Topological properties of (tall) monotone complexity one spaces

Silvia Sabatini University of Cologne

23.08.2023

Based on:

- "On topological properties of positive complexity one spaces",
 S. and Sepe, Transformation Groups 9 (2020).
- "Tall and monotone complexity one spaces of dimension six", Charton, PhD Thesis, Cologne 2021.
- "Compact monotone tall complexity one T-spaces" Charton, S. and Sepe, arXiv:2307.04198 [math.SG].

 (M,ω) : compact, connected symplectic manifold of dimension 2n ω symplectic \leadsto non-degenerate, closed 2-form on M

```
(M,\omega): compact, connected symplectic manifold of dimension 2n \omega symplectic \leadsto non-degenerate, closed 2-form on M
```

J: almost complex structure compatible with ω $(\omega(\cdot, J\cdot)$ is a Riemannian metric)

```
(M,\omega): compact, connected symplectic manifold of dimension 2n \omega symplectic \sim non-degenerate, closed 2-form on M J: almost complex structure compatible with \omega (\omega(\cdot,J\cdot) is a Riemannian metric) c_1: first Chern class of (TM,J) \rightarrow (TM,\omega)
```

 (M,ω) : compact, connected symplectic manifold of dimension 2n

 ω symplectic \leadsto non-degenerate, closed 2-form on M

J: almost complex structure compatible with ω ($\omega(\cdot, J \cdot)$ is a Riemannian metric)

 c_1 : first Chern class of $(TM, J) \rightarrow (TM, \omega)$

Definition

A symplectic manifold (M, ω) is called **(positive) monotone** if

$$c_1 = \lambda[\omega]$$
 (with $\lambda > 0$)

 (M,ω) : compact, connected symplectic manifold of dimension 2n

 ω symplectic \rightarrow non-degenerate, closed 2-form on M

J: almost complex structure compatible with ω $(\omega(\cdot, J\cdot))$ is a Riemannian metric

 c_1 : first Chern class of $(TM, J) \rightarrow (TM, \omega)$

Definition

A symplectic manifold (M, ω) is called **(positive) monotone** if

$$c_1 = \lambda[\omega]$$
 (with $\lambda > 0$)

Henceforth consider positive monotone symplectic manifolds

Positive monotone symplectic manifolds $\lower \sim$ Fano varieties:

Positive monotone symplectic manifolds $\ \ \sim \ \$ Fano varieties:

Fano variety: Kähler manifold, such that Kähler form ω satisfies

$$c_1 = [\omega]$$

Positive monotone symplectic manifolds \lower Fano varieties:

Fano variety: Kähler manifold, such that Kähler form ω satisfies

$$c_1 = [\omega]$$

Facts:

Fano varieties are simply connected and their Todd genus Td is 1.

Positive monotone symplectic manifolds \lower Fano varieties:

Fano variety: Kähler manifold, such that Kähler form ω satisfies

$$c_1 = [\omega]$$

Facts:

Fano varieties are simply connected and their Todd genus Td is 1.

(Example:
$$\dim_{\mathbb{C}}(Y) = 1 \implies Td(Y) = \frac{c_1}{2}[Y]$$
,

$$\dim_{\mathbb{C}}(Y) = 2 \implies Td(Y) = \frac{c_1^2 + c_2}{12}[Y],$$

$$\dim_{\mathbb{C}}(Y) = 3 \implies Td(Y) = \frac{c_1c_2}{24}[Y]$$

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

• $\dim(M) = 2,4$:

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

• dim(M) = 2,4: always (McDuff)

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- dim(M) = 2,4: always (McDuff)
- $\dim(M) \ge 12$:

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- dim(M) = 2,4: always (McDuff)
- $dim(M) \ge 12$: not always (Fine Panov)

When is a positive monotone symplectic manifold (M, ω) diffeomorphic to a Fano variety?

- dim(M) = 2,4: always (McDuff)
- $dim(M) \ge 12$: not always (Fine Panov)

What if one assumes that (M, ω) has symmetries?

