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double disk bundles

Double disk bundle: A smooth, closed manifold

M ∼= DB− ∪L DB+

where

· B±, L smooth, closed manifolds

· Dℓ±+1 → DB± → B± smooth disk bundles such that

Sℓ± →

L ∼= ∂DB− ∼= ∂DB+

→ B±

Examples:

· (Homotopy) spheres: Σn = Dn ∪Sn−1 Dn

· S3 = (D2 × S1) ∪T 2 (S1 ×D2)

· CROSSes: Sn, RPn, CPn, HPn, CaP2

1



double disk bundles

Double disk bundle: A smooth, closed manifold

M ∼= DB− ∪L DB+

where

· B±, L smooth, closed manifolds

· Dℓ±+1 → DB± → B± smooth disk bundles such that

Sℓ± → L ∼= ∂DB− ∼= ∂DB+ → B±

Examples:

· (Homotopy) spheres: Σn = Dn ∪Sn−1 Dn

· S3 = (D2 × S1) ∪T 2 (S1 ×D2)

· CROSSes: Sn, RPn, CPn, HPn, CaP2

1



double disk bundles

Double disk bundle: A smooth, closed manifold

M ∼= DB− ∪L DB+

where

· B±, L smooth, closed manifolds

· Dℓ±+1 → DB± → B± smooth disk bundles such that

Sℓ± → L ∼= ∂DB− ∼= ∂DB+ → B±

Examples:

· (Homotopy) spheres: Σn = Dn ∪Sn−1 Dn

· S3 = (D2 × S1) ∪T 2 (S1 ×D2)

· CROSSes: Sn, RPn, CPn, HPn, CaP2

1



double disk bundles

Double disk bundle: A smooth, closed manifold

M ∼= DB− ∪L DB+

where

· B±, L smooth, closed manifolds

· Dℓ±+1 → DB± → B± smooth disk bundles such that

Sℓ± → L ∼= ∂DB− ∼= ∂DB+ → B±

Examples:

· (Homotopy) spheres: Σn = Dn ∪Sn−1 Dn

· S3 = (D2 × S1) ∪T 2 (S1 ×D2)

· CROSSes: Sn, RPn, CPn, HPn, CaP2

1



double disk bundles

Double disk bundle: A smooth, closed manifold

M ∼= DB− ∪L DB+

where

· B±, L smooth, closed manifolds

· Dℓ±+1 → DB± → B± smooth disk bundles such that

Sℓ± → L ∼= ∂DB− ∼= ∂DB+ → B±

Examples:

· (Homotopy) spheres: Σn = Dn ∪Sn−1 Dn

· S3 = (D2 × S1) ∪T 2 (S1 ×D2)

· CROSSes: Sn, RPn, CPn, HPn, CaP2

1



main theorem

DeVito, K– ‘23
Let Mn be a double disk bundle such that π1(M

n) = 0 and

H∗(M
n;Q) ∼= H∗(S

n;Q) .

Then

· n even =⇒ Mn homeo to Sn.

· n = 2m + 1, Mn (m − 1)-connected =⇒ Hm(M
n;Z) finite cyclic.

Theorem optimal because:

· n even: ∃ exotic spheres for n ⩾ 8

· n = 2m + 1: Every Sm-bundle over Sm+1 is a double disk bundle.
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low dimensions

· dim(M) = 2 =⇒ M ∼= S2,T 2,RP2 or Klein bottle

· [Perelman ‘02] dim(M) = 3, π1(M) = 0 =⇒ M ∼= S3

(∃ S3/Γ which are not double disk bundles [Grove ‘02, DeVito ‘23])

· [Ge, Radeschi ‘15] dim(M) = 4, π1(M) = 0

=⇒ M ∼= S4,CP2,S2 × S2 or CP2#± CP2

· [DeVito, Galaz-Garćıa, K– ‘20] dim(M) = 5, π1(M) = 0

=⇒ M ∼= S5,SU(3)/ SO(3),S3 × S2 or S3×̃S2

· [DeVito, Galaz-Garćıa, K– ‘20] dim(M) = 6, π1(M) = 0

· b2(M) = 0 =⇒ M ∼= S6 or S3 × S3

· b3(M) ̸= 0 =⇒ M ∼= S3 × S3
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· [DeVito, Galaz-Garćıa, K– ‘20] dim(M) = 5, π1(M) = 0

=⇒ M ∼= S5,SU(3)/ SO(3),S3 × S2 or S3×̃S2
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motivation

Double disk bundles appear in many settings

· Discovery of exotic 7-spheres [Milnor ‘56]

· Manifolds with all geodesics from a point simply closed of same length

(exotic S10, fake HP2) [Bérard-Bergery ‘77, Tang, Zhang ‘14]

· Isoparametric and Dupin hypersurfaces

· Morse-Bott functions with two critical values

· Manifolds with sec > 0 or sec ⩾ 0 and having large isometry groups

· All known closed manifolds M with π1(M) = 0 and sec > 0

· Codimension-1 singular Riemannian foliations
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motivation

