M) = 0$

$$\implies M \cong \mathbf{S}^5, \mathrm{SU}(3)/\mathrm{SO}(3), \mathbf{S}^3 \times \mathbf{S}^2 \text{ or } \mathbf{S}^3 \tilde{\times} \mathbf{S}^2$$

[DeVito, Galaz-García, K- '20] dim(M) = 6, $\pi_1(M) = 0$ $b_2(M) = 0 \implies M \cong \mathbf{S}^6$ or $\mathbf{S}^3 \times \mathbf{S}^3$

- \cdot dim $(M) = 2 \implies M \cong \mathbf{S}^2, T^2, \mathbf{RP}^2$ or Klein bottle
- [Perelman '02] dim(M) = 3, $\pi_1(M) = 0 \implies M \cong \mathbf{S}^3$ ($\exists \mathbf{S}^3/\Gamma$ which are not double disk bundles [Grove '02, DeVito '23]) • [Ge, Radeschi '15] dim(M) = 4, $\pi_1(M) = 0$ $\implies M \cong \mathbf{S}^4$, \mathbf{CP}^2 , $\mathbf{S}^2 \times \mathbf{S}^2$ or $\mathbf{CP}^2 \# \pm \mathbf{CP}^2$
- · [DeVito, Galaz-García, K– '20] dim(M) = 5, $\pi_1(M) = 0$

$$\implies M \cong \mathbf{S}^5, \mathrm{SU}(3)/\mathrm{SO}(3), \mathbf{S}^3 \times \mathbf{S}^2 \text{ or } \mathbf{S}^3 \tilde{\times} \mathbf{S}^2$$

· [DeVito, Galaz-García, K- '20] dim(M) = 6, $\pi_1(M) = 0$

$$b_2(M) = 0 \implies M \cong \mathbf{S}^6 \text{ or } \mathbf{S}^3 \times \mathbf{S}^3$$

 $b_3(M) \neq 0 \implies M \cong \mathbf{S}^3 \times \mathbf{S}^3$

Discovery of exotic 7-spheres [Milnor '56]

- · Discovery of exotic 7-spheres [Milnor '56]
- Manifolds with all geodesics from a point simply closed of same length (exotic S¹⁰, fake HP²) [Bérard-Bergery '77, Tang, Zhang '14]

- Discovery of exotic 7-spheres [Milnor '56]
- Manifolds with all geodesics from a point simply closed of same length (exotic S¹⁰, fake HP²) [Bérard-Bergery '77, Tang, Zhang '14]
- · Isoparametric and Dupin hypersurfaces

- · Discovery of exotic 7-spheres [Milnor '56]
- Manifolds with all geodesics from a point simply closed of same length (exotic S¹⁰, fake HP²) [Bérard-Bergery '77, Tang, Zhang '14]
- · Isoparametric and Dupin hypersurfaces
- · Morse-Bott functions with two critical values

- Discovery of exotic 7-spheres [Milnor '56]
- Manifolds with all geodesics from a point simply closed of same length (exotic S¹⁰, fake HP²) [Bérard-Bergery '77, Tang, Zhang '14]
- · Isoparametric and Dupin hypersurfaces
- · Morse-Bott functions with two critical values
- \cdot Manifolds with sec >0 or sec $\geqslant 0$ and having large isometry groups

- · Discovery of exotic 7-spheres [Milnor '56]
- Manifolds with all geodesics from a point simply closed of same length (exotic S¹⁰, fake HP²) [Bérard-Bergery '77, Tang, Zhang '14]
- · Isoparametric and Dupin hypersurfaces
- · Morse-Bott functions with two critical values
- \cdot Manifolds with sec >0 or sec $\geqslant 0$ and having large isometry groups
- . All known closed manifolds M with $\pi_1(M) = 0$ and sec > 0

- Discovery of exotic 7-spheres [Milnor '56]
- Manifolds with all geodesics from a point simply closed of same length (exotic S¹⁰, fake HP²) [Bérard-Bergery '77, Tang, Zhang '14]
- · Isoparametric and Dupin hypersurfaces
- · Morse-Bott functions with two critical values
- \cdot Manifolds with sec >0 or sec $\geqslant 0$ and having large isometry groups
- . All known closed manifolds M with $\pi_1(M) = 0$ and sec > 0
- Codimension-1 singular Riemannian foliations

