Prospects in Geometry and Global Analysis Rauischholzhausen, August 26th, 2023

Canonical Submersions in Nearly Kähler Geometry

Leander Stecker

mostly based on ArXiv: 2211.14012

Holonomy I

If $\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ is a connection on M and γ a curve from p to q, then we have parallel transport $\mathcal{P}_{\gamma} \colon T_pM \to T_qM$.

Definition

The holonomy group is the group

 $\operatorname{Hol}_0(\nabla) = \{ \mathcal{P}_{\gamma}^{\nabla} \text{ parallel transport } \mid [\gamma] = 0 \in \pi_1(M) \}.$

If ∇ is metric then $\operatorname{Hol}_0(\nabla) \subset \operatorname{SO}(n)$.

Theorem (deRham 1952)

If the representation of $\operatorname{Hol}^g(M)$ on $T_pM = T_1 \oplus T_2$ splits, then (M,g) is locally a product

 $(M,g) = (M_1 \times M_2, g_{M_1 \times M_2}).$

Holonomy II

Theorem (Berger 1955)

Let (M,g) be a Riemannian manifold that is not a symmetric space. If the holonomy representation is irreducible, then $\operatorname{Hol}_0^g(M)$ is among the following list.

Hol_0^g	NAME	dim	Parallel Obj.	Einstein
SO(n)	generic	n	_	_
U(n)	Kähler	2n	$\nabla^g J = 0$	_
SU(n)	Calabi-Yau	2n	$\nabla^g J = 0$	$\operatorname{Ric}^g = 0$
$\operatorname{Sp}(n)\operatorname{Sp}(1)$	quaternionic Kähler	4n	$\nabla^g \Omega = 0$	$\operatorname{Ric}^g = \lambda g$
$\operatorname{Sp}(n)$	hyperkähler	4n	$\nabla^g J_i = 0$	$\operatorname{Ric}^g = 0$
G_2	parallel G_2	7	$\nabla^g \phi = 0$	$\operatorname{Ric}^g = 0$
$\operatorname{Spin}(7)$	parallel $Spin(7)$	8	$\nabla^g \psi = 0$	$\operatorname{Ric}^g = 0$

Connections with skew torsion

Torsion:

$$T(X, Y, Z) := g(\nabla_X Y - \nabla_Y X - [X, Y], Z)$$

The space of torsion tensors decomposes into SO(n)-invariant classes

$$T \in \Lambda^2 TM \otimes TM = TM \oplus \Lambda^3 TM \oplus \mathcal{T}'.$$

If $T \in \Lambda^3 TM$ we say ∇ has skew-torsion

$$\Rightarrow \nabla_X Y = \nabla_X^g Y + \frac{1}{2}T(X, Y, \cdot)$$

In particular, ∇ inherits geodesics from ∇^{g} !

 ∇ has parallel skew-torsion if, in addition, $\nabla T = 0$. Implies, for instance, pair-symmetry of the curvature!

Canonical Submersion Theorem

Theorem (Cleyton, Moroianu, Semmelmann '21, Agricola, Dileo, S '21, S '22)

Let ∇ be a metric connection with parallel skew torsion T, and suppose the tangent space decomposes orthogonally as a representation of the reduced holonomy group $\operatorname{Hol}_0(\nabla)$ into $TM = \mathcal{V} \oplus \mathcal{H}$. If the component in $\Lambda^2 \mathcal{V} \otimes \mathcal{H}$ of $T \in \Lambda^3 TM$ vanishes then

- there exists a locally defined Riemannian submersion π: M → N with totally geodesic leaves along V,
- the purely horizontal part $T^{\mathcal{H}} \in \Lambda^{3}\mathcal{H}$ of T is projectable and the connection $\nabla^{T^{\mathcal{H}}} = \nabla^{g_{N}} + \frac{1}{2}T^{\mathcal{H}}$ on N has parallel skew torsion and satisfies

$$\nabla_X^{T^{\mathcal{H}}}Y = \pi_*(\nabla_{\overline{X}}\overline{Y}).$$

Corollary

If $TM = H_1 \oplus H_2$ under $\operatorname{Hol}_0(\nabla)$ with $T \in \Lambda^3 H_1 \oplus \Lambda^3 H_2$ then locally $(M, q, \nabla) = (M_1, q_1, \nabla_1) \times (M_2, q_2, \nabla_2).$

Known Applications

- Sasakian manifolds \longrightarrow Kähler: Simplest case, φ projects to J
- 3- (α, δ) -Sasaki manifolds \longrightarrow quaternionic Kähler: φ_i do not project individually but their bundle does! (Agricola, Dileo, S-, '21)
 - relate curvature (Agricola, Dileo, S-, '23),
 - simplifies heterotic G_2 system (Galdeano, S-, '23)
- parallel 3-(α, δ)-Sasaki manifolds → nearly Kähler: Torsion of the base is a feature not a bug!
- specific nearly K\u00e4hler manifolds → quaternionic K\u00e4hler: Modeled after Nagy classification of nK, but explicit construction of quaternionic structure!

