Courant, Bézout, and topological persistence

Leonid Polterovich, Tel Aviv

Schloss Rauischholzhausen, 2023

with Lev Buhovsky, Jordan Payette, Iosif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

What is this lecture about?

Persistence modules and barcodes: convenient algebraic/combinatorial tool for book-keeping information on oscillation and topology of (sub)level sets of functions on manifolds.

Quantitative flavor - stability: Close functions have close barcodes

Main idea: Apply persistence to oscillation and nodal (zero) sets of (linear combinations of) eigenfunctions of Laplace-Beltrami operator on manifolds - get coarse analogues of Courant and Bézout theorems - classical themes in spectral geometry.

BP³S², 2022

Another application: Transcendental Bézout problem in several complex variables. BP²S², 2023

Interplay: Topology and Analysis/Geometry of smooth functions.

Barcodes

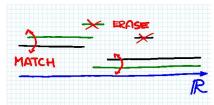
Edelsbrunner, Harer, Carlsson,... Last decade in the context of topological data analysis.

Barcode $\mathcal{B} = \{I_j, m_j\}$ -finite collection of intervals I_j with multiplicities m_j , $I_j = (a_j, b_j]$, $a_j < b_j \le +\infty$.

Bottleneck distance between barcodes: \mathcal{B},\mathcal{C} are $\frac{\delta\text{-matched}}{\delta}$, $\delta>0$ if after erasing some intervals in \mathcal{B} and \mathcal{C} of length $<2\delta$ we can match the rest in 1-to-1 manner with error at most δ at each end-point.

$$d_{bot}(\mathcal{B},\mathcal{C}) = \inf \delta$$
.

Figure: Matching

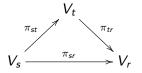


Persistence modules

 \mathcal{F} – a field.

Persistence module: a pair (V, π) , where V_t , $t \in \mathbb{R}$ are \mathcal{F} -vector spaces, dim $V_t < \infty$, $V_s = 0$ for all $s \ll 0$.

 $\pi_{st}: V_s \rightarrow V_t$, s < t linear maps: $\forall s < t < r$

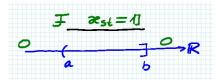


Regularity: For all but finite number of jump points $t \in \mathbb{R}$, there exists a neighborhood U of t such that π_{sr} is an isomorphism for all $s, r \in U$. Extra assumption ("semicontinuity") at jump points.

Structure theorem

Interval module $(\mathcal{F}(a, b], \kappa)$, $a \in \mathbb{R}$, $b \in \mathbb{R} \cup +\infty$: $\mathcal{F}(a, b]_t = \mathcal{F}$ for $t \in (a, b]$ and $\mathcal{F}(a, b]_t = 0$ otherwise; $\kappa_{st} = 1$ for $s, t \in (a, b]$ and $\kappa_{st} = 0$ otherwise.

Figure: Interval module



Structure theorem: For every persistence module (V, π) there exists unique barcode $\mathcal{B}(V) = \{(I_j, m_j)\}$ such that $V = \oplus \mathcal{F}(I_j)^{m_j}$.

Persistence in Morse theory

M-compact manifold, $f: M \to \mathbb{R}$ -Morse function.

Persistence module $V_t(f) := H_*(\{f < t\})$

 H_* -homology with coefficients in a field.

Persistence morphisms are induced by the inclusions of sublevels

$$\{f < s\} \hookrightarrow \{f < t\}, \ s < t.$$

 $\mathcal{B}(f)$ - barcode of V(f)

Stability Theorem (Cohen-Steiner, Edelsbrunner, Harer, 2007)

 $||f|| := \max |f|$ -uniform norm

$$(C^{\infty}(X), ||\cdot||) \rightarrow (\mathsf{Barcodes}, d_{bot}), \ \ f \mapsto \mathcal{B}(f) \ \mathsf{is} \ 1\text{-Lipshitz}.$$

"Long" bars: $N_{\delta}(f)$ - number of bars in $\mathcal{B}(f)$ of length $> \delta$.