· Cohomogeneity-one manifolds:

 $G \curvearrowright M$ such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = {f S}^{\ell_{\pm}}$

· Cohomogeneity-one manifolds:

 $G \curvearrowright M$ such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = {f S}^{\ell_{\pm}}$

· Ric > 0 $\iff \pi_1$ finite [Grove, Ziller '02]

· Cohomogeneity-one manifolds:

 $G \curvearrowright M$ such that $M/G \cong [-1,1]$

 $\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$ with $K_{\pm}/H = \mathbf{S}^{\ell_{\pm}}$

- · Ric > 0 $\iff \pi_1$ finite [Grove, Ziller '02]
- \cdot sec $\geqslant 0$ if $\ell_{\pm}=1$ [Grove, Ziller '00]

· Cohomogeneity-one manifolds:

 $G \curvearrowright M$ such that $M/G \cong [-1,1]$

 $\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$ with $K_{\pm}/H = \mathbf{S}^{\ell_{\pm}}$

- · Ric > 0 $\iff \pi_1$ finite [Grove, Ziller '02]
- sec \geq 0 if $\ell_{\pm} = 1$ [Grove, Ziller '00]
- sec > 0 on exotic $T^1 S^4$ [Dearricott '11, Grove, Verdiani, Ziller '11]

· Cohomogeneity-one manifolds:

 $G \curvearrowright M$ such that $M/G \cong [-1,1]$

 $\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$ with $K_{\pm}/H = \mathbf{S}^{\ell_{\pm}}$

- · Ric > 0 $\iff \pi_1$ finite [Grove, Ziller '02]
- sec \geq 0 if $\ell_{\pm} = 1$ [Grove, Ziller '00]
- sec > 0 on exotic $T^1 S^4$ [Dearricott '11, Grove, Verdiani, Ziller '11]
- inhomogeneous Einstein metrics on \mathbf{S}^n , $n \in \{5, \dots, 9, 10\}$

[Böhm '98, Chi '22, Nienhaus, Wink '23]

· Cohomogeneity-one manifolds:

 $G \curvearrowright M$ such that $M/G \cong [-1,1]$

 $\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$ with $K_{\pm}/H = \mathbf{S}^{\ell_{\pm}}$

- \cdot Ric > 0 $\iff \pi_1$ finite [Grove, Ziller '02]
- \cdot sec \geqslant 0 if $\ell_{\pm}=1$ [Grove, Ziller '00]
- sec > 0 on exotic $T^1 S^4$ [Dearricott '11, Grove, Verdiani, Ziller '11]
- · inhomogeneous Einstein metrics on S^n , $n \in \{5, \dots, 9, 10\}$

[Böhm '98, Chi '22, Nienhaus, Wink '23]

- inhomogeneous nearly Kähler structures on \bm{S}^6 and $\bm{S}^3\times\bm{S}^3$

[Foscolo, Haskins '17]

· Cohomogeneity-one manifolds:

$$G \curvearrowright M$$
 such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = {f S}^{\ell_{\pm}}$

· [Wilking '07] If $A \subseteq G$ acts freely on M, then

$$A \setminus M = D(A \setminus G/K_{-}) \cup_{A \setminus G/H} D(A \setminus G/K_{+})$$

· Cohomogeneity-one manifolds:

$$G \curvearrowright M$$
 such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = {f S}^{\ell_{\pm}}$

• [Wilking '07] If $A \subseteq G$ acts freely on M, then

$$A \backslash M = D(A \backslash G/K_{-}) \cup_{A \backslash G/H} D(A \backslash G/K_{+})$$

· Ric > 0 $\iff \pi_1$ finite [Schwachhöfer, Tuschmann '04]

· Cohomogeneity-one manifolds:

$$G \curvearrowright M$$
 such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = {f S}^{\ell_{\pm}}$

• [Wilking '07] If $A \subseteq G$ acts freely on M, then

$$A \backslash M = D(A \backslash G/K_{-}) \cup_{A \backslash G/H} D(A \backslash G/K_{+})$$