Double disk bundles appear in many settings

· Cohomogeneity-one manifolds:

G ↷ M such that M/G ∼= [−1, 1]

=⇒ M = D(G/K−) ∪G/H D(G/K+) with K±/H = Sℓ±
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· Ric > 0 ⇐⇒ π1 finite [Grove, Ziller ‘02]

· sec ⩾ 0 if ℓ± = 1 [Grove, Ziller ‘00]

· sec > 0 on exotic T 1S4 [Dearricott ‘11, Grove, Verdiani, Ziller ‘11]

· inhomogeneous Einstein metrics on Sn, n ∈ {5, . . . , 9, 10}
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· inhomogeneous nearly Kähler structures on S6 and S3 × S3

[Foscolo, Haskins ‘17]
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motivation

· [Grove ‘02] Double-Soul Conjecture:

Every M with π1(M) = 0 and admitting sec ⩾ 0 is a double disk bundle

· False if π1(M) ̸= 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]
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· Say M 3-dimensional double disk bundle with sec > 0.

=⇒ M admits sec ≡ 1, π1(M) finite, M̃ ∼= S3. [Bonnet–Myers; Hamilton]

But π1(M) finite =⇒ WLOG ℓ+ ∈ {1, 2}.

=⇒ L connected, orientable 2-manifold with Sℓ+ → L → B+

=⇒ L ∈ {S2,T 2}

=⇒ M ∈
{
{S3,RP3,����

RP3#RP3} if L = S2 ,

{lens space, prism manifold} if L = T 2 .

∴ Classification of space forms =⇒ infinitely many S3/Γ not double disk

bundles, e.g. S3/I∗, S3/O∗, S3/T∗
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∃ SES 0 → Zr → G → Γ → 0 .

[Auslander, Kuranishi ‘57] & folklore
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6



motivation

· [Grove ‘02] Double-Soul Conjecture:

Every M with π1(M) = 0 and admitting sec ⩾ 0 is a double disk bundle

· False if π1(M) ̸= 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

· Say Γ finite perfect group (i.e. [Γ, Γ] = Γ).

=⇒ ∃ perfect group G with no finite subgroups such that

∃ SES 0 → Zr → G → Γ → 0 .

[Auslander, Kuranishi ‘57] & folklore

=⇒ ∃ closed, flat manifold M such that

Hol(M) = Γ, π1(M) = G and H1(M) = 0 .

[Bieberbach ‘11, Auslander, Kuranishi ‘57]

6



motivation

· [Grove ‘02] Double-Soul Conjecture:

Every M with π1(M) = 0 and admitting sec ⩾ 0 is a double disk bundle

· False if π1(M) ̸= 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

· Say Γ finite perfect group (i.e. [Γ, Γ] = Γ).

=⇒ ∃ perfect group G with no finite subgroups such that

∃ SES 0 → Zr → G → Γ → 0 .

[Auslander, Kuranishi ‘57] & folklore

=⇒ ∃ closed, flat manifold M such that

Hol(M) = Γ, π1(M) = G and H1(M) = 0 .

[Bieberbach ‘11, Auslander, Kuranishi ‘57]

6



motivation

· [Grove ‘02] Double-Soul Conjecture:

Every M with π1(M) = 0 and admitting sec ⩾ 0 is a double disk bundle

· False if π1(M) ̸= 0, even for sec > 0, sec = 0 [Grove ‘02, DeVito ‘23]

· Let Mk be closed, flat manifold associated to Γ = Ak , k ⩾ 7.

=⇒ dim(Mk ) ⩾ k − 1 (since Ak = Hol(M) ↷ TpMk ).

Suppose Mk is double disk bundle.

Mk flat =⇒ Mk aspherical =⇒ ℓ± = 0.

=⇒ ∃ non-trivial 2-fold cover M̂k → Mk .

=⇒ π1(Mk ) has subgroup of index 2.

=⇒ ∃ surjection π1(Mk ) → Z2.

=⇒ ∃ surjection H1(Mk ) → Z2.

Contradiction since H1(Mk ) = 0!
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· Are compact Lie groups double disk bundles?

· Unknown for E7, E8!

· [Grove] Are there general obstructions to being a double disk bundle?
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main theorem

DeVito, K– ‘23
Let Mn be a double disk bundle such that π1(M

n) = 0 and

H∗(M
n;Q) ∼= H∗(S

n;Q) .

Then

· n even =⇒ Mn homeo to Sn.

· n = 2m + 1, Mn (m − 1)-connected =⇒ Hm(M
n;Z) finite cyclic.
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the homotopy fibration

Associated to inclusion L ↪→ M ∃ homotopy fibration

F → L ↪→ M .

If P = {(x , α) ∈ L×M [0,1] | α(0) = x}, then

L ≃

P → M ; (x , α) 7→ α(1)

is a fibration.

Homotopy fibre: unique homotopy type F of fibres of P → M

Fy = {(x , α) ∈ L×M [0,1] | α(0) = x , α(1) = y} ⊆ P , y ∈ M .