Cohen-Steiner-Edelsbrunner-Mileyko (2010)

Example: 2-sphere

Persistence module $V_t(f) := H_*(\{f < t\}, \mathcal{F})$, H_* -homology.

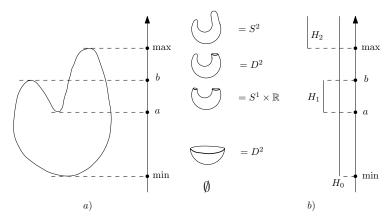


Figure: The height function on the (topological) sphere and the corresponding barcode.

Long bars vs. Sobolev norms

Sobolev norm: $||f||_{k,p}$, $k, p \ge 1$ - Sobolev norm of f, L_p -norm of the k-th derivative, k > n/p

Theorem[
$$BP^3S^2$$
], 2022 $N_{\delta}(f) \leq C_1 \delta^{-n/k} ||f||_{k,p}^{n/k} + C_2, \ \forall \delta > 0$

Earlier results:

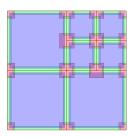
 $p=\infty$ (uniform derivative bounds) Kronrod, Vitushkin (50-ies), Yomdin (1985)

$$k=1, p=\infty$$
 Cohen-Steiner-Edelsbrunner-Mileyko (uses N_{δ})
 $n=2, k=2, p=2$ P.-M.Sodin (2007) (geometric trick) +
I.P.- P.-Stojisavljevic (2017) (uses N_{δ})

Generalization: oscillation of sections of vector bundles (cf. a problem of V.Arnold, 2003)

Ideas of the proof

Step 1. Approximate by polynomials on small cubes, use Milnor's bound (1964) \sharp (critical points) \leq deg^{dim}, and Morse theory. Cf. Yomdin, innovation: multiscale/stopping time.



Subadditivity theorem

Step 2. Glue the bounds by Mayer-Vietoris (à la Yomdin), albeit for persistence modules (non-existent in 1985).

Subadditivity Theorem.[BP^3S^2], 2022 Let $U \to V \to W$ be an exact sequence of persistence modules. Then $N_{2\delta}(V) \leq N_{\delta}(U) + N_{\delta}(W)$.

Uses algebraic ideas (extension of persistence modules) inspired by Skraba-Turner (2020)

Coarse nodal count

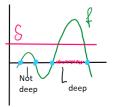
M - compact n-dim Riemannian mfd, $f:M o\mathbb{R}$ - smooth fn

 $Z = \{f = 0\}$ - nodal set; components of $M \setminus Z$ - nodal domains

Coarse nodal count:

$$m_r(f,\delta) = \dim \operatorname{Im} (H_r(\{|f| > \delta\}) \to H_r(M \setminus Z))$$
, $\delta > 0$.

Example: $m_0(f, \delta)$ - number of nodal domains U_j with $\max_{U_j} |f| > \delta$ - deep nodal domains (P.-M.Sodin, 2007).



Theorem[BP^3S^2], 2022 $m_r(f,\delta) \leq C_1\delta^{-n/k}||f||_{k,p}^{n/k} + C_2$, $\forall \delta > 0$, where C_1 , C_2 do not depend on f,δ .

Spectral geometry

Laplace-Beltrami operator: M^n - compact Riemannian manifold

 $\Delta f = -\operatorname{div}(\operatorname{grad} f), f \in C^{\infty}(M)$

If $\partial M \neq \emptyset$, assume Dirichlet boundary conditions $f|_{\partial M} = 0$.

Discrete positive spectrum: $\Delta f_{\lambda} = \lambda f_{\lambda}$.

Notation: $m_0(f) = m_0(f, 0)$ - number of nodal domains.

Figure: credit: E.J.Heller, S.Zelditch

Figure: Chladni figures

Courant thm (1923)+ Weyl law (1911): $m_0(f_{\lambda}) \leq C(\lambda+1)^{n/2}$.

