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Let S be a smooth projective connected surface over an algebraically
closed field k and Σ the linear system of a very ample divisor D on S.
Let d ∶= dim(Σ) be the dimension of Σ and

ϕΣ ∶S↪ Pd

the closed embedding of S into Pd , induced by Σ.

For any closed point t ∈ Σ ≅ Pd∗ , let Ct be the corresponding
hyperplane section on S, and let

rt ∶Ct ↪S

be the closed embedding of the curve Ct into S.
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Let ∆ be the discriminant locus of Σ, that is,

∆ ∶= {t ∈ Σ ∶Ct is singular}.

Then
U ∶= Σ∖∆ = {t ∈ Σ ∶Ct is smooth}.

Let
r∗t ∶H1(Ct ,Z)→H3(S,Z)

be the Gysin homomorphism on cohomology groups induced by rt ,
whose kernel H1(Ct ,Z)van is called the vanishing cohomology of Ct
(see [VoiII], 3.2.3).

Claudia Schoemann Rauischholzhausen, 25 August 2023



Introduction
Stratifications of Algebraic Stacks

The monodromy argument

The Gysin homomorphism
Intermezzo on Cycles and Chow groups
The Gysin kernel

Let Jt = J(Ct) be the Jacobian of the curve Ct and let Bt be the
abelian subvariety of the abelian variety Jt corresponding to the
Hodge substructure H1(Ct ,Z)van of H1(Ct ,Z).
Let CH0(S)deg=0 be the Chow group of zero cycles of degree 0 on S,
and for any closed point t ∈ Σ, let CH0(Ct)deg=0 be the Chow group of
zero cycles of degree 0 on Ct .
For any closed point t ∈ Σ, let

r∗t ∶ CH0(Ct)deg=0→ CH0(S)deg=0

be the Gysin pushforward homomorphism on the Chow groups of
degree 0 zero cycles of Ct and S, respectively, induced by rt , whose
kernel

Gt = ker(r∗t )

is called the Gysin kernel associated with the hyperplane section Ct .
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Intermezzo on Cycles and Chow groups
Let X denote a smooth projective variety over an algebraically closed
field k .

Definition

An algebraic cycle of dimension r or simply an r-cycle is a finite
formal linear combination

Z =∑niZi ,

where ni ∈Z and Zi is a subvariety of X of dimension r .

The group of r -cycles is denoted by Zr(X).

Thinking in terms of codimension and if X is of dimension n we
write

Zr(X) = Z n−r (X).

Z n−r(X) is the group of cycles of codimension (n− r) on X .
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Examples

Let X be a smooth projective variety of dimension n.

1 The zero cycles on X are finite formal linear combinations

Z =∑niPi ,

where ni ∈Z and Pi is a point on X . The group of zero cycles is
denoted by Z0(X).

2 The cycles of codimension 1 on X are finite formal linear
combinations

Z =∑niZi ,

where ni ∈ Z and Zi is a subvariety of codimension 1 of X . The
cycles of codimension 1 are also called divisors. The group of
cycles of codimension 1 is denoted by Z 1(X) or by Div(X).
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Rational and algebraic equivalence

Definition

Two r -cycles Z1 and Z2 on X are rationally equivalent if there
exits a family of r -cycles parametrized by P1 interpolating
between them, i.e. if there is W ∈ Zr+1(P1×X) not contained in
any fiber {t}×X = pr−1

1 (t), t ∈ P1, such that defining by

W (t) ∶= [W ∩({t}×X)]

the r -cycle obtained by intersecting W with the fiber {t}×X over
t , we have

Z1 =W (t1) and Z2 =W (t2) for some t1, t2 ∈ P1.

If in the above definition we replace P1 by any smooth curve then
we say that Z1 and Z2 are algebraically equivalent.
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Properties

The r -cycles rationally equivalent to 0 on X , denoted by

Zr (X)rat = {Z ∈ Zr (X) ∶ Z ∼rat 0}

form a subgroup of Zr (X).

The r -cycles algebraically equivalent to 0 on X , denoted by

Zr(X)alg = {Z ∈ Zr (X) ∶ Z ∼alg 0}

form a subgroup of Zr (X).
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Chow groups

Definition
The Chow group of r -cycles of X is the factor group

CHr(X) = Zr(X)/Zr (X)rat

of the group of r -cycles modulo the group of r -cycles rationally
equivalent to 0, i.e. the group of rational equivalence classes of
r -cycles.
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Results on codimension 1 cycles or divisors

In this case one has good results.

