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Holonomy I

If ∇ : X(M)× X(M)→ X(M) is a connection on M and γ a curve from
p to q, then we have parallel transport Pγ : TpM → TqM .

Definition
The holonomy group is the group

Hol0(∇) = {P∇γ parallel transport | [γ] = 0 ∈ π1(M)}.

If ∇ is metric then Hol0(∇) ⊂ SO(n).

Theorem (deRham 1952)

If the representation of Holg(M) on TpM = T1 ⊕ T2 splits, then (M, g)
is locally a product

(M, g) = (M1 ×M2, gM1×M2
).



Holonomy II

Theorem (Berger 1955)

Let (M, g) be a Riemannian manifold that is not a symmetric space. If
the holonomy representation is irreducible, then Holg0(M) is among the
following list.

Holg0 NAME dim Parallel Obj. Einstein
SO(n) generic n − −
U(n) Kähler 2n ∇gJ = 0 −
SU(n) Calabi-Yau 2n ∇gJ = 0 Ricg = 0

Sp(n)Sp(1) quaternionic Kähler 4n ∇gΩ = 0 Ricg = λg
Sp(n) hyperkähler 4n ∇gJi = 0 Ricg = 0

G2 parallel G2 7 ∇gφ = 0 Ricg = 0
Spin(7) parallel Spin(7) 8 ∇gψ = 0 Ricg = 0



Connections with skew torsion

Torsion:
T (X,Y, Z) := g(∇XY −∇YX − [X,Y ], Z)

The space of torsion tensors decomposes into SO(n)-invariant classes

T ∈ Λ2TM ⊗ TM = TM ⊕ Λ3TM ⊕ T ′.

If T ∈ Λ3TM we say ∇ has skew-torsion

⇒ ∇XY = ∇gXY +
1

2
T (X,Y, ·)

In particular, ∇ inherits geodesics from ∇g!

∇ has parallel skew-torsion if, in addition, ∇T = 0.

Implies, for instance, pair-symmetry of the curvature!



Canonical Submersion Theorem

Theorem (Cleyton, Moroianu, Semmelmann ’21,
Agricola, Dileo, S ’21, S ’22)

Let ∇ be a metric connection with parallel skew torsion T , and suppose
the tangent space decomposes orthogonally as a representation of the
reduced holonomy group Hol0(∇) into TM = V ⊕H. If the component
in Λ2V ⊗H of T ∈ Λ3TM vanishes then

there exists a locally defined Riemannian submersion π : M → N
with totally geodesic leaves along V,

the purely horizontal part TH ∈ Λ3H of T is projectable and the

connection ∇TH = ∇gN + 1
2T
H on N has parallel skew torsion and

satisfies

∇T
H

X Y = π∗(∇XY ).

Corollary

If TM = H1 ⊕H2 under Hol0(∇) with T ∈ Λ3H1 ⊕ Λ3H2 then locally

(M, g,∇) = (M1, g1,∇1)× (M2, g2,∇2).



Known Applications

Sasakian manifolds −→ Kähler:

Simplest case, ϕ projects to J

3-(α, δ)-Sasaki manifolds −→ quaternionic Kähler:

ϕi do not project individually but their bundle does!
(Agricola, Dileo, S-, ’21)

• relate curvature (Agricola, Dileo, S-, ’23),
• simplifies heterotic G2 system (Galdeano, S-, ’23)

parallel 3-(α, δ)-Sasaki manifolds −→ nearly Kähler:

Torsion of the base is a feature not a bug!

specific nearly Kähler manifolds −→ quaternionic Kähler:

Modeled after Nagy classification of nK,
but explicit construction of quaternionic structure!



3-(α, δ)-Sasaki Manifolds

(M,ϕi, ξi, ηi, g)i=1,2,3 is an almost 3-contact metric manifolds if

ξi ∈ X(M) Reeb vector fields, g(ξi, ξj) = δij ,

ηi ∈ Ω1(M) metric dual to ξi,

ϕi ∈ End(TM) almost hermitian structures on ker ηi,

compatibility cond. ϕiϕj |H = ϕk|H, ϕiξj = ξk,

where (ijk) is an even permutation of (123) and H :=
⋂

ker ηi.
Denote V = 〈ξ1, ξ2, ξ3〉 the vertical space and Φi(X,Y ) = g(X,ϕiY ) the
fundamental 2-form.

Definition

A 3-(α, δ)-Sasaki manifold, α 6= 0, δ real constants, is an almost
3-contact metric manifold satisfying

dηi = 2αΦi + 2(α− δ)ηj ∧ ηk,

for alle even permutations (ijk) of (123).



H-Homothetic Deformation

For a > 0, c 6= 0 consider

g = gH + gV
scaling−−−→ g̃ = agH + c2gV , ξ̃i =

1

c
ξi, ϕ̃i = ϕi

Proposition (Agricola-Dileo, ’20)

The deformed structure (M, ϕ̃i, ξ̃i, η̃i, g̃)i=1,2,3 for real parameters a > 0

and c is 3-(α̃, δ̃)-Sasaki with

α̃ =
c

a
α , δ̃ =

1

c
δ.

Up to H-homothetic deformation there are only the cases α = 1,
δ ∈ {±1, 0} called positive, negative and degenerate.