 (M,ω) : compact symplectic manifold of dimension 2n

 (M,ω) : compact symplectic manifold of dimension 2n T: compact torus of dimension d

Assume $T \backsim (M, \omega)$

 (M,ω) : compact symplectic manifold of dimension 2n T: compact torus of dimension d

Assume $T \hookrightarrow (M, \omega)$ is Hamiltonian:

 $\exists \ \psi : (M, \omega) \to Lie(T)^* \ (moment \ map) \ s.t.$

- ullet ψ is T-invariant
- $\forall \xi \in Lie(T)$

$$d\langle\psi,\xi\rangle = -\iota_{X_{\xi}}\omega$$

Definition:

 \bullet $\it Hamiltonian$ $\it T\text{-space}:$ $(\it M,\omega,\psi)$, where the action is effective

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : $\dim(M)/2 \dim(T)$

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : $\dim(M)/2 \dim(T)$

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : dim(M)/2 dim(T)

Facts:

 \bullet $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- *complexity of* (M, ω, ψ) : $\dim(M)/2 \dim(T)$

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- *complexity of* (M, ω, ψ) : $\dim(M)/2 \dim(T)$

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- ∃ Hamiltonian action:

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : dim(M)/2 dim(T)

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- ∃ Hamiltonian action: monotone ⇔ positive monotone

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : $\dim(M)/2 \dim(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- ∃ Hamiltonian action: monotone ⇔ positive monotone

Equivalence

 (M_1,ω_1,ψ_1) and (M_2,ω_2,ψ_2) are equivalent if

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : $\dim(M)/2 \dim(T)$

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- ∃ Hamiltonian action: monotone ⇔ positive monotone

Equivalence

```
(M_1,\omega_1,\psi_1) and (M_2,\omega_2,\psi_2) are equivalent if \exists symplectomorphism \Psi:(M_1,\omega_1)\to (M_2,\omega_2) and a\in GL(\ell^*)\ltimes \mathfrak{t}^*
```

Definition:

- Hamiltonian T-space: (M, ω, ψ) , where the action is effective
- complexity of (M, ω, ψ) : dim(M)/2 dim(T)

Facts:

- $\psi(M)$ is a convex polytope (Atiyah, Guillemin-Sternberg)
- Complexity is ≥ 0
- ∃ Hamiltonian action: monotone ⇔ positive monotone

Equivalence

 (M_1,ω_1,ψ_1) and (M_2,ω_2,ψ_2) are **equivalent** if \exists symplectomorphism $\Psi\colon (M_1,\omega_1)\to (M_2,\omega_2)$ and $a\in GL(\ell^*)\ltimes \mathfrak{t}^*$ such that

$$\psi_2 \circ \Psi = a \circ \psi_1$$

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Question

Find necessary and sufficient conditions for a compact monotone Hamiltonian T-space to be diffeomorphic to a Fano variety.

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Question

Find necessary and sufficient conditions for a compact monotone Hamiltonian T-space to be diffeomorphic to a Fano variety.

• ∃ (equivariant) symplectomorphism?

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Question

Find necessary and sufficient conditions for a compact monotone Hamiltonian T-space to be diffeomorphic to a Fano variety.

- ∃ (equivariant) symplectomorphism?
- Finitely many examples in each dimension? (Modulo equivalence)

Monotone vs. Fano with symmetries:

Monotone vs. Fano with symmetries:

Monotone vs. Fano with symmetries:

Two approaches:

(1) Low dimension of M and/or

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S¹-space of **dim 2**:

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$
 - Monotone Ham. S¹-space of **dim 4**:

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$
 - Monotone Ham. S¹-space of **dim 4**:
 - (*) S^1 -action extends to T^2 -action

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$
 - Monotone Ham. S¹-space of **dim 4**:
 - (*) S^1 -action extends to T^2 -action
 - (**) Equiv. sympl. to Fano 2-folds with S^1 -action

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$
 - Monotone Ham. S¹-space of **dim 4**:
 - (*) S^1 -action extends to T^2 -action
 - (**) Equiv. sympl. to Fano 2-folds with S^1 -action
 - (***) Finitely many examples (modulo equivalence)

Monotone vs. Fano with symmetries:

Two approaches:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$
 - Monotone Ham. S¹-space of **dim 4**:
 - (*) S^1 -action extends to T^2 -action
 - (**) Equiv. sympl. to Fano 2-folds with S^1 -action
 - (***) Finitely many examples (modulo equivalence)

 (Karchan's elassification)

(Karshon's classification)

Monotone vs. Fano with symmetries:

- (1) Low dimension of M and/or
- (2) Low complexity
- (1) Low dimension of M:
 - Monotone Ham. S^1 -space of **dim 2**: $\mathbb{C}P^1$
 - Monotone Ham. S^1 -space of **dim 4**:
 - (*) S^1 -action extends to T^2 -action
 - (**) Equiv. sympl. to Fano 2-folds with S^1 -action (***) Finitely many examples (modulo equivalence)
 - (Karshon's classification)
 - ... dim 6 ...