We have

CH1(X) = Z 1(X)/Z 1(X)rat ≅ Pic(X) ≅H1
Zar(X ,O∗X ),

where Pic(X) is the group of isomorphism classes of invertible
sheaves on X called the Picard group, and H1

Zar(X ,O∗X ) is the
group of isomorphism classes of line bundles on X . One can
make this group into a scheme.

We have
NS(X)∶= Z 1(X)/Z 1(X)alg,

it is a finitely generated abelian group, called the Neron-Severi
group of X .
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The quotient group

A1(X) ∶= Z 1(X)alg/Z 1(X)rat

is the connected component of unity of the scheme Pic(X) denoted
by Pic0(X). In char(k) = 0 it has the structure of an Abelian variety
called the Picard variety. A1(X) is representable and we can think of
it as a torus.
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In contrast to the case of cycles of codimension 1 very little is known
about the above groups of cycle classes. For example, if r > 1

We do not know if
Z r (X)/Z r (X)alg

is a finitely generated abelian group.

In general
Ar (X) = Z r(X)alg/Z r(X)rat

is not representable. That is:

In studying algebraic cycles we encounter objects which are
geometric in content and simultaneously not representable!
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Let U = Σ∖∆.

Theorem (Paucar, 2022)

(a) For each t ∈U there is an abelian variety At ⊂Bt such that

Gt = ker(rt∗) = ⋃
countable

translates of At

(b) For a very general t ∈U (i.e. for every t in a c-open subset U0 of
U) either

1. At =Bt , and then Gt =⋃countable translates of Bt , or
2. At = 0, and then Gt is countable.

(c) If albS ∶ CH0(S)hom→Alb(S) is not an isomorphism, for a very
general t in U, then Gt is countable.
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● The subset U0 is countable open ↝ allows to apply for all t in U0
in a uniform way the irreducibility of the monodromy
representation on the vanishing cohomology of a smooth section
(see [DK73], [D74] for the étale cohomology, [La81] for the
singular cohomology and [VoiII] in a Hodge theoretical context
for complex algebraic varieties).

● this is done by viewing U = Σ∖∆ as an integral algebraic
scheme over k and by passing to the general fiber, i.e. for each
closed point t in U0 there exists a scheme-theoretic isomorphism
to the geometric generic point ξ over k ′, where k ′ is the minimal
field of definition of S [Wei62]. This induces a scheme-theoretic
isomorphism κt between the corresponding varieties Ct and C

ξ

over k ′.
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This induces an isomorphism κ
′
t between At and A

ξ
compatible with

the isomorphism on Chow groups induced by the isomorphism κt .
Then by [BG20] κ

′
t (At) =A

ξ
and κ

′
t (Bt) =B

ξ
for every k -point in U0.
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● Goal: describe the Gysin kernel Gt for the points t in U ∖U0
where the local and global monodromy representations, i.e. the
action of the fundamental groups π1(V , t), where V = (Σ∖∆)∩D
with D a line containing t in the dual space Pn∗ such that fD is a
Lefschetz pencil for S, and π1(U, t) on the vanishing
cohomology H1(Ct ,k ′)van, are not fully understood.

● Approach: construct a stratification {Ui ⊆U}i∈I of U by countable
open subsets for each of which the monodromy argument
applies for all t ∈ Ui in a uniform way (i.e. for a partially ordered,
at most countable set I we have Ui ⊆ Uj if i ≤ j and two additional
conditions on I for finiteness from below and for every map
α ∶ Spec(k)→U the set {i ∈ I ∶ α factors through Ui} has a
smallest element (cf. [GL19], Def. 5.2.1.1).
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We then apply a convergence argument for the stratification {Ui}i∈I
(cf. [GL19], Def. 5.2.2.1) such that the monodromy argument applies
in a uniform way for all t ∈U, seen as the set-theoretic directed union
U = ∪→

i

Ui .
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Definition (Gaitsgory - Lurie, 2019)

Let X be an algebraic stack. A stratification of X consists of the
following data:

(a) A partially ordered set A.

(b) A collection of open substacks {Uα ⊆X}α∈A satisfying Uα ⊆ Uβ

when α ≤ β .

This data is required to satisfy the following conditions:

● For each index α ∈A, the set {β ∈A ∶ β ≤ α} is finite.