Coarse Courant for linear combinations

 \mathcal{F}_{λ} - span of eigenfunctions with eigenvalues $\leq \lambda$

Theorem $[BP^3S^2]$, 2022 For any $\delta > 0$, k > n/2 and any $f \in \mathcal{F}_{\lambda}$ with $||f||_{L^2} = 1$, $m_r(f, \delta) \leq \frac{C_1}{sn/k} (\lambda + 1)^{\frac{n}{2}} + C_2$

Sharpness: Sharp in λ

Historical remarks on Courant for linear combinations:

Holds in dimension 1 (Sturm, 1836).

In higher dim known as Courant-Herrmann conjecture (1932) (flawed footnote in Courant-Hilbert book).

Counterexamples: Arnold, Viro (1970ies),

Buhovsky-Logunov-Sodin (2020)- infinitely many nodal domains.

Extends: to positive elliptic operators on vector bundles.

Application: By stability, yields constraints on barcodes of functions well approximated by \mathcal{F}_{λ} .

Bézout theorem

Bézout theorem, 1779 d generic hypersurfaces in $\mathbb{C}P^d$ have a number of intersection points given by the product of their degrees. Can we extend this statement in the following directions?

- (i) Intersection of zero sets of Laplace-Beltrami eigenfunctions on Riemannian manifolds (inspired by Arnold, 2003 combined with Donnelly-Fefferman, 1998);
- (ii) Intersection of affine submanifolds the transcendental Bézout problem, Griffiths, Cornalba-Shiffman, 1970-es.

NO! Evidence (à la Buhovsky-M.Sodin-Logunov) for (i), famous Cornalba-Shiffman counterexample for (ii).

But YES... if one cuts small oscillations, i.e. removes intersections which do not persist after a mild perturbation.

Tool: persistence modules and barcodes

Eigenfunctions vs. polynomials

Laplace-Beltrami operator: M^n - closed Riemannian manifold \mathcal{F}_{λ} - span of eigenfunctions of Δ with eigenvalues $\leq \lambda$

Donnelly-Fefferman philosophy (1988) : $f \in \mathcal{F}_{\lambda}$, $\lambda \gg 1$, "similar" to polynomial of $\deg = \sqrt{\lambda}$ $Z_f = \{f = 0\}$ - nodal set

Example: On sphere S^n with round metric, let f_1, \ldots, f_n - be generic eigenfunctions with eigenvalue $\lambda = d(d+n-1)$ f_i - homogeneous polynomial of degree d on \mathbb{R}^{n+1}

Then $|\bigcap_i Z_{f_i}| \leq \operatorname{const}(n) \cdot \lambda^{n/2}$, agrees with Bézout thm.

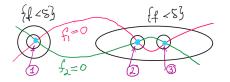
Random setting: Expectation $\approx \lambda^{n/2}$ (Gichev, 2009). Similar bound on certain homogeneous Riemannian manifolds (Akhiezer-Kazarnovskii, 2017).

Coarse Bezout

Persistent intersection count: $Z_f := \{f = 0\}$

$$z_0(f,\delta) = \dim \operatorname{Im}(H_0(Z_f) \to H_0(\{|f| < \delta\}))$$

Let
$$f_1, \ldots, f_n \in \mathcal{F}_{\lambda}$$
, $||f_j||_{L^2} = 1$, $j = 1, \ldots n$, $f = (f_1^2 + \cdots + f_n^2)^{1/2}$, $Z_f = \cap_i Z_{f_i}$.



$$n = 2$$
, $Z_{f_1} \cap Z_{f_2} = \{f = 0\} = \{1, 2, 3\}$.
 $z_0 = 2$ as points 2, 3 land in the same component of $\{f < \delta\}$.

Theorem [BP^3S^2], 2022 Let k > n/2 be an integer, $\delta > 0$.

$$z_0(f,\delta) \leq \frac{C_1}{\delta^{n/k}} (\lambda+1)^{\frac{n}{2}} + C_2,$$

where C_1 , C_2 depend on n, k and metric.

Transcendental Bézout problem

With Lev Buhovsky, Iosif Polterovich, Egor Shelukhin and Vukašin Stojisavljević

Transcendental Bézout problem: count of zeros of entire maps $\mathbb{C}^n \to \mathbb{C}^n$.