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S^1 -space of dimension 6 is *simply* connected and has Todd genus 1

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S^1 -space of dimension 6 is *simply* connected and has Todd genus 1

Theorem (Charton, Kessler 2023)

Every monotone Hamiltonian GKM space of dimension 6 is diffeomorphic to a Fano threefold

Conjecture (Fine, Panov 2010)

Every monotone Hamiltonian S^1 -space of dimension 6 is diffeomorphic to a Fano threefold

Theorem (Lindsay, Panov 2019)

Every monotone Hamiltonian S^1 -space of dimension 6 is *simply* connected and has Todd genus 1

Theorem (Charton, Kessler 2023)

Every monotone Hamiltonian GKM space of dimension 6 is diffeomorphic to a Fano threefold

Remark: GKM action \implies the torus acting is T^2

Theorem (Godinho, Lindsay, S. 2023)

 (M,ω) monotone compact symplectic manifold of dim 8 with a Hamiltonian T^2 -action.

Theorem (Godinho, Lindsay, S. 2023)

 (M,ω) monotone compact symplectic manifold of dim 8 with a Hamiltonian T^2 -action.

Suppose it admits a "positive multigraph" (e.g. GKM) and that c_1 is not primitive in $H^2(M; \mathbb{Z})$.

Theorem (Godinho, Lindsay, S. 2023)

 (M,ω) monotone compact symplectic manifold of dim 8 with a Hamiltonian T^2 -action.

Suppose it admits a "positive multigraph" (e.g. GKM) and that c_1 is not primitive in $H^2(M; \mathbb{Z})$.

If $b_2 = 1$ then there are finitely many possibilities for the cohomology rings and Chern classes that can arise, and they all come from Fano varieties.

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero: Monotone symplectic toric manifolds

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero: Monotone symplectic toric manifolds ✓

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:
 Monotone symplectic toric manifolds √
 - (*) They are equiv. sympl. to toric Fano *n*-folds

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:

Monotone symplectic toric manifolds \checkmark

(*) They are equiv. sympl. to toric Fano n-folds

(**) $(c_1 = [\omega])$:

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:

Monotone symplectic toric manifolds ✓

- (*) They are equiv. sympl. to toric Fano *n*-folds
- (**) ($c_1 = [\omega]$): Finitely many examples in each dimension 2n (up to equivalence)

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:

Monotone symplectic toric manifolds \checkmark

- (*) They are equiv. sympl. to toric Fano n-folds
- (**) $(c_1 = [\omega])$: Finitely many examples in each dimension 2n (up to equivalence)
- (**)' Finitely many (Delzant/smooth) reflexive polytopes in each dimension n (up to $GL(n, \mathbb{Z})$ -transformation).

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:

Monotone symplectic toric manifolds \checkmark

- (*) They are equiv. sympl. to toric Fano n-folds
- (**) ($c_1 = [\omega]$): Finitely many examples in each dimension 2n (up to equivalence)
- (**)' Finitely many (Delzant/smooth) reflexive polytopes in each dimension n (up to $GL(n, \mathbb{Z})$ -transformation).

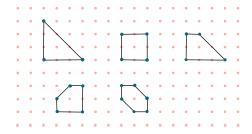
E.g. dim(M) = 4,

- (2) Low complexity of (M, ω, T, ψ) :
 - Complexity zero:

Monotone symplectic toric manifolds \checkmark

- (*) They are equiv. sympl. to toric Fano *n*-folds
- (**) ($c_1 = [\omega]$): Finitely many examples in each dimension 2n (up to equivalence)
- (**)' Finitely many (Delzant/smooth) reflexive polytopes in each dimension n (up to $GL(n,\mathbb{Z})$ -transformation).

E.g. $\dim(M) = 4$, modulo $GL(2,\mathbb{Z})$, $\psi(M) =$



(2) Low complexity of (M, ω, T, ψ) : Complexity one...