- · Ric > 0 $\iff \pi_1$ finite [Schwachhöfer, Tuschmann '04]
- sec ≥ 0 if $\ell_{\pm} = 1$ [Grove, Ziller '00, Wilking '07]

· Cohomogeneity-one manifolds:

$$G \curvearrowright M$$
 such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = \mathbf{S}^{\ell_{\pm}}$

• [Wilking '07] If $A \subseteq G$ acts freely on M, then

$$A \backslash M = D(A \backslash G/K_{-}) \cup_{A \backslash G/H} D(A \backslash G/K_{+})$$

- · Ric > 0 $\iff \pi_1$ finite [Schwachhöfer, Tuschmann '04]
- sec ≥ 0 if $\ell_{\pm} = 1$ [Grove, Ziller '00, Wilking '07]

· All S^3 -bundles over S^4 [\supseteq all Milnor exotic 7-spheres] [Grove, Ziller '00]

· Cohomogeneity-one manifolds:

$$G \curvearrowright M$$
 such that $M/G \cong [-1,1]$

$$\implies M = D(G/K_{-}) \cup_{G/H} D(G/K_{+})$$
 with $K_{\pm}/H = \mathbf{S}^{\ell_{\pm}}$

• [Wilking '07] If $A \subseteq G$ acts freely on M, then

$$A \setminus M = D(A \setminus G/K_{-}) \cup_{A \setminus G/H} D(A \setminus G/K_{+})$$

- $Ric > 0 \iff \pi_1$ finite [Schwachhöfer, Tuschmann '04]
- sec \geqslant 0 if $\ell_{\pm} = 1$ [Grove, Ziller '00, Wilking '07]

· All S^3 -bundles over S^4 [\supseteq all Milnor exotic 7-spheres] [Grove, Ziller '00]

· Family of 2-conn. 7-manifolds [⊇ all exotic 7-spheres] [Goette, K, Shankar '20]
Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
 - · Say *M* 3-dimensional double disk bundle with sec > 0.

 \implies *M* admits sec $\equiv 1$, $\pi_1(M)$ finite, $\tilde{M} \cong \mathbf{S}^3$. [Bonnet–Myers; Hamilton]

- [Grove '02] Double-Soul Conjecture: Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

 \implies *M* admits sec \equiv 1, $\pi_1(M)$ finite, $\tilde{M} \cong S^3$. [Bonnet–Myers; Hamilton]

But $\pi_1(M)$ finite \implies WLOG $\ell_+ \in \{1, 2\}$.

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
 - · Say *M* 3-dimensional double disk bundle with sec > 0.
 - $\implies M \text{ admits sec} \equiv 1, \ \pi_1(M) \text{ finite}, \ \tilde{M} \cong \mathbf{S}^3. \ [\text{Bonnet-Myers; Hamilton}]$ But $\pi_1(M)$ finite \implies WLOG $\ell_+ \in \{1, 2\}.$
 - \implies L connected, orientable 2-manifold with ${f S}^{\ell_+}
 ightarrow L
 ightarrow B_+$

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

 $\implies M \text{ admits sec} \equiv 1, \ \pi_1(M) \text{ finite, } \tilde{M} \cong \mathbf{S}^3. \text{ [Bonnet-Myers; Hamilton]}$ But $\pi_1(M)$ finite \implies WLOG $\ell_+ \in \{1, 2\}.$

 $\implies L \text{ connected, orientable 2-manifold with } \mathbf{S}^{\ell_+} \to L \to B_+$ $\implies L \in \{\mathbf{S}^2, T^2\}$

- [Grove '02] Double-Soul Conjecture: Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

 $\implies M \text{ admits sec} \equiv 1, \ \pi_1(M) \text{ finite}, \ \tilde{M} \cong \mathbf{S}^3. \ [\text{Bonnet-Myers; Hamilton}]$ But $\pi_1(M)$ finite \implies WLOG $\ell_+ \in \{1, 2\}.$