$3\text{-}(\alpha, \delta)\text{-}\mathsf{Sasaki}$ Manifolds

 $(M,\varphi_i,\xi_i,\eta_i,g)_{i=1,2,3}$ is an almost 3-contact metric manifolds if

- $\xi_i \in \mathfrak{X}(M)$ Reeb vector fields, $g(\xi_i,\xi_j) = \delta_{ij}$,
- $\eta_i \in \Omega^1(M)$ metric dual to ξ_i ,
- $\varphi_i \in \operatorname{End}(TM)$ almost hermitian structures on ker η_i ,

• compatibility cond. $\varphi_i \varphi_j |_{\mathcal{H}} = \varphi_k |_{\mathcal{H}}, \ \varphi_i \xi_j = \xi_k$,

where (ijk) is an even permutation of (123) and $\mathcal{H} \coloneqq \bigcap \ker \eta_i$. Denote $\mathcal{V} = \langle \xi_1, \xi_2, \xi_3 \rangle$ the vertical space and $\Phi_i(X, Y) = g(X, \varphi_i Y)$ the fundamental 2-form.

Definition

A 3- (α, δ) -Sasaki manifold, $\alpha \neq 0$, δ real constants, is an almost 3-contact metric manifold satisfying

$$\mathrm{d}\eta_i = 2\alpha\Phi_i + 2(\alpha - \delta)\eta_j \wedge \eta_k,$$

for alle even permutations (ijk) of (123).

$\mathcal{H} ext{-Homothetic Deformation}$

For a > 0, $c \neq 0$ consider

$$g = g_{\mathcal{H}} + g_{\mathcal{V}} \quad \xrightarrow{\text{scaling}} \quad \tilde{g} = ag_{\mathcal{H}} + c^2 g_{\mathcal{V}}, \ \tilde{\xi}_i = \frac{1}{c} \xi_i, \ \tilde{\varphi}_i = \varphi_i$$

Proposition (Agricola-Dileo, '20)

The deformed structure $(M, \tilde{\varphi}_i, \tilde{\xi}_i, \tilde{\eta}_i, \tilde{g})_{i=1,2,3}$ for real parameters a > 0and c is $3-(\tilde{\alpha}, \tilde{\delta})$ -Sasaki with

$$\tilde{\alpha} = \frac{c}{a} \alpha, \qquad \tilde{\delta} = \frac{1}{c} \delta.$$

Up to \mathcal{H} -homothetic deformation there are only the cases $\alpha = 1$, $\delta \in \{\pm 1, 0\}$ called positive, negative and degenerate.

The canonical connection

Theorem (Agricola, Dileo, '20)

Let $(M, g, \xi_i, \eta_i, \varphi_i)_{i=1,2,3}$ be a 3- (α, δ) -Sasaki manifold. Then M admits a unique metric connection ∇ with skew torsion such that for a smooth function β ,

 $\nabla_X \varphi_i = \beta(\eta_k(X)\varphi_j - \eta_j(X)\varphi_k) \quad \forall X \in \mathfrak{X}(M)$

for every even permutation (ijk) of (123).

This connection ∇ has parallel skew-torsion, as $\operatorname{Hol}_0 \subset \operatorname{Sp}(n)\operatorname{Sp}(1)$, i.e. it preserves $TM = \mathcal{V} \oplus \mathcal{H}$ and the function β is a constant given by

 $\beta = 2(\delta - 2\alpha).$

 ∇ is called the canonical connection of M.