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to 1

Tall complexity one spaces:

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

Tall complexity one spaces:

reduced spaces are never points; always "surfaces".

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

Tall complexity one spaces: reduced spaces are never points; always "surfaces". (Karshon-Tolman classification)

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

Tall complexity one spaces:

reduced spaces are never points; always "surfaces".

(Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^2 -space of dimension 6.

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

Tall complexity one spaces:

reduced spaces are never points; always "surfaces". (Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^2 -space of dimension 6.

• T^2 action extends to a toric action

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

Tall complexity one spaces:

reduced spaces are never points; always "surfaces". (Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^2 -space of dimension 6.

- \bullet T^2 action extends to a toric action
- Finitely many diffeo type with $c_1 = [\omega]$

(2) Low complexity of (M, ω, T, ψ) : Complexity one...

Theorem (S., Sepe 2020)

Every monotone complexity one space is simply connected and has Todd genus equal to $1\,$

Tall complexity one spaces:

reduced spaces are never points; always "surfaces". (Karshon-Tolman classification)

Theorem (Charton 2021)

Monotone, tall Hamiltonian T^2 -space of dimension 6.

- \bullet T^2 action extends to a toric action
- Finitely many diffeo type with c_1 = $[\omega]$
- Diffeomorphic to Fano 3-folds endowed with T^2 action

Theorem (Charton-S.-Sepe 2023):

Monotone, complexity one, tall Hamiltonian T-space of dim 2n.

Theorem (Charton–S.–Sepe 2023):

Monotone, complexity one, tall Hamiltonian T-space of dim 2n.

• For each n, finitely many with $c_1 = [\omega]$.

Theorem (Charton-S.-Sepe 2023):

Monotone, complexity one, tall Hamiltonian T-space of dim 2n.

- For each n, finitely many with $c_1 = [\omega]$.
- T action extends to a toric action.

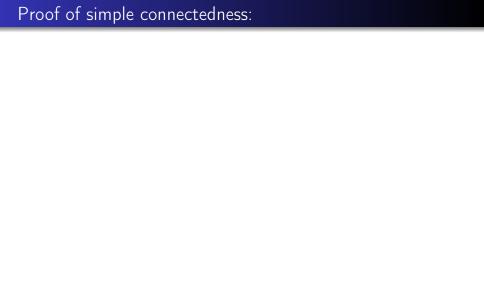
Theorem (Charton-S.-Sepe 2023):

Monotone, complexity one, tall Hamiltonian T-space of dim 2n.

- For each n, finitely many with $c_1 = [\omega]$.
- T action extends to a toric action.
- Equiv. sympl. to Fano *n*-folds endowed with *T* action.

Theorem (S., Sepe 2020)

Every monotone complexity one space is **simply connected** and has Todd genus equal to 1.



Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M)$, $\pi_1(M) \simeq \pi_1(M_\alpha)$, where $M_\alpha = \psi^{-1}(\alpha)/T$ is the reduced space at α .

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M)$, $\pi_1(M) \simeq \pi_1(M_\alpha)$, where $M_\alpha = \psi^{-1}(\alpha)/T$ is the reduced space at α .

and

(b) Theorem (S., Sepe)

Let (M, ω, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^T are either points or spheres.

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M)$, $\pi_1(M) \simeq \pi_1(M_\alpha)$, where $M_\alpha = \psi^{-1}(\alpha)/T$ is the reduced space at α .

and

(b) Theorem (S., Sepe)

Let (M, ω, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^T are either points or spheres.

Suppose that $\psi^{-1}(v)$ is a surface for all vertices $v \in \psi(M)$.

Consequence of

(a) Theorem (Li)

Let (M, ω, ψ) be a compact Hamiltonian T-space. For any $\alpha \in \psi(M)$, $\pi_1(M) \simeq \pi_1(M_\alpha)$, where $M_\alpha = \psi^{-1}(\alpha)/T$ is the reduced space at α .

and

(b) Theorem (S., Sepe)

Let (M, ω, ψ) be a positive monotone complexity one space. Then the connected components of the fixed point set M^T are either points or spheres.

Suppose that $\psi^{-1}(v)$ is a surface for all vertices $v \in \psi(M)$. To prove (b): prove that $\psi^{-1}(v)$ is a sphere.