 \implies *L* connected, orientable 2-manifold with $\mathbf{S}^{\ell_+} \rightarrow L \rightarrow B_+$

$$\implies L \in \{\mathbf{S}^2, T^2\}$$
$$\implies M \in \begin{cases} \{\mathbf{S}^3, \mathbf{RP}^3, \mathbf{RP}^3 \# \mathbf{RP}^3\} & \text{if } L = \mathbf{S}^2\\ \{\text{lens space, prism manifold}\} & \text{if } L = T^2 \end{cases}$$

- [Grove '02] Double-Soul Conjecture: Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

 $\implies M \text{ admits sec} \equiv 1, \ \pi_1(M) \text{ finite}, \ \tilde{M} \cong \mathbf{S}^3. \ [\text{Bonnet-Myers; Hamilton}]$ But $\pi_1(M)$ finite \implies WLOG $\ell_+ \in \{1, 2\}.$

 \implies L connected, orientable 2-manifold with ${\bf S}^{\ell_+} \rightarrow L \rightarrow B_+$

$$\implies L \in \{\mathbf{S}^2, T^2\}$$
$$\implies M \in \begin{cases} \{\mathbf{S}^3, \mathbf{RP}^3, \mathbf{RP}^3 \# \mathbf{RP}^3\} & \text{if } L = \mathbf{S}^2, \\ \{\text{lens space, prism manifold}\} & \text{if } L = T^2 \end{cases}$$

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

 $\implies M \text{ admits sec} \equiv 1, \ \pi_1(M) \text{ finite}, \ \tilde{M} \cong \mathbf{S}^3. \ [\text{Bonnet-Myers; Hamilton}]$ But $\pi_1(M)$ finite \implies WLOG $\ell_+ \in \{1, 2\}.$

 \implies L connected, orientable 2-manifold with $\mathbf{S}^{\ell_+} \rightarrow L \rightarrow B_+$

$$\implies L \in \{\mathbf{S}^2, T^2\}$$

$$\implies M \in \begin{cases} \{\mathbf{S}^3, \mathbf{RP}^3, \mathbf{PP}^3 \# \mathbf{RP}^3\} & \text{if } L = \mathbf{S}^2, \\ \{\text{lens space, prism manifold}\} & \text{if } L = T^2 \end{cases}$$

∴ Classification of space forms \implies infinitely many S^3/Γ not double disk bundles, e.g. S^3/I^* , S^3/O^* , S^3/T^*

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
 - Say Γ finite perfect group (i.e. $[\Gamma, \Gamma] = \Gamma$).

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
 - Say Γ finite perfect group (i.e. $[\Gamma, \Gamma] = \Gamma$).

 \implies \exists perfect group *G* with no finite subgroups such that

 \exists SES $0 \rightarrow \mathbf{Z}^r \rightarrow G \rightarrow \Gamma \rightarrow 0$.

[Auslander, Kuranishi '57] & folklore

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
 - Say Γ finite perfect group (i.e. $[\Gamma, \Gamma] = \Gamma$).

 \implies \exists perfect group *G* with no finite subgroups such that

 \exists SES $0 \rightarrow \mathbf{Z}^r \rightarrow G \rightarrow \Gamma \rightarrow 0$.

[Auslander, Kuranishi '57] & folklore

 \implies \exists closed, flat manifold M such that

 $Hol(M) = \Gamma, \pi_1(M) = G \text{ and } H_1(M) = 0.$

[Bieberbach '11, Auslander, Kuranishi '57]

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$.

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

• Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$). • [Grove '02] Double-Soul Conjecture: Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$).

Suppose M_k is double disk bundle.

• [Grove '02] Double-Soul Conjecture: Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$).

Suppose M_k is double disk bundle.

Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \frown T_p M_k$).

Suppose M_k is double disk bundle.

 M_k flat $\implies M_k$ aspherical $\implies \ell_{\pm} = 0.$

 \implies \exists non-trivial 2-fold cover $\widehat{M}_k \rightarrow M_k$.

Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$).

Suppose M_k is double disk bundle.

- \implies \exists non-trivial 2-fold cover $\widehat{M}_k \rightarrow M_k$.
- $\implies \pi_1(M_k)$ has subgroup of index 2.

Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$).

Suppose M_k is double disk bundle.

