The Gysin kernel and Bloch's conjecture

Rina Paucar Rojas and Claudia Schoemann IMCA Lima and Laboratoire GAATI Polynésie française

Abstract

Let *S* be a smooth projective surface over \mathbb{C} , and let *C* be a smooth hyperplane section of S. Let $CH_0(S)_{deg=0}$ and $CH_0(C)_{deg=0}$ be the Chow groups of zero cycles of degree 0 of S and C, respectively. We present a result on the kernel of the Gysin homomorphism from $CH_0(C)_{deg=0}$ to $CH_0(S)_{deg=0}$ induced by the closed embedding of C into S and study the connection with Bloch's conjecture and constant cycles curves. We give some facts in positive characteristic.

Content

- 1. Background
- 2. The Gysin kernel
- 3. Connection with Bloch's conjecture
- 4. Constant cycle curves
- 5. Facts in positive characteristic
- 6. Outlook

Background

Let *S* be a smooth projective connected surface over \mathbb{C} and Σ the linear system of a very ample divisor *D* on *S*. Let $d := \dim(\Sigma)$ be the dimension of Σ and

$$\phi_{\Sigma}: S \hookrightarrow \mathbb{P}^d$$

the closed embedding of *S* into \mathbb{P}^d , induced by Σ .

For any closed point $t \in \Sigma \cong \mathbb{P}^{d^*}$, let C_t be the corresponding hyperplane section on S, and let

$$r_t: C_t \hookrightarrow S$$

be the closed embedding of the curve C_t into S. Let Δ be the discriminant locus of Σ , that is,

$$\Delta := \{t \in \Sigma : C_t \text{ is singular}\}.$$

Then

 $U := \Sigma \setminus \Delta = \{t \in \Sigma : C_t \text{ is smooth}\}.$

Let

$$r_{t^*}: H^1(C_t,\mathbb{Z}) \to H^3(S,\mathbb{Z})$$

be the Gysin homomorphism on cohomology groups induced by r_t , whose kernel $H^1(C_t,\mathbb{Z})_{\text{van}}$ is called the vanishing cohomology of C_t (see [3], 3.2.3).

Let $J_t = J(C_t)$ be the Jacobian of the curve C_t and let B_t be the abelian subvariety of the abelian variety J_t corresponding to the Hodge substructure $H^1(C_t,\mathbb{Z})_{\text{van}}$ of $H^1(C_t,\mathbb{Z})$.

Let $CH_0(S)_{deg=0}$ be the Chow group of zero cycles of degree 0 on *S*, and for any closed point $t \in \Sigma$, let $CH_0(C_t)_{deg=0}$ be the Chow group of zero cycles of degree 0 on C_t .

For any closed point $t \in \Sigma$, let

 $r_{t^*}: \operatorname{CH}_0(C_t)_{\deg=0} \to \operatorname{CH}_0(S)_{\deg=0}$

be the Gysin pushforward homomorphism on the Chow groups of degree 0 zero cycles of C_t and S, respectively, induced by r_t , whose kernel

$$G_t = \operatorname{Ker}(r_{t^*})$$

is called the *Gysin kernel* associated with the hyperplane section C_t .

The Gysin kernel

Let $U = \Sigma \setminus \Delta$. For the formulation of the following theorem see also [3], pp. 304-5.

Theorem 1. *a*) For each $t \in U$ there is an abelian variety $A_t \subset B_t$ such that

 $G_t = \operatorname{Ker}(r_{t^*}) = \bigcup translates of A_t$

b) For a very general $t \in U$ (i.e. for every t in a c-open subset U_0 of U) either

1. $A_t = B_t$, and then $G_t = \bigcup_{countable}$ translates of B_t , or

2. $A_t = 0$, and then G_t is countable.

c) If $alb_S : CH_0(S)_{hom} \to Alb(S)$ is not an isomorphism, for a very general t in U, then G_t is countable.

Connection with Bloch's Conjecture

Bloch's conjecture states (see [1])

Conjecture 1. Let S be a smooth projective surface over \mathbb{C} . If $p_g(S) = 0$, then

$$alb_S: CH_0(S)_{deg=0} \to Alb(S)$$

is an isomorphism.

The contrapositive form of item c) in Theorem 1 is

Corollary 1. If G_t is uncountable, for a very general t in U, then alb : $CH_0(S)_{deg=0} \rightarrow Alb(S)$ is an isomorphism.

So if a surface has $p_g = 0$, in order that Bloch's conjecture holds for this surface, i.e. that alb_S is an isomorphism, it is enough to prove that for a very general t in U the Gysin kernel G_t is uncountable.

 $\tilde{C} \rightarrow C$ with the closed embedding $C \hookrightarrow S$. Over \mathbb{C} , i.e. over an algebraically closed uncountable field, constant cycle curves are pointwise constant cycle curves and vice versa (see [5], Proposition 3.7).