[Grove, Halperin ’87] Studied F in very general setting.
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topology of homotopy fibre

{α, β} = {ℓ±}
Orientability of

Sℓ± -bundles
π1(F ) Q-model for F

1 = α = β

Both Z2 S1 × S1 × ΩS3

One Z⊕ Z2 S1 × S3 × ΩS5

Neither Q8 S3 × S3 × ΩS7

1 = α < β Both
Z

S1 × Sβ × ΩSβ+2

1 = α < β, β odd S1-bundle S1 × S2β+1 × ΩS2β+3

1 < α ⩽ β

Both 0

Sα × Sβ × ΩSα+β+1

1 < α = β Sα × ΩSα+1

2 = α = β

SU(3)/T 2 × ΩS7

Sp(2)/T 2 × ΩS9

G2 /T
2 × ΩS13

4 = α = β

Sp(3)/ Sp(1)3 × ΩS13

A4(4)× ΩS17

A6(4)× ΩS25

8 = α = β F4 / Spin(8)× ΩS25
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topology of homotopy fibre

{α, β} = {ℓ±}
Orientability of

Sℓ± -bundles
H j(F ;Z)

α ̸= β Both
Z, j = 0, or j ∈ {α, β} mod α+ β

Z2, j > 0 and j ≡ 0 mod α+ β

α = β Both
Z, j = 0

Z2, j > 0 and j ≡ 0 mod α

1 = α < β S1-bundle

Z, j = 0, or j ≡ ±1 mod 2β + 2

Z2, j > 0 and j ≡ 0 mod 2β + 2

Z2, j ∈ {β + 1, β + 2} mod 2β + 2

1 = α = β One

Z, j = 0, or j ≡ 1 mod 4

Z2, j ≡ 2 mod 4

Z⊕ Z2, j ≡ 3 mod 4

Z2, j > 0 and j ≡ 0 mod 4

1 = α = β Neither

Z, j = 0

Z2, j > 0 and j ≡ 0 mod 3

Z2
2, j ≡ 2 mod 3

10



rank theorem

[DeVito, Galaz-Garćıa, K– ’20] If F ≃Q N × ΩSk , then ∃ non-trivial

homomorphism
π2s+1(M)⊗Q → π2s(F )⊗Q

where 2s + 1 =

{
k, if k odd

2k − 1, if k even.

· M2m+1 ≃Q S2m+1 =⇒ k = 2m + 1 or k = m + 1 ≡ 0 mod 2
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· Hm(F ;Z) has torsion =⇒ Hm(F ;Z) = Z2, n = 2m + 1 ≡ 1 mod 4
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· Hm(F ;Z) = Z2 =⇒ H∗(F ;Z) torsion free OR n = 7, ℓ± = 1 and

H j(F ;Z) =


Z, j = 0

Z2, j > 0 and j ≡ 0 mod 3

Z2
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spectral sequence for homotopy fibration

Spectral sequence for F → L → M2m+1:
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...
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2 H2(F ) 0 · · · 0 0 ∗ ∗

1 H1(F ) 0 · · · 0 0 0 ∗

0 Z 0 · · · 0 0 0 Hm+1(M)

0 1 · · · m− 2 m− 1 m m+ 1 M2m+1
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spectral sequence for homotopy fibration

Spectral sequence for F → L → M2m+1:
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spectral sequence for homotopy fibration

Spectral sequence for F → L → M2m+1:

F ∗ 0 · · · 0 0

m Hm(F ) 0 · · · 0 0

m− 1 Hm−1(F ) 0 · · · 0 0

...
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...
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spectral sequence

Differential dm+1 : H
m(F ;Z) → Hm+1(M;Z) yields

· Hm(L;Z) ∼= ker(dm+1) ⊆ Hm(F ;Z)

· im(dm+1) ∼= Hm(F ;Z)/Hm(L;Z) ⊆ Hm+1(M;Z)

· Hm+1(M;Z)/ im(dm+1) ↪→ Hm+1(L;Z)

PD & UCT =⇒ Hm(L;Z), Hm+1(L;Z) isomorphic torsion subgroups
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=⇒ Hm+1(M;Z) = im(dm+1) ∼= Hm(F ;Z)/Hm(L;Z)

=⇒ Hm+1(M;Z) generated by ⩽ 2 elements

and rank(Hm(L;Z)) = rank(Hm(F ;Z))
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braid diagram

Assume WLOG Hm(L;Z) ∼= Hm(F ;Z) ∼= Z2

∃ commutative braid of exact sequences associated to M = DB− ∪L DB+

Z Zbm+1(B−)

""

Hm(B+)

&&

%%
Hm(B−)

''

Hm+1(B−)

0

Hm(M)

88

&&

Hm(L)

88

&&

Hm+1(M)

finite

<<

Hm(B−)

88

99

Z2

Hm(B+)

77

Hm+1(B+)

Z Zbm+1(B+)

=⇒ SES 0 → Z → Z → Hm+1(M;Z) → 0
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Thanks for your attention!
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