- \implies \exists non-trivial 2-fold cover $\widehat{M}_k \rightarrow M_k$.
- $\implies \pi_1(M_k)$ has subgroup of index 2.
- \implies \exists surjection $\pi_1(M_k) \rightarrow \mathbb{Z}_2$.

Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$).

Suppose M_k is double disk bundle.

- \implies \exists non-trivial 2-fold cover $\widehat{M}_k \rightarrow M_k$.
- $\implies \pi_1(M_k)$ has subgroup of index 2.
- \implies \exists surjection $\pi_1(M_k) \rightarrow \mathbb{Z}_2$.
- \implies \exists surjection $H_1(M_k) \rightarrow \mathbb{Z}_2$.

Every *M* with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle

False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]

· Let M_k be closed, flat manifold associated to $\Gamma = A_k$, $k \ge 7$. $\implies \dim(M_k) \ge k - 1$ (since $A_k = \operatorname{Hol}(M) \curvearrowright T_p M_k$).

Suppose M_k is double disk bundle.

- \implies \exists non-trivial 2-fold cover $\widehat{M}_k \rightarrow M_k$.
- $\implies \pi_1(M_k)$ has subgroup of index 2.
- \implies \exists surjection $\pi_1(M_k) \rightarrow \mathbb{Z}_2$.
- \implies \exists surjection $H_1(M_k) \rightarrow \mathbb{Z}_2$. Contradiction since $H_1(M_k) = 0!$

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
- Are compact Lie groups double disk bundles?

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
- Are compact Lie groups double disk bundles?
 - Unknown for E_7 , E_8 !

- [Grove '02] Double-Soul Conjecture: Every M with $\pi_1(M) = 0$ and admitting sec ≥ 0 is a double disk bundle
 - False if $\pi_1(M) \neq 0$, even for sec > 0, sec = 0 [Grove '02, DeVito '23]
- Are compact Lie groups double disk bundles?
 - Unknown for E_7 , E_8 !
- [Grove] Are there general obstructions to being a double disk bundle?

DeVito, K- '23 Let M^n be a double disk bundle such that $\pi_1(M^n) = 0$ and

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

- \cdot *n* even $\implies M^n$ homeo to **S**^{*n*}.
- $\cdot n = 2m + 1$, $M^n (m 1)$ -connected $\implies H_m(M^n; \mathbf{Z})$ finite cyclic.

DeVito, K- '23 Let M^n be a double disk bundle such that $\pi_1(M^n) = 0$ and

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

- \cdot *n* even $\implies M^n$ homeo to **S**^{*n*}.
- n = 2m + 1, $M^n (m 1)$ -connected $\implies H_m(M^n; \mathbb{Z})$ finite cyclic.

DeVito, K- '23 Let M^n be a double disk bundle such that $\pi_1(M^n) = 0$ and

 $H_*(M^n; \mathbf{Q}) \cong H_*(\mathbf{S}^n; \mathbf{Q})$.

Then

- \cdot *n* even \implies M^n homeo to **S**^{*n*}.
- m = 2m + 1, $M^n (m 1)$ -connected $\implies H^{m+1}(M^n; \mathbf{Z})$ finite cyclic.

 $F \rightarrow L \hookrightarrow M$.

 $F \rightarrow L \hookrightarrow M$.

If $\mathcal{P} = \{(x, \alpha) \in L \times M^{[0,1]} \mid \alpha(0) = x\}$, then

 $\mathcal{P} \to M$; $(x, \alpha) \mapsto \alpha(1)$

is a fibration.

 $F \rightarrow L \hookrightarrow M$.

If $\mathcal{P} = \{(x, \alpha) \in L \times M^{[0,1]} \mid \alpha(0) = x\}$, then

 $L \simeq \mathcal{P} \rightarrow M$; $(x, \alpha) \mapsto \alpha(1)$

is a fibration.

$$F \rightarrow L \hookrightarrow M$$
.

If
$$\mathcal{P} = \{(x, \alpha) \in L \times M^{[0,1]} \mid \alpha(0) = x\}$$
, then

$$L \simeq \mathcal{P} \to M$$
; $(x, \alpha) \mapsto \alpha(1)$

is a fibration.