Facts in positive characteristic

By [5], Proposition 9.4 we have

Contact Information:

Instituto de Matemáticas y Ciencias Afines Universidad Nacional de Ingeneria Lima, Perú

Phone: +51 964556687

Email: rina.paucar@imca.edu.pe

Constant cycles curves

Definition 1. A curve $C \subset S$ is a pointwise constant cycle curve if and only

 r_{C^*} : $\operatorname{Pic}^0(\tilde{C}) = \operatorname{CH}_0(\tilde{C})_{\operatorname{deg}=0} \to \operatorname{CH}_0(S)$

is the zero map. Here, $r_C: \tilde{C} \to S$ is the composition of the normalization

For surfaces of general type with $p_g = 0$ and constant cycle curves the contrapositive form of item c) in Theorem 1 is

Corollary 2. Let S be a surface of general type with $p_g(S) = 0$. If, for a very general $t \in U$, we have $r_{t*} = 0$, i.e. the curve C_t is a constant cycle curve, then S satisfies Bloch's conjecture, i.e. $CH_0(S)_{deg=0} = 0$.

So for a surface of general type with $p_g = 0$, in order that Bloch's conjecture holds, i.e. $CH_0(S)_{deg=0} = 0$, it is enough to prove that for a very general t in U the curve C_t is a constant cycle curve.

If furthermore the irregularity q(S) = 0 by [5], Proposition 4.1 we have

Proposition 1. Let S be a smooth projective surface with $p_g(S) = q(S) = 0$ over an algebraically closed field k of characteristic 0. Then S satisfies Bloch's conjecture, i.e. $CH_0(S)_0 = 0$, if and only if every curve in S is a constant cycle curve.

Let *S* be a *K*3 surface and $q = p^r$, $p \neq 2$. Over $\overline{\mathbb{F}}_p$ every curve is a pointwise constant cycle curve, i.e. $CH_0(S)_0 = 0$. Conjecturally (Bloch-Beilinson) for S over $\mathbb{F}_p(t)$ equally $CH_0(S)_0 = 0$.

By [5], Proposition 9.2 we have

Proposition 2. Let S be a K3 surface over $\overline{\mathbb{F}}_p$. Then $S \times_{\overline{\mathbb{F}}_p} \overline{\mathbb{F}_p(t)}$ satisfies the Bloch-Beilinson conjecture, i.e. $CH_0(S \times_{\overline{\mathbb{F}}_p} \mathbb{F}_p(t))_0 = 0$, if and only if every curve $C \subset S$ is a constant cycle curve.

Hence S satisfies $CH_0(S \times_{\overline{\mathbb{F}}_p} \overline{\mathbb{F}_p(t)})_0 = 0$, i.e. every curve is a pointwise constant cycle curve if and only if every curve is a constant cycle curve, i.e. if and only if the notions of pointwise constant cycle curve and constant cycle curve are equivalent.

Proposition 3. Let S be a K3 surface over a finite field \mathbb{F}_q for which Kimura-O'Sullivan finite-dimensionality holds, e.g. S is a Kummer surface. Then every curve in $S_{\overline{F}_a}$ is a constant cycle curve.

Hence pointwise constant cycle curves are constant cycle curves and vice versa and every curve in S is such a curve. This also holds for unirational and all supersingular K3 surfaces.

Further by ([5], Proposition 9.6) we have

Proposition 4. Every closed point $x \in S$ in a K3 surface over $\overline{\mathbb{F}}_p$ is contained in a constant cycle curve $x \in C \subset S$.

Hence, in addition to being contained in a pointwise constant cycle curve, every closed point $x \in S$ is also contained in a constant cycle curve.

In [2], Bogomolov and Tschinkel proved the existence of a rational curve through every point and explicitly geometrically constructed Jacobian Kummer surfaces.

Now let *S* be a *K*3 surface over \mathbb{C} . We have the

Corollary 3. Let S be an algebraic K3 surface over \mathbb{C} with regular involution ι acting without fixed points on S, so that the quotient $V = S/\iota$ is a smooth Enriques surface. Then the motive M(S) is of abelian type, hence finite dimensional.

Outlook

Apply item c) in the Theorem 1 in order to verify Bloch's conjecture for particular cases of surfaces with $p_g = q = 0$.

surfaces.

References

- (1975), pp. 405-428.
- 825-835.
- Press, 2003.

- 671.

Laboratoire GAATI

Université de la Polynésie française BP 6570 - 98702 Faa'a, Polynésie française

Phone: +689 40 803 832 Mobile: +689 87238787 or +49 1781664421 Email: claudia.schoemann@upf.pf

Consider the question by the help of constant cycle curves.

Extend the argument to fields of positive characteristic and other types of

[1] Spencer Bloch K₂ of Artinian Q-algebras, with application to algebraic cycles, Comm. in Algebra 3.5 [2] F. Bogomolov, Y. Tschinkel Rational curves and points on K3 surfaces, Amer. J. Math. 127 (2005),

[3] Claire Voisin. Hodge Theory and Complex Algebraic Geometry II, Volume 77. Cambridge University

[4] Claire Voisin. Hodge Theory and Complex Algebraic Geometry I, Volume 76. Cambridge University

[5] Daniel Huybrechts. Curves and cycles on K3 surfaces, Algebraic Geometry 1 (2014), no. 1, 69-106. [6] A A Roitman. Rational equivalence of zero-dimensional cycles, Mat. Sb. (N.S.) 89(131) (1972) 569-585,