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Abstract
Let S be a smooth projective surface over C, and let C be a smooth hyperplane

section of S. Let CH0(S)deg=0 and CH0(C)deg=0 be the Chow groups of zero cycles of
degree 0 of S and C, respectively. We present a result on the kernel of the Gysin ho-
momorphism from CH0(C)deg=0 to CH0(S)deg=0 induced by the closed embedding
of C into S and study the connection with Bloch’s conjecture and constant cycles
curves. We give some facts in positive characteristic.
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Background
Let S be a smooth projective connected surface over C and Σ the linear sys-
tem of a very ample divisor D on S. Let d := dim(Σ) be the dimension of
Σ and

φΣ : S ↪→ Pd

the closed embedding of S into Pd, induced by Σ.
For any closed point t ∈ Σ ∼= Pd∗, let Ct be the corresponding hyperplane

section on S, and let
rt : Ct ↪→ S

be the closed embedding of the curve Ct into S.
Let ∆ be the discriminant locus of Σ, that is,

∆ := {t ∈ Σ : Ct is singular}.

Then
U := Σ\∆ = {t ∈ Σ : Ct is smooth}.

Let
rt∗ : H1(Ct,Z)→ H3(S,Z)

be the Gysin homomorphism on cohomology groups induced by rt, whose
kernel H1(Ct,Z)van is called the vanishing cohomology of Ct (see [3],
3.2.3).

Let Jt = J(Ct) be the Jacobian of the curve Ct and let Bt be the abelian
subvariety of the abelian variety Jt corresponding to the Hodge substruc-
ture H1(Ct,Z)van of H1(Ct,Z).

Let CH0(S)deg=0 be the Chow group of zero cycles of degree 0 on S, and
for any closed point t ∈ Σ, let CH0(Ct)deg=0 be the Chow group of zero
cycles of degree 0 on Ct.

For any closed point t ∈ Σ, let

rt∗ : CH0(Ct)deg=0→ CH0(S)deg=0

be the Gysin pushforward homomorphism on the Chow groups of degree 0
zero cycles of Ct and S, respectively, induced by rt, whose kernel

Gt = Ker(rt∗)

is called the Gysin kernel associated with the hyperplane section Ct.

The Gysin kernel
Let U = Σ \∆. For the formulation of the following theorem see also [3],
pp. 304-5.
Theorem 1. a) For each t ∈U there is an abelian variety At ⊂ Bt such that

Gt = Ker(rt∗) =
⋃

countable

translates of At

b) For a very general t ∈ U (i.e. for every t in a c-open subset U0 of U)
either

1. At = Bt, and then Gt =
⋃

countable translates of Bt, or
2. At = 0, and then Gt is countable.

c) If albS : CH0(S)hom→ Alb(S) is not an isomorphism, for a very general
t in U, then Gt is countable.

Connection with Bloch’s Conjecture
Bloch’s conjecture states (see [1])
Conjecture 1. Let S be a smooth projective surface over C. If pg(S) = 0,
then

albS : CH0(S)deg=0→ Alb(S)

is an isomorphism.
The contrapositive form of item c) in Theorem 1 is

Corollary 1. If Gt is uncountable, for a very general t in U, then alb :
CH0(S)deg=0→ Alb(S) is an isomorphism.

So if a surface has pg = 0, in order that Bloch’s conjecture holds for this
surface, i.e. that albS is an isomorphism, it is enough to prove that for a
very general t in U the Gysin kernel Gt is uncountable.

Constant cycles curves
Definition 1. A curve C ⊂ S is a pointwise constant cycle curve if and only
if

rC∗ : Pic0(C̃) = CH0(C̃)deg=0→ CH0(S)

is the zero map. Here, rC : C̃→ S is the composition of the normalization
C̃→C with the closed embedding C ↪→ S.

Over C, i.e. over an algebraically closed uncountable field, constant cycle
curves are pointwise constant cycle curves and vice versa (see [5], Propo-
sition 3.7).

For surfaces of general type with pg = 0 and constant cycle curves the
contrapositive form of item c) in Theorem 1 is

Corollary 2. Let S be a surface of general type with pg(S) = 0. If, for a
very general t ∈U, we have rt∗ = 0, i.e. the curve Ct is a constant cycle
curve, then S satisfies Bloch’s conjecture, i.e. CH0(S)deg=0 = 0.

So for a surface of general type with pg = 0, in order that Bloch’s con-
jecture holds, i.e. CH0(S)deg=0 = 0, it is enough to prove that for a very
general t in U the curve Ct is a constant cycle curve.

If furthermore the irregularity q(S) = 0 by [5], Proposition 4.1 we have

Proposition 1. Let S be a smooth projective surface with pg(S) = q(S) = 0
over an algebraically closed field k of characteristic 0. Then S satisfies
Bloch’s conjecture, i.e. CH0(S)0 = 0, if and only if every curve in S is a
constant cycle curve.

Facts in positive characteristic
Let S be a K3 surface and q= pr, p 6= 2. Over Fp every curve is a pointwise
constant cycle curve, i.e. CH0(S)0 = 0. Conjecturally (Bloch-Beilinson) for
S over Fp(t) equally CH0(S)0 = 0.

By [5], Proposition 9.2 we have

Proposition 2. Let S be a K3 surface over Fp. Then S×Fp
Fp(t) satisfies

the Bloch-Beilinson conjecture , i.e. CH0(S×Fp
Fp(t))0 = 0, if and only if

every curve C ⊂ S is a constant cycle curve.

Hence S satisfies CH0(S×Fp
Fp(t))0 = 0, i.e. every curve is a pointwise

constant cycle curve if and only if every curve is a constant cycle curve, i.e.
if and only if the notions of pointwise constant cycle curve and constant
cycle curve are equivalent.

By [5], Proposition 9.4 we have

Proposition 3. Let S be a K3 surface over a finite field Fq for which Kimura-
O’Sullivan finite-dimensionality holds, e.g. S is a Kummer surface. Then
every curve in SFq

is a constant cycle curve.

Hence pointwise constant cycle curves are constant cycle curves and vice
versa and every curve in S is such a curve. This also holds for unirational
and all supersingular K3 surfaces.

Further by ([5], Proposition 9.6) we have

Proposition 4. Every closed point x ∈ S in a K3 surface over Fp is con-
tained in a constant cycle curve x ∈C ⊂ S.

Hence, in addition to being contained in a pointwise constant cycle curve,
every closed point x ∈ S is also contained in a constant cycle curve.

In [2], Bogomolov and Tschinkel proved the existence of a rational curve
through every point and explicitely geometrically constructed Jacobian
Kummer surfaces.

Now let S be a K3 surface over C. We have the

Corollary 3. Let S be an algebraic K3 surface over C with regular invo-
lution ι acting without fixed points on S, so that the quotient V = S/ι is a
smooth Enriques surface. Then the motive M(S) is of abelian type, hence
finite dimensional.

Outlook
Apply item c) in the Theorem 1 in order to verify Bloch’s conjecture for
particular cases of surfaces with pg = q = 0.

Consider the question by the help of constant cycle curves.

Extend the argument to fields of positive characteristic and other types of
surfaces.
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