Homotopy fibre: unique homotopy type F of fibres of $\mathcal{P} \to M$

$$\mathcal{F}_y = \{(x, \alpha) \in L \times M^{[0,1]} \mid \alpha(0) = x, \alpha(1) = y\} \subseteq \mathcal{P}, \ y \in M.$$

$$F \rightarrow L \hookrightarrow M$$
.

If
$$\mathcal{P} = \{(x, \alpha) \in L \times M^{[0,1]} \mid \alpha(0) = x\}$$
, then

$$L \simeq \mathcal{P} \to M$$
; $(x, \alpha) \mapsto \alpha(1)$

is a fibration.

Homotopy fibre: unique homotopy type F of fibres of $\mathcal{P} \rightarrow M$

$$\mathcal{F}_y = \{(x, lpha) \in L imes M^{[0,1]} \mid lpha(0) = x, lpha(1) = y\} \subseteq \mathcal{P} \,, \ \ y \in M \,.$$

[Grove, Halperin '87] Studied F in very general setting.

TOPOLOGY OF HOMOTOPY FIBRE

$\{\alpha,\beta\} = \{\ell_{\pm}\}$	Orientability of S ℓ±-bundles	$\pi_1(F)$	Q -model for <i>F</i>
$1 = \alpha = \beta$	Both	Z ²	${\bf S}^1\times{\bf S}^1\times\Omega{\bf S}^3$
	One	$\textbf{Z} \oplus \textbf{Z}_2$	$\pmb{S}^1\times\pmb{S}^3\times\Omega\pmb{S}^5$
	Neither	Q_8	$\bm{S}^3\times\bm{S}^3\times\Omega\bm{S}^7$
$1=\alpha<\beta$	Both	z	$\mathbf{S}^1\times\mathbf{S}^\beta\times\Omega\mathbf{S}^{\beta+2}$
$1=\alpha<\beta,\ \beta \text{ odd}$	S ¹ -bundle		$\mathbf{S}^1 imes \mathbf{S}^{2eta+1} imes \Omega \mathbf{S}^{2eta+3}$
$1 < \alpha \leqslant \beta$			$\mathbf{S}^{\alpha}\times\mathbf{S}^{\beta}\times\Omega\mathbf{S}^{\alpha+\beta+1}$
$1 < \alpha = \beta$	Both	0	$\mathbf{S}^{\alpha}\times \Omega \mathbf{S}^{\alpha+1}$
$2 = \alpha = \beta$			$SU(3)/T^2 imes \Omega S^7$
			$\operatorname{Sp}(2)/T^2 imes \Omega S^9$
			$G_2/\mathcal{T}^2\times\Omega \mathbf{S}^{13}$
$4 = \alpha = \beta$			$Sp(3)/Sp(1)^3 imes \Omega \mathbf{S}^{13}$
			$A_4(4) imes \Omega {f S}^{17}$
			$A_6(4) imes \Omega {f S}^{25}$
$8 = \alpha = \beta$			$F_4 / Spin(8) imes \Omega S^{25}$

TOPOLOGY OF HOMOTOPY FIBRE

$\{\alpha,\beta\} = \{\ell_{\pm}\}$	Orientability of S ^{ℓ±} -bundles	$H^{j}(F; \mathbf{Z})$	
$\alpha \neq \beta$	Both	Ζ,	$j = 0$, or $j \in \{\alpha, \beta\} \mod \alpha + \beta$
		Z ² ,	$j > 0$ and $j \equiv 0 \mod \alpha + \beta$
$\alpha = \beta$	Both	Ζ,	<i>j</i> = 0
		Z ² ,	$j > 0$ and $j \equiv 0 \mod \alpha$
$1=\alpha <\beta$	${\sf S}^1$ -bundle	Ζ,	$j=$ 0, or $j\equiv\pm 1 \mod 2\beta+2$
		Z ² ,	$j > 0$ and $j \equiv 0 \mod 2\beta + 2$
		Z ₂ ,	$j\in\{\beta+1,\beta+2\} \bmod 2\beta+2$
$1 = \alpha = \beta$	One	Ζ,	$j=$ 0, or $j\equiv 1 \mod 4$
		Z ₂ ,	$j \equiv 2 \mod 4$
		$\textbf{Z} \oplus \textbf{Z}_2,$	$j \equiv 3 \mod 4$
		Z ² ,	$j > 0$ and $j \equiv 0 \mod 4$
$1=\alpha=\beta$	Neither	Ζ,	<i>j</i> = 0
		Z ² ,	$j > 0$ and $j \equiv 0 \mod 3$
		Z_{2}^{2} ,	$j \equiv 2 \mod 3$
$$\pi_{2s+1}(M)\otimes \mathbf{Q} \to \pi_{2s}(F)\otimes \mathbf{Q}$$

