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What is this lecture about?

Persistence modules and barcodes: convenient
algebraic/combinatorial tool for book-keeping information on
oscillation and topology of (sub)level sets of functions on
manifolds.

Quantitative flavor - stability: Close functions have close
barcodes

Main idea: Apply persistence to oscillation and nodal (zero) sets
of (linear combinations of) eigenfunctions of Laplace-Beltrami
operator on manifolds - get coarse analogues of Courant and
Bézout theorems - classical themes in spectral geometry.

BP3S2, 2022

Another application: Transcendental Bézout problem in several
complex variables. BP2S2, 2023

Interplay: Topology and Analysis/Geometry of smooth functions.
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Barcodes

Edelsbrunner, Harer, Carlsson,... Last decade in the context of
topological data analysis.

Barcode B = {/;, m;}-finite collection of intervals /; with
multiplicities mj, I = (aj, bj], aj < bj < 4o0.

Bottleneck distance between barcodes: B,C are J-matched ,
0 > 0 if after erasing some intervals in B and C of length < 2§ we
can match the rest in 1-to-1 manner with error at most § at each
end-point.

dpot(B,C) = infd .
Figure: Matching
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Persistence modules

F — a field.

Persistence module: a pair (V, ), where V4, t € R are F-vector
spaces, dim V; < oo, Vs =0 for all s <« 0.

st - Vs — Vi, s < t linear maps: Vs < t < r

Vi
> X
V,— ™ -V,
Regularity: For all but finite number of jump points t € R, there

exists a neighborhood U of t such that g, is an isomorphism for
all s,r € U. Extra assumption (" semicontinuity”) at jump points.
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Structure theorem

Interval module (F(a, b, k), a€ R, b € RU +oo:
F(a, by = F for t € (a, b] and F(a, b]; = 0 otherwise;
kst = 1 for s, t € (a, b] and ks = 0 otherwise.

Figure: Interval module
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Structure theorem: For every persistence module (V/, 7) there
exists unique barcode B(V') = {(/;, m;)} such that V = @F(/;)™.
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Persistence in Morse theory

M-compact manifold, f : M — R-Morse function.

Persistence module V;(f) := H.({f < t})

H.-homology with coefficients in a field.

Persistence morphisms are induced by the inclusions of sublevels
{f<s}—={f<t} s<t.

B(f) - barcode of V(f)

Stability Theorem (Cohen-Steiner,Edelsbrunner,Harer, 2007)
[|f|| :== max |f|-uniform norm
(C°(X), || - ||) — (Barcodes, dpot), f + B(f) is 1-Lipshitz.

“Long” bars: Nj(f) - number of bars in B(f) of length > 4.
Cohen-Steiner-Edelsbrunner-Mileyko (2010)
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Example: 2-sphere

Persistence module V;(f) := H.({f < t}, F), H,-homology.

max

min

Figure: The height function on the (topological) sphere and the

corresponding barcode.
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Long bars vs. Sobolev norms

Sobolev norm: ||f||, k,p > 1 - Sobolev norm of f,
Lp-norm of the k-th derivative, k > n/p

Theorem[BP3S5?], 2022
N5(F) < CLo "/ ||F|/f + Co, W6 > 0

Earlier results:
p = oo (uniform derivative bounds) Kronrod, Vitushkin (50-ies),
Yomdin (1985)

k =1, p = oo Cohen-Steiner-Edelsbrunner-Mileyko (uses Ny)

n=2k=2p=2P.-M.Sodin (2007) (geometric trick) +
|.P.- P.-Stojisavljevic (2017) (uses Nj)

Generalization: oscillation of sections of vector bundles (cf. a
problem of V.Arnold, 2003)
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Step 1. Approximate by polynomials on small cubes, use Milnor's
bound (1964) f(critical points) < degd™ , and Morse theory. Cf.

Yomdin, innovation: multiscale/stopping time .
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Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (a la Yomdin), albeit
for persistence modules (non-existent in 1985).

Subadditivity Theorem.[BP352], 2022 Let U — V — W be an
exact sequence of persistence modules. Then
Nas(V) < Ns(U) + Ns(W).

Uses algebraic ideas (extension of persistence modules) inspired by
Skraba-Turner (2020)
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Coarse nodal count

M - compact n-dim Riemannian mfd, f : M — R - smooth fn
Z ={f =0} - nodal set ; components of M\ Z - nodal domains

Coarse nodal count:
m,(f,d) =dimIm (H,({|f| > 0}) = H,(M\ Z)), § > 0.

Example: mq(f,)- number of nodal domains U; with
maxy, |f| > 0 - deep nodal domains (P.-M.Sodin, 2007).

Theorem[BP3S5?], 2022 m,(f,5) < 16~ "/kaHn/k

where Ci, G, do not depend on f, 6.

+ G, V6 >0,
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Spectral geometry

Laplace-Beltrami operator: M"- compact Riemannian manifold
Af = —div(grad f), f € C>*(M)

If OM # (), assume Dirichlet boundary conditions f|gp = 0.
Discrete positive spectrum: Afy, = Afy.

Notation: mg(f) = mo(f,0) - number of nodal domains.