If
$$\delta = 2\alpha \Rightarrow \nabla \varphi_i \equiv 0$$
 for all $i = 1, 2, 3, \rightarrow$ parallel 3- (α, δ) -Sasaki
 $\Rightarrow \operatorname{Hol}_0(\nabla) \subset \operatorname{Sp}(n)$

The canonical submersion

 $TM=\mathcal{V}\oplus\mathcal{H}$ is a $Hol_0(\nabla)\text{-invariant}$ decomposition. The torsion of ∇ is

$$T = 2\alpha \sum_{i=1}^{3} \eta_i \wedge \Phi_i^{\mathcal{H}} + 2(\delta - 4\alpha)\eta_{123} \in \Lambda^2 \mathcal{H} \wedge \mathcal{V} \oplus \Lambda^3 \mathcal{V}.$$

 \Rightarrow the projection onto $\Lambda^2 \mathcal{V} \otimes \mathcal{H} \oplus \Lambda^3 \mathcal{H}$ is trivial

 \Rightarrow locally defined Riemannian submersion $\pi\colon M\to N$ with

 $\nabla_X^{g_N} Y = \pi_* (\nabla_{\overline{X}} \overline{Y}).$

Definition

The submersion $\pi\colon M\to N$ is called the canonical submersion of the 3-($\alpha,\delta)$ -Sasaki manifold M.

Theorem (Agricola, Dileo, S-, '21)

Let $(M, g, \eta_i, \xi_i, \varphi_i)$ be a 3- (α, δ) -Sasaki manifold. The base space (N, g_N) of the canonical submersion $\pi \colon M \to N$ inherits a quaternionic Kähler structure spanned by

 $\check{\varphi}_i = \pi_* \circ \varphi_i \circ s_*$

for any local section $s \colon N \to M$. The covariant derivative of $\check{\varphi}_i$ is given by

$$\nabla_X^{g_N}\check{\varphi}_i = 2\delta(\check{\eta}_k(X)\check{\varphi}_j - \check{\eta}_j(X)\check{\varphi}_k),$$

where $\check{\eta}_i(X) = \eta_i(s_*X)$, for any even permutation (*ijk*) of (123). The base space N has scalar curvature $\operatorname{scal}_{q_N} = 16n(n+2)\alpha\delta$.

Corollary

For degenerate 3- (α, δ) -Sasaki manifolds the base is Hyperkähler.

(α, δ) -plane of structures

Interlude: Constructions

Positive Case:

 (N, g, \mathcal{Q}) positive quaternionic Kähler manifold, i.e. $\mathcal{Q} \subset \operatorname{End}(TM)$ $\rightsquigarrow M = \operatorname{Fr}(\mathcal{Q})$ frame bundle (Konishi-bundle). Then M can be equipped with a positive 3- (α, δ) -Sasaki structure.

Examples: $W_{1,1}, \mathcal{S}^7, \mathcal{S}_p = \mathrm{SU}(3) / / S_p^1, \dots$

Negative Case:

 (N,g,\mathcal{Q}) negative qK $\rightsquigarrow M=\mathrm{Fr}(\mathcal{Q})$ Konishi bundle admits a negative 3-($\alpha,\delta)$ -Sasaki structure

Examples: $\mathrm{SU}(1,2)/S^1, \hat{\mathcal{T}}(1), \dots$

Degenerate Case: $(N, g, \omega_1, \omega_2, \omega_3)$ hyper Kähler w $[\omega_i] \in \mathrm{H}^2(M, \mathbb{Z})$ M fibre product bundle of 3 Boothby-Wang S^1 -bundles. Then M can be equipped with degenerate 3- (α, δ) -Sasaki structure Examples: $H^{n,\mathbb{H}}$, ...

Nearly Kähler

Definition

An almost Hermitian manifold (N,g_N,J) is nearly Kähler if for all $X\in TM$

 $(\nabla_X^{g_N}J)X = 0.$

A nearly Kähler manifold admits a unique Hermitian connection ∇^{T_N} , called Gray connection, with parallel skew torsion

$$T^N(X,Y,Z)=g((\nabla^{g_N}_XJ)JY,Z).$$

Theorem (Nagy '02)

A complete, strict nearly Kähler manifold that is not locally a product is

- a homogeneous nearly Kähler manifold,
- a nearly Kähler manifold of dimension 6,
- the twistor space of a positive quaternionic Kähler manifold.