where $2s + 1 = \begin{cases} k, & \text{if } k \text{ odd} \\ 2k - 1, & \text{if } k \text{ even.} \end{cases}$

$$\pi_{2s+1}(M)\otimes \mathbf{Q} \to \pi_{2s}(F)\otimes \mathbf{Q}$$

where $2s + 1 = \begin{cases} k, & \text{if } k \text{ odd} \\ 2k - 1, & \text{if } k \text{ even.} \end{cases}$

 $M^{2m+1} \simeq_{\mathbf{Q}} \mathbf{S}^{2m+1} \implies k = 2m+1 \text{ or } k = m+1 \equiv 0 \mod 2$

$$\pi_{2s+1}(M)\otimes \mathbf{Q} \to \pi_{2s}(F)\otimes \mathbf{Q}$$

where $2s + 1 = \begin{cases} k, & \text{if } k \text{ odd} \\ 2k - 1, & \text{if } k \text{ even.} \end{cases}$

 $M^{2m+1} \simeq_{\mathbf{Q}} \mathbf{S}^{2m+1} \implies k = 2m+1 \text{ or } k = m+1 \equiv 0 \mod 2$

 $H^m(F; \mathbf{Z})$ has torsion $\implies H^m(F; \mathbf{Z}) = \mathbf{Z}_2, \quad n = 2m + 1 \equiv 1 \mod 4$

$$\pi_{2s+1}(M)\otimes \mathbf{Q} \to \pi_{2s}(F)\otimes \mathbf{Q}$$

where $2s + 1 = \begin{cases} k, & \text{if } k \text{ odd} \\ 2k - 1, & \text{if } k \text{ even.} \end{cases}$

$$M^{2m+1} \simeq_{\mathbf{Q}} \mathbf{S}^{2m+1} \implies k = 2m+1 \text{ or } k = m+1 \equiv 0 \mod 2$$

 $H^m(F; \mathbf{Z}) = \mathbf{Z}^2 \implies H^*(F; \mathbf{Z})$ torsion free OR n = 7, $\ell_{\pm} = 1$ and

$$H^{j}(F; \mathbf{Z}) = \begin{cases} \mathbf{Z}, & j = 0\\ \mathbf{Z}^{2}, & j > 0 \text{ and } j \equiv 0 \mod 3\\ \mathbf{Z}_{2}^{2}, & j \equiv 2 \mod 3 \end{cases}$$

1

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

$$H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

$$H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$$

 $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbb{Z})/H^m(L; \mathbb{Z}) \subseteq H^{m+1}(M; \mathbb{Z})$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

$$H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$$

 $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbb{Z})/H^m(L; \mathbb{Z}) \subseteq H^{m+1}(M; \mathbb{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbb{Z})/H^m(L; \mathbb{Z}) \subseteq H^{m+1}(M; \mathbb{Z})$

$$\cdot H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT \implies $H^m(L; \mathbb{Z})$, $H^{m+1}(L; \mathbb{Z})$ isomorphic torsion subgroups

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbb{Z})/H^m(L; \mathbb{Z}) \subseteq H^{m+1}(M; \mathbb{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT $\implies H^m(L; \mathbf{Z}), H^{m+1}(L; \mathbf{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ has torsion $\implies H^m(F; \mathbb{Z})$ has torsion