Figure: credit: E.J.Heller, S.Zelditch Figure: Chladni figures

Courant thm (1923)4 Weyl law (1911): my(f,) < C(A+1)"/2.
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Coarse Courant for linear combinations

F - span of eigenfunctions with eigenvalues < A\

Theorem [BP3S52], 2022 For any § > 0, k > n/2 and any f € F)
with ||f]|2 =1,

mr(f7 5) < 6(n:/1k ()‘ + l)g + C2

Sharpness: Sharp in A

Historical remarks on Courant for linear combinations:
Holds in dimension 1 (Sturm, 1836).

In higher dim known as Courant-Herrmann conjecture (1932)
(flawed footnote in Courant-Hilbert book).

Counterexamples: Arnold, Viro (1970ies),
Buhovsky-Logunov-Sodin (2020)- infinitely many nodal domains.

Extends: to positive elliptic operators on vector bundles.

Application: By stability, yields constraints on barcodes of
functions well approximated by F).
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Bézout theorem

Bézout theorem, 1779 d generic hypersurfaces in CP9 have a
number of intersection points given by the product of their degrees.
Can we extend this statement in the following directions?

(i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on
Riemannian manifolds (inspired by Arnold, 2003 combined
with Donnelly-Fefferman, 1998);

(i) Intersection of affine submanifolds - the transcendental
Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.

NO! Evidence ( a la Buhovsky-M.Sodin-Logunov) for (i), famous
Cornalba-Shiffman counterexample for (ii).

But YES... if one cuts small oscillations, i.e. removes
intersections which do not persist after a mild perturbation.

Tool: persistence modules and barcodes
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Eigenfunctions vs. polynomials

Laplace-Beltrami operator: M"- closed Riemannian manifold
F) - span of eigenfunctions of A with eigenvalues < A

Donnelly-Fefferman philosophy (1988) : f € F), A > 1,
“similar’ to polynomial of deg = v/A
Zr = {f =0} - nodal set

Example: On sphere S” with round metric,

let f1,...,f, - be generic eigenfunctions with eigenvalue
A=d(d+n-1)

fi - homogeneous polynomial of degree d on R"*!

Then |N; Z¢| < const(n) - \"/2, agrees with Bézout thm.

Random setting: Expectation ~ A"/2 (Gichev, 2009). Similar
bound on certain homogeneous Riemannian manifolds
(Akhiezer-Kazarnovskii, 2017).
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Coarse Bezout

Persistent intersection count: Z; := {f = 0}
zo(f,0) = dimIm(Ho(Zr) — Ho({|f| < 6}))

Let fi,....0h e Fa |fille=1j=1,...n,
f=(f2+ Y2 Zr =n;Z.

n=2 2 NZs = {f =0} ={1,2,3}.
zp = 2 as points 2,3 land in the same component of {f < ¢}.

Theorem [BP3S?], 2022 Let k > n/2 be an integer, § > 0.

C n
2(f,0) < S+ 1DE + G,

where C;, G, depend on n, k and metric.
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Transcendental Bézout problem

With Lev Buhovsky, losif Polterovich, Egor Shelukhin and Vukagin
Stojisavljevi¢

Transcendental Bézout problem: count of zeros of entire maps
C"—C"

Starting point: Serre’s G.A.G.A.: complex projective analytic

geometry reduces to algebraic geometry.

Example - Chow’s thm.: Every closed complex submanifold of
CP" is algebraic.

Fails in affine setting:
f:C—C,f(z)=e*—1=(e‘cosy — 1)+ ie*siny, z=x+ 1y .
Zs = {27ki, k € Z}.

Not biholomorphically equivalent to any algebraic (and hence
finite) proper subset of C.

Resolution: replace the notion of the degree of a polynomial.
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Maximum modulus

B,-closed ball of radius r, u(f,r) = max,cp, |f(z)|

Degree-like features:
o If 981 4 1 1 Wr > 1 then fis a polynomial of

log r
deg < k. (generalization of Liouville's theorem).

o Let ((f,r) be the number of zeros of an entire function
f:C — Cinside a ball B, f(0) # 0. Then, for a > 1,

C(f,r) < Clogu(f,ar) ¥Yr >0, where C- positive constant
depending on a and f(0).

In Example above ¢ and log iv grow linearly in r.
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Cornalba-Shiffman Example (1972)

n > 2. There exists entire map f with log u(f, r) < Cre for every
e > 0 with {(f, r) growing arbitrarily fast.

Griffiths: “This is the first instance known to this author when the
analogue of a general result in algebraic geometry fails to hold in
analytic geometry.”
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Coarse zero count

f:C" — C"-analytic, §,r >0
Coarse zero count:
C(f,r,0) =dimIm(Ho({f =0} N B,) = Ho({|f| <} N B,)

This is the number of connected components of the set
f~1(Bs) N B, which contain zeros of f.

®s
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Coarse transcendental Bézout

C(f, r,8) = dim Im(Ho({f = 0} N B,) — Ho({|f| < 8} N B,)
Theorem. (BP2S2,2023) For a > 1, § € (0, &£:20))

C(f,r,0) < C<Og<@>>2n 1

where C depends on a and n, but not on r or §.

Example: f: C" — C", f(z1,...,z5) = (e —1,...,e" —1).
Then log u(f,r) =~ r, ((f,r) = r", r — .

CS Example, n = 2: log u(f,r) ~ (log r)?, C(f, r,0) =~ logr.
Our results state ((f,r,d) < (Iog <“(f ‘"))) :
Thus our estimate on log-scale (for log () is sharp .

Question: |s the power 2n — 1 at log in Theorem sharp?
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The End

THANK YOU!
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