Starting point: Serre's G.A.G.A.: complex *projective* analytic geometry reduces to algebraic geometry.

Example - Chow's thm.: Every closed complex submanifold of $\mathbb{C}P^n$ is algebraic.

Fails in affine setting:

$$f: \mathbb{C} \to \mathbb{C}, \ f(z) = e^z - 1 = (e^x \cos y - 1) + ie^x \sin y, \ z = x + iy.$$
 $Z_f = \{2\pi ki, \ k \in \mathbb{Z}\}.$

Not biholomorphically equivalent to any algebraic (and hence finite) proper subset of \mathbb{C} .

Resolution: replace the notion of the degree of a polynomial.

Maximum modulus

 B_r -closed ball of radius r, $\mu(f, r) = \max_{z \in B_r} |f(z)|$

Degree-like features:

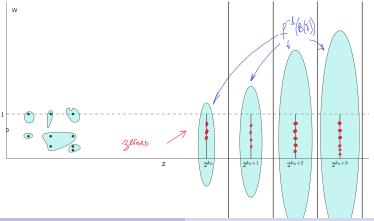
- If $\frac{\log \mu(f,r)}{\log r} < k+1$, $\forall r \gg 1$, then f is a polynomial of $\deg \leq k$. (generalization of Liouville's theorem).
- Let $\zeta(f,r)$ be the number of zeros of an entire function $f: \mathbb{C} \to \mathbb{C}$ inside a ball B_r , $f(0) \neq 0$. Then, for a > 1, $\zeta(f,r) \leq C \log \mu(f,ar) \ \forall r > 0$, where C- positive constant depending on a and f(0).

In Example above ζ and $\log \mu$ grow linearly in r.

Cornalba-Shiffman Example (1972)

 $n \geq 2$. There exists entire map f with $\log \mu(f, r) \leq Cr^{\epsilon}$ for every $\epsilon > 0$ with $\zeta(f, r)$ growing arbitrarily fast.

Griffiths: "This is the first instance known to this author when the analogue of a general result in algebraic geometry fails to hold in analytic geometry."



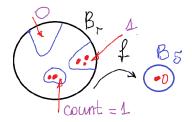
Coarse zero count

 $f: \mathbb{C}^n \to \mathbb{C}^n$ -analytic, $\delta, r > 0$

Coarse zero count:

$$\zeta(f,r,\delta) = \dim \operatorname{Im}(H_0(\{f=0\} \cap B_r) \to H_0(\{|f| < \delta\} \cap B_r))$$

This is the number of connected components of the set $f^{-1}(B_{\delta}) \cap B_r$ which contain zeros of f.



Coarse transcendental Bézout

$$\zeta(f,r,\delta) = \dim \operatorname{Im}(H_0(\{f=0\} \cap B_r) \to H_0(\{|f| < \delta\} \cap B_r))$$

Theorem. (
$$BP^2S^2$$
, 2023) For $a > 1$, $\delta \in (0, \frac{\mu(f, ar)}{e})$

$$\zeta(f, r, \delta) \le C \left(\log \left(\frac{\mu(f, ar)}{\delta} \right) \right)^{2n-1}$$
,

where C depends on a and n, but not on r or δ .

Example: $f: \mathbb{C}^n \to C^n$, $f(z_1, ..., z_n) = (e^{z_1} - 1, ..., e^{z_n} - 1)$.

Then $\log \mu(f,r) \approx r$, $\zeta(f,r) \approx r^n$, $r \to \infty$.

CS Example, n = 2: $\log \mu(f, r) \approx (\log r)^2$, $\zeta(f, r, \delta) \approx \log r$.

Our results state $\zeta(f, r, \delta) \lesssim \left(\log\left(\frac{\mu(f, ar)}{\delta}\right)\right)^3$.

Thus our estimate on log-scale (for log ζ) is sharp.

Question: Is the power 2n - 1 at log in Theorem sharp?

THANK YOU!