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

$$\cdot H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$$

 $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbb{Z})/H^m(L; \mathbb{Z}) \subseteq H^{m+1}(M; \mathbb{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT \implies $H^m(L; \mathbb{Z})$, $H^{m+1}(L; \mathbb{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ has torsion $\implies H^m(F; \mathbb{Z}) = \mathbb{Z}_2$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z}) \subseteq H^{m+1}(M; \mathbf{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT $\implies H^m(L; \mathbf{Z}), H^{m+1}(L; \mathbf{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ has torsion $\implies H^m(F; \mathbb{Z}) = \mathbb{Z}_2$

$$\implies$$
 $H^m(L; \mathbf{Z}) = H^m(F; \mathbf{Z}) = \mathbf{Z}_2$ and $\mathbf{Z}_2 = T^{m+1}(L; \mathbf{Z})$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z}) \subseteq H^{m+1}(M; \mathbf{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT $\implies H^m(L; \mathbf{Z}), H^{m+1}(L; \mathbf{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ has torsion $\implies H^m(F; \mathbb{Z}) = \mathbb{Z}_2$

$$\implies$$
 $H^m(L; \mathbf{Z}) = H^m(F; \mathbf{Z}) = \mathbf{Z}_2$ and $\mathbf{Z}_2 = T^{m+1}(L; \mathbf{Z})$

 \implies im $(d_{m+1}) = 0$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z}) \subseteq H^{m+1}(M; \mathbf{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT $\implies H^m(L; \mathbf{Z}), H^{m+1}(L; \mathbf{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ has torsion $\implies H^m(F; \mathbb{Z}) = \mathbb{Z}_2$

$$\implies$$
 $H^m(L; \mathbf{Z}) = H^m(F; \mathbf{Z}) = \mathbf{Z}_2$ and $\mathbf{Z}_2 = T^{m+1}(L; \mathbf{Z})$

$$\implies$$
 im $(d_{m+1}) = 0$

$$\implies H^{m+1}(M; \mathbf{Z}) \hookrightarrow \mathbf{Z}_2 \subseteq H^{m+1}(L; \mathbf{Z})$$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

$$H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$$

 $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z}) \subseteq H^{m+1}(M; \mathbf{Z})$

$$H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT \implies $H^m(L; \mathbb{Z})$, $H^{m+1}(L; \mathbb{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ free abelian $\implies H^{m+1}(M; \mathbb{Z}) / \operatorname{im}(d_{m+1}) = 0$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z}) \subseteq H^{m+1}(M; \mathbf{Z})$

$$\cdot H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT \implies $H^m(L; \mathbf{Z})$, $H^{m+1}(L; \mathbf{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ free abelian $\implies H^{m+1}(M; \mathbb{Z}) / \operatorname{im}(d_{m+1}) = 0$

$$\implies H^{m+1}(M; \mathbf{Z}) = \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z})$$

Differential $d_{m+1}: H^m(F; \mathbb{Z}) \to H^{m+1}(M; \mathbb{Z})$ yields

- $H^m(L; \mathbf{Z}) \cong \ker(d_{m+1}) \subseteq H^m(F; \mathbf{Z})$
- $\cdot \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z}) \subseteq H^{m+1}(M; \mathbf{Z})$

$$\cdot H^{m+1}(M; \mathbf{Z}) / \operatorname{im}(d_{m+1}) \hookrightarrow H^{m+1}(L; \mathbf{Z})$$

PD & UCT $\implies H^m(L; \mathbf{Z}), H^{m+1}(L; \mathbf{Z})$ isomorphic torsion subgroups

 $\therefore H^{m+1}(L; \mathbb{Z})$ free abelian $\implies H^{m+1}(M; \mathbb{Z}) / \operatorname{im}(d_{m+1}) = 0$

$$\implies H^{m+1}(M; \mathbf{Z}) = \operatorname{im}(d_{m+1}) \cong H^m(F; \mathbf{Z})/H^m(L; \mathbf{Z})$$

 \implies $H^{m+1}(M; \mathbf{Z})$ generated by ≤ 2 elements

and rank $(H^m(L; \mathbf{Z})) = \operatorname{rank}(H^m(F; \mathbf{Z}))$

 \exists commutative braid of exact sequences associated to $M = DB_{-} \cup_{L} DB_{+}$

 \implies SES $0 \rightarrow \mathbf{Z} \rightarrow \mathbf{Z} \rightarrow H^{m+1}(M; \mathbf{Z}) \rightarrow 0$

Thanks for your attention!