● For every field m and every map η ∶ Spec(m)→X , the set

{α ∈A ∶ η factors through Uα}

has a least element.
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Let X be an algebraic stack equipped with a stratification {Uα}α∈A.
Notation: For each α ∈A, we let Xα denote the reduced closed
substack of X given by the complement of ∪β<αUβ . Each Xα is a
locally closed substack of X , called the strata of X .

Remark

A stratification {Uα}α∈A is determined by the partially ordered set A
together with a collection of locally closed substacks {Xα}α∈A: each
Uα is an open substack of X and if m is a field, then a map
η ∶ Spec(m)→X factors through Uα iff it factors through Xβ for some
β ≤ α. So one identifies the stratification of X with the locally closed
substacks {Xα ⊆X}α∈A (where the partial ordering of A is understood
to be implicitely specified).

Remark

If m is a field, then for any map η ∶ Spec(m)→X there is a unique
index α ∈A such that η factors through Xα . In other words, X is the
set-theoretic union of the locally closed substacks Xα .
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Definition
Let m =C or m = Fq and let X be an algebraic stack of finite type over
Spec(m). A stratification {Xα}α∈A of X is convergent if there exists a
finite collection of algebraic stacks T1, . . . ,Tn over Spec(m) with the
following properties:

(1) For each α ∈A there exists an integer i ∈ {1,2, . . . ,n} and a

diagram of algebraic stacks Ti
f→

∼
X α

g
→Xα where the map f is a

fiber bundle (locally trivial with respect to the étale topology)
whose fibers are affine spaces of some fixed dimension dα and
the map g is surjective, finite and radicial.

(2) The nonnegative integers dα in (1) satisfy ∑α∈A q−dα <∞.

(3) For 1 ≤ i ≤ n, the algebraic stack Ti can be written as a
stack-theoretic quotient Y /G, where Y is an algebraic space of
finite type over m and G is a linear algebraic group over m acting
on Y .
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Remark

In the definition, for char(m) > 0 the hypothesis (2) guarantees that
the set A is at most countable. For char(m) = 0 we will assume A to be
at most countable.

We have the following

Lemma (Gysin sequence)

Let X and Y be smooth quasi-projective varieties over an
algebraically closed field k, let g ∶Y →X be a finite radicial morphism,
and let U ⊆X be the complement of the image of g. Then there is a
canonical fiber sequence

C∗−2d(Y ;Zl(−d))→C∗(X ,Zl)→C∗(U;Zl),

where d denotes the relative dimension dim(X)−dim(Y ).
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This implies a corresponding result for algebraic stacks:

Lemma
Let X and Y be smooth algebraic stacks of constant dimension over
an algebraically closed field k, let g ∶Y →X be a finite radicial
morphism, and let U ⊆X be the open substack of X complementary
to the image of g. Then there is a canonical fiber sequence

C∗−2d(Y;Zl(−d))→C∗(X ,Zl)→C∗(U ;Zl),

where d denotes the relative dimension dim(X )−dim(Y).

Claudia Schoemann Rauischholzhausen, 25 August 2023



Introduction
Stratifications of Algebraic Stacks

The monodromy argument
Construction of the stratification

We have the following

Theorem (Paucar - S., 2023)

Let U ∶= Σ∖∆. There exists a convergent stratification {Uα}α∈A of U
by countable open subsets for each of which the irreducibility of the
monodromy representation applies for all t ∈ Uα in a uniform way such
that the monodromy argument applies for all t ∈U in a uniform way,
seen as the set-theoretic directed union U = ∪→

i

Ui .

Proof.

Let d = dim(U) and let {Xα}α∈A be the given stratification of U. The
set A is at most countable (see Remark). By adding additional
elements to A and assigning to each of those additional elements the
empty substack of U, we may assume that A is infinite.
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By assumption the set {β ∈A ∶ β ≤ α} is finite for each α ∈A, hence we
can chose an enumeration

A = {α0,α1,α2, . . .}

where each initial segment is a downward-closed subset of A. We
can then write U as the union of an increasing sequence of open
substacks

U0↪ U1↪ U2↪ . . .

where Un is characterized by the requirement that if m is a field, then
a map η ∶ Spec(m)→X factors through Un iff it factors through one of
the substacks Xα0 ,Xα1 , . . . ,Xαn .
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By hypothesis, there exists a finite collection {Ti}1≤i≤s of smooth
algebraic stacks over Spec(m), where each Ti has some fixed
dimension di and for each n ≥ 0 there exists an index i(n) ∈ {1, . . . ,s}
and a diagram