Parallel to Nearly Kähler

If $\delta = 2\alpha \rightsquigarrow \nabla \xi_1 = 0$ (same for all ξ in the associated sphere) $\rightsquigarrow \langle \xi_1 \rangle \oplus \langle \xi_1 \rangle^{\perp}$ is invariant under $\operatorname{Hol}_0(M)$

Look at torsion:

$$T = 2\alpha \sum_{i=1}^{3} \eta_i \wedge \Phi_i^{\mathcal{H}} - 4\alpha \eta_{123}$$
$$= 2\alpha \sum_{i=2,3} \eta_i \wedge \Phi_i^{\mathcal{H}} + 2\alpha \eta_1 \wedge \Phi_1^{\mathcal{H}} - 4\alpha \eta_{123}$$
$$\underbrace{\Lambda^3 \langle \xi_1 \rangle^{\perp}}_{\Phi} \oplus \underbrace{\langle \xi_1 \rangle \wedge \Lambda^2 \langle \xi_1 \rangle^{\perp}}_{\Phi}$$

Theorem

Let $(M, g, \xi_i, \eta_i, \varphi_i)_{i=1,2,3}$ be a parallel 3- (α, δ) -Sasaki manifold. Then there exists a loc. def. Riemannian submersion $\pi : (M, g) \to (N, g_N)$ with vertical space $\langle \xi_1 \rangle$. Let $\tilde{\varphi} = \varphi_1|_{\mathcal{H}} - \varphi_1|_{\mathcal{V}}$ and set $J = \pi_* \circ \tilde{\varphi} \circ s_*$, for a section s of π . Then (N, g_N, J) defines a nearly Kähler space such that

$$\nabla_X^{T_N} Y = \pi_* (\nabla_{\overline{X}} \overline{Y}),$$

where ∇^{T_N} is the Bismut connection of (N, g_N, J) .

NK to qK

In this case $TN = \mathcal{H} \oplus \pi_* \langle \xi_2, \xi_3 \rangle$ under $\operatorname{Hol}_0(\nabla^{T_N})$. We want to use the canonical submersion once more:

Theorem

Let (N, g_N, J) be a nearly Kähler manifold with Gray connection ∇^{T_N} . Assume the tangent space splits $TN = \mathcal{V} \oplus \mathcal{H}$ into $\operatorname{Hol}_0(\nabla^{T_N})$ and J-invariant moduls and $T_N \in \Lambda^2 \mathcal{H} \wedge \mathcal{V}$. If $2(\nabla^{g_N}_V J)^2 = -k^2$ id for all unit length $V \in \mathcal{V}$ then there exists a local submersion $\pi \colon N \to \check{N}$ where \check{N} admits a quaternionic Kähler structure locally defined by

$$I_1 = \pi_* \circ J \circ s_*,$$

$$I_2 = \sqrt{\frac{2}{k}} \ \pi_* \circ (JV \sqcup T_N) \circ s_*, \qquad I_3 = \sqrt{\frac{2}{k}} \ \pi_* \circ (V \sqcup T_N) \circ s_*,$$

where $s \colon \check{N} \to N$ is a section of π .

Proof

The canonical submersion theorem guarantees $\pi \colon N \to \check{N}$. Check that I_1, I_2, I_3 locally define a quaternionic structure on \check{N} . Now use $\nabla^{T_N}T = \nabla^{T_N}J = 0$ and $\nabla^{g_{\check{N}}}_XY = \pi_*(\nabla^{T_N}_{\overline{X}}\overline{Y})$ to compute

$$\begin{aligned} (\nabla_X^{g_{\check{N}}} I_1)Y &= \nabla_X^{g_{\check{N}}} (I_1Y) - I_1(\nabla_X^{g_{\check{N}}}Y) \\ &= \pi_* (\nabla_{\overline{X}}^{T^N} \overline{(\pi_*(J(s_*Y)))} - J(\nabla_{\overline{X}}^{T^N} \overline{Y}))) \end{aligned}$$

But: $\overline{(\pi_*(J(s_*Y)))} = J(s_*Y)$ only along the image of s \rightsquigarrow Cannot take the covariant derivative in direction of \overline{X} \rightsquigarrow Set $\hat{X} = \overline{X} - s_*X \in \mathcal{V}$ and compute $\nabla_{\hat{X}}I_1$ individually

$$\dots = \pi_*((\nabla_{s_*X}^{T^N}J)(s_*Y) + (\hat{X} \,\lrcorner\, T^N)(J(s_*Y)) - J(\hat{X} \,\lrcorner\, T^N)(s_*Y))$$

= $2\pi_*((J\hat{X} \,\lrcorner\, T^N)(s_*Y))$

Analogous for I_2, I_3 .

Thank You for your Attention!