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

For a Hamiltonian T-space:

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

For a Hamiltonian *T*-space:

• $DH(\alpha)$ = symplectic volume of M_{α} , α regular (Duistermaat-Heckman)

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

For a Hamiltonian *T*-space:

- $DH(\alpha)$ = symplectic volume of M_{α} , α regular (Duistermaat-Heckman)
- There exists a continuous representative of DH.

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

For a Hamiltonian *T*-space:

- $DH(\alpha)$ = symplectic volume of M_{α} , α regular (Duistermaat-Heckman)
- There exists a continuous representative of DH.

For complexity one:

• The DH-function is piece-wise linear (Duistermaat-Heckman)

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

For a Hamiltonian *T*-space:

- $DH(\alpha)$ = symplectic volume of M_{α} , α regular (Duistermaat-Heckman)
- There exists a continuous representative of DH.

For complexity one:

- The DH-function is piece-wise linear (Duistermaat-Heckman)
- log(DH) is concave (Cho-Kim)

Duistermaat-Heckman function

$$DH: \ \psi(M) \to \mathbb{R}$$

For a Hamiltonian *T*-space:

- $DH(\alpha)$ = symplectic volume of M_{α} , α regular (Duistermaat-Heckman)
- There exists a continuous representative of DH.

For complexity one:

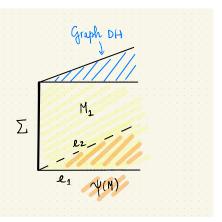
- The DH-function is piece-wise linear (Duistermaat-Heckman)
- log(DH) is concave (Cho-Kim)
 ⇒ DH is concave

DH attains its minimum at a vertex v_{\min} of $\psi(M)$,

DH attains its minimum at a vertex v_{\min} of $\psi(M)$, $\Sigma := \psi^{-1}(v_{\min})$,

DH attains its minimum at a vertex v_{\min} of $\psi(M)$, $\Sigma := \psi^{-1}(v_{\min})$,

- $\bullet \ \ N_{\Sigma} = N_1 \oplus \cdots \oplus N_{n-1}$
- $M_i := \psi^{-1}(e_i)$: compact symplectic 4-dimensional submanifold with a Hamiltonian S^1 action, $\Sigma \subset M_i$, for all i = 1, ..., n-1
- Normal bundle to Σ in M_i is N_i



• $DH: \psi(M_i) = [v_{\min}, v'] \to \mathbb{R}$ restricted to $[v_{\min}, v + \epsilon)$ is:

• $DH: \psi(M_i) = [v_{\min}, v'] \to \mathbb{R}$ restricted to $[v_{\min}, v + \epsilon)$ is:

$$DH(x) = \int_{\Sigma} \omega - c_1(N_i)[\Sigma](x - v_{\min})$$

• $DH: \psi(M_i) = [v_{\min}, v'] \to \mathbb{R}$ restricted to $[v_{\min}, v + \epsilon)$ is:

$$DH(x) = \int_{\Sigma} \omega - c_1(N_i)[\Sigma](x - v_{\min})$$

• DH attains its minimum at $v_{min} \implies$

$$c_1(N_i)[\Sigma] \leq 0 \quad \forall i = 1, \ldots, n-1$$

•
$$c_1 = [\omega]$$

• $c_1 = [\omega] \implies c_1[\Sigma] > 0$ (Σ is a symplectic surface)

• $c_1 = [\omega] \implies c_1[\Sigma] > 0$ (Σ is a symplectic surface)

$$c_1[\Sigma] = \sum_{>0}$$

• $c_1 = [\omega] \implies c_1[\Sigma] > 0$ (Σ is a symplectic surface)

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(T\Sigma)[\Sigma]$$

• $c_1 = [\omega] \implies c_1[\Sigma] > 0$ (Σ is a symplectic surface)

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(T\Sigma)[\Sigma]$$

 $\implies c_1(T\Sigma)[\Sigma] > 0$, namely $\Sigma = S^2$.

• $c_1 = [\omega] \implies c_1[\Sigma] > 0$ (Σ is a symplectic surface)

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(T\Sigma)[\Sigma]$$

 $\implies c_1(T\Sigma)[\Sigma] > 0$, namely $\Sigma = S^2$.

• $c_1 = [\omega] \implies c_1[\Sigma] > 0 \ (\Sigma \text{ is a symplectic surface})$

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(T\Sigma)[\Sigma]$$

 $\implies c_1(T\Sigma)[\Sigma] > 0$, namely $\Sigma = S^2$.