Ti(n)
fn→

∼
X αn

gn→Xαn ,

where gn is a finite radicial surjection and fn is an étale fiber bundle
whose fibers are affine spaces of some fixed dimension e(n). Set

U =U ×Spec(m) Spec(m)

Un = Un ×Spec(m) Spec(m)

T i = Ti ×Spec(m) Spec(m)
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The map fn induces an isomorphism in l-adic cohomology. Applying
the above Lemma to the finite radicial map

gn ∶X αn ×Spec(m) Spec(m)→ Un

we obtain fiber sequences

C∗−2e′n(T i(n);Zl(−e′n))→C∗(Un,Zl)→C∗(Un−1;Zl),

where e′n = en +d −di(n) denotes the relative dimension of the map
∼
X αn →U. We have a canonical equivalence

Θ ∶C∗(U;Zl) ≃ lim←
n

C∗(Un,Zl).
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By the increasing sequence of c-open substacks

U0↪ U1↪ U2↪

and using Galois descent with respect to the corresponding simplicial
complex N (U) we obtain U = ∪→

n

Un.
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By a result due to Zariski the monodromy

ρ ∶ π1(U,0)→Aut(Hk(Ct ,Z))

can be computed by restricting to a Lefschetz pencil:

Theorem

Let Y ⊂ Pd be a hypersurface, and let U = Pd ∖Y be its complement.
Then for 0 ∈U and for every projective line Ct ⊂ Pd passing through 0
which meets Y transversally in its smooth locus, the natural map

π1(Ct ∖Ct ∩Y,0)→ π1(U,0)

is surjective.

The irreducibility of the discriminant hypersurface implies:

Proposition (VoiII, 3.23)

All the vanishing cycles (defined up to sign) are conjugate (up to sign)
under the monodromy action ρ.
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Zariski’s theorem and the proposition imply the following

Corollary

Let (Ct)t∈P1 be a Lefschetz pencil of hyperplane sections of
S, 0i , i = 1, . . . ,M the critical values, and 0 ∈ P1 a regular value. Then
all the vanishing cycles δi ∈Hn−1(C0,Z) of the pencil are conjugate
under the monodromy action of

ρ ∶ π1(P1∖{01, . . . ,0M},0)→Aut(Hn−1(X0,Z)).

Remark
These vanishing cycles are not well-defined without specifying the
choice of paths γi from 0 to 0i . However, changing the path comes
down to letting a loop act via the monodromy action.
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Recall that if C0
r0↪S is a smooth hyperplane section, the vanishing

cohomology of C0 is defined by

Hn−1(C0,Q)van = ker(r∗ ∶Hn−1(C0,Q)→Hn+1(S,Q)).

Let U ⊂ Pd∗ denote the open set parametrising the smooth
hyperplane sections of S, then the monodromy action

ρ ∶ π1(U,0)→Aut(Hn−1(C0,Q))

leaves Hn−1(C0,Q)van stable.
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We have the following

Theorem (VoiII, 3.27)

Let the notation and hypotheses be as in the above corollary. Then
the monodromy action

ρ ∶ π1(U,0)→Aut(Hn−1(C0,Q)van)

is irreducible.

Proof.
It suffices to prove the irreducibility of the monodromy action

π1(P1∖{01, . . . ,0M},0)→Aut(Hn−1(C0,Q)van),

where (Ct)t∈P1 is a Lefschetz pencil.
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The vanishing cohomology is generated by the vanishing cycles δi of
the pencil. The restriction of the intersection form ⟨ , ⟩ is
non-degenerate on Hn−1(C0,Q)van. Let F ⊂Hn−1(C0,Q)van be a
non-trivial vector subspace stable under the monodromy action ρ. For
i ∈ {1, . . . ,M}, let

∼
γ i be the loop in S based at 0 which is equal to γi

until ti , winds around the disk ∆i once in the positive direction, then
returns to 0 via γ

−1
i . By the Picard-Lefschetz formula we have

ρ(
∼
γ i)(α) = α ± ⟨α,δi⟩δi , ∀α ∈Hn−1(C0,Q).
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Let 0 ≠ α ∈ F . There exists i ∈ {1, . . . ,M} such that ⟨α,δi⟩ ≠ 0. As
ρ(

∼
γ i)(α)−α ∈ F , the Picard-Lefschetz formula implies that δi ∈ F . By

the corollary all vanishing cycles are conjugate under the monodromy
action, so F , stable under ρ, must contain all the vanishing cycles.
Thus F =Hn−1(C0,Q)van.
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Thank you for your attention!
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