•
$$c_1(N_i)[\Sigma] = 0$$
 for all $i = 1, ..., n-1$, or

• $c_1 = [\omega] \implies c_1[\Sigma] > 0 \ (\Sigma \text{ is a symplectic surface})$

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(T\Sigma)[\Sigma]$$

 $\implies c_1(T\Sigma)[\Sigma] > 0$, namely $\Sigma = S^2$.

- $c_1(N_i)[\Sigma] = 0$ for all i = 1, ..., n-1, or
- $c_1(N_i)[\Sigma] = 0$ for all i = 1, ..., n-2 and $c_1(N_{n-1})[\Sigma] = -1$.

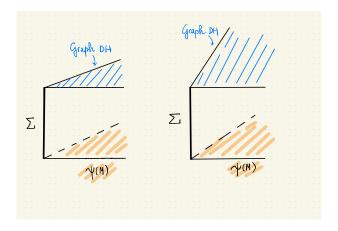
• $c_1 = [\omega] \implies c_1[\Sigma] > 0 \ (\Sigma \text{ is a symplectic surface})$

$$\underbrace{c_1[\Sigma]}_{>0} = \underbrace{\sum_{i=1}^{n-1} c_1(N_i)[\Sigma]}_{\leq 0} + c_1(T\Sigma)[\Sigma]$$

 $\implies c_1(T\Sigma)[\Sigma] > 0$, namely $\Sigma = S^2$.

- $c_1(N_i)[\Sigma] = 0$ for all i = 1, ..., n-1, or
- $c_1(N_i)[\Sigma] = 0$ for all i = 1, ..., n-2 and $c_1(N_{n-1})[\Sigma] = -1$.
- ightharpoonup There are two possibilities for the DH-function around v_{\min} .

Two possibilities for the DH-function around v_{min} :



Theorem (Charton–S.–Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

Theorem (Charton-S.-Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

• For each *n*, **finitely many**.

Theorem (Charton–S.–Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each *n*, **finitely many**.
- T action extends to a toric action.

Theorem (Charton–S.–Sepe 2023):

Monotone $(c_1 = [\omega])$, complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to **Fano** *n*-folds endowed with *T* action.

Theorem (Charton–S.–Sepe 2023):

Monotone $(c_1 = [\omega])$, complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- \bullet Equiv. sympl. to **Fano** *n*-folds endowed with T action.

Theorem (Charton–S.–Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- \bullet Equiv. sympl. to **Fano** *n*-folds endowed with T action.

Strategy of the proof:

• (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of dim n-1

Theorem (Charton–S.–Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- \bullet Equiv. sympl. to **Fano** *n*-folds endowed with T action.

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of dim n-1
- Classify all the possible DH-functions that can arise

Theorem (Charton–S.–Sepe 2023):

Monotone $(c_1 = [\omega])$, complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- \bullet Equiv. sympl. to **Fano** *n*-folds endowed with T action.

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of dim n-1
- Classify all the possible DH-functions that can arise : There are finitely many possibilities!

Theorem (Charton–S.–Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- Equiv. sympl. to **Fano** *n*-folds endowed with *T* action.

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of dim n-1
- Classify all the possible DH-functions that can arise : There are finitely many possibilities!
- Prove that the DH-function determines the space (up to equiv. symplectomorphisms)

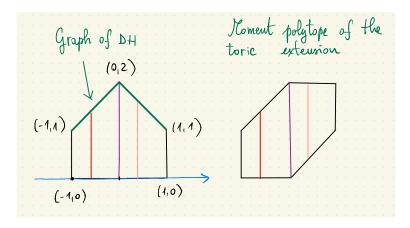
Theorem (Charton–S.–Sepe 2023):

Monotone ($c_1 = [\omega]$), complexity one, tall Hamiltonian T-space, $\dim(M) = 2n$.

- For each n, finitely many.
- T action extends to a toric action.
- \bullet Equiv. sympl. to **Fano** *n*-folds endowed with T action.

- (Modulo translation) $\psi(M)$ is a Delzant reflexive polytope of dim n-1
- Classify all the possible DH-functions that can arise : There are finitely many possibilities!
- Prove that the DH-function determines the space (up to equiv. symplectomorphisms)
- Prove that each of those "comes" from a toric one

Example:



THANK YOU!