The canonical connection

Theorem (Agricola, Dileo, ’20)

Let (M, g, ξi, ηi, ϕi)i=1,2,3 be a 3-(α, δ)-Sasaki manifold. Then M
admits a unique metric connection ∇ with skew torsion such that for a
smooth function β,

∇Xϕi = β(ηk(X)ϕj − ηj(X)ϕk) ∀X ∈ X(M)

for every even permutation (ijk) of (123).

This connection ∇ has parallel skew-torsion, as Hol0 ⊂ Sp(n)Sp(1), i.e.
it preserves TM = V ⊕H and the function β is a constant given by

β = 2(δ − 2α).

∇ is called the canonical connection of M .

If δ = 2α ⇒ ∇ϕi ≡ 0 for all i = 1, 2, 3, → parallel 3-(α, δ)-Sasaki

⇒ Hol0(∇) ⊂ Sp(n)



The canonical submersion

TM = V ⊕H is a Hol0(∇)-invariant decomposition.
The torsion of ∇ is

T = 2α

3∑
i=1

ηi ∧ ΦHi + 2(δ − 4α)η123 ∈ Λ2H ∧ V ⊕ Λ3V.

⇒ the projection onto Λ2V ⊗H⊕ Λ3H is trivial
⇒ locally defined Riemannian submersion π : M → N with

∇gNX Y = π∗(∇XY ).

Definition
The submersion π : M → N is called the canonical submersion of the
3-(α, δ)-Sasaki manifold M .



Theorem (Agricola, Dileo, S-, ’21)

Let (M, g, ηi, ξi, ϕi) be a 3-(α, δ)-Sasaki manifold. The base space
(N, gN ) of the canonical submersion π : M → N inherits a quaternionic
Kähler structure spanned by

ϕ̌i = π∗ ◦ ϕi ◦ s∗

for any local section s : N →M . The covariant derivative of ϕ̌i is given
by

∇gNX ϕ̌i = 2δ(η̌k(X)ϕ̌j − η̌j(X)ϕ̌k),

where η̌i(X) = ηi(s∗X), for any even permutation (ijk) of (123).

The base space N has scalar curvature scalgN = 16n(n+ 2)αδ.

Corollary

For degenerate 3-(α, δ)-Sasaki manifolds the base is Hyperkähler.
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Interlude: Constructions

Positive Case:
(N, g,Q) positive quaternionic Kähler manifold, i.e. Q ⊂ End(TM)
 M = Fr(Q) frame bundle (Konishi-bundle).

Then M can be equipped with a positive 3-(α, δ)-Sasaki structure.

Examples: W1,1,S7,Sp = SU(3)//S1
p ,...

Negative Case:
(N, g,Q) negative qK  M = Fr(Q) Konishi bundle admits a negative
3-(α, δ)-Sasaki structure

Examples: SU(1, 2)/S1, T̂ (1), ...

Degenerate Case: (N, g, ω1, ω2, ω3) hyper Kähler w [ωi] ∈ H2(M,Z)
M fibre product bundle of 3 Boothby-Wang S1-bundles.
Then M can be equipped with degenerate 3-(α, δ)-Sasaki structure

Examples: Hn,H, ...



Nearly Kähler

Definition

An almost Hermitian manifold (N, gN , J) is nearly Kähler if for all
X ∈ TM

(∇gNX J)X = 0.

A nearly Kähler manifold admits a unique Hermitian connection ∇TN ,
called Gray connection, with parallel skew torsion

TN (X,Y, Z) = g((∇gNX J)JY, Z).

Theorem (Nagy ’02)

A complete, strict nearly Kähler manifold that is not locally a product is

a homogeneous nearly Kähler manifold,

a nearly Kähler manifold of dimension 6,

the twistor space of a positive quaternionic Kähler manifold.



Parallel to Nearly Kähler
If δ = 2α  ∇ξ1 = 0 (same for all ξ in the associated sphere)

 〈ξ1〉 ⊕ 〈ξ1〉⊥ is invariant under Hol0(M)

Look at torsion:

T = 2α

3∑
i=1

ηi ∧ ΦHi − 4αη123

= 2α
∑
i=2,3

ηi ∧ ΦHi︸ ︷︷ ︸ + 2αη1 ∧ ΦH1 − 4αη123︸ ︷︷ ︸
Λ3〈ξ1〉⊥ ⊕ 〈ξ1〉 ∧ Λ2〈ξ1〉⊥

Theorem

Let (M, g, ξi, ηi, ϕi)i=1,2,3 be a parallel 3-(α, δ)-Sasaki manifold. Then
there exists a loc. def. Riemannian submersion π : (M, g)→ (N, gN ) with
vertical space 〈ξ1〉. Let ϕ̃ = ϕ1|H − ϕ1|V and set J = π∗ ◦ ϕ̃ ◦ s∗, for a
section s of π. Then (N, gN , J) defines a nearly Kähler space such that

∇TN

X Y = π∗(∇XY ),

where ∇TN is the Bismut connection of (N, gN , J).



NK to qK

In this case TN = H⊕ π∗〈ξ2, ξ3〉 under Hol0(∇TN ).
We want to use the canonical submersion once more:

Theorem

Let (N, gN , J) be a nearly Kähler manifold with Gray connection ∇TN .
Assume the tangent space splits TN = V ⊕H into Hol0(∇TN ) and
J-invariant moduls and TN ∈ Λ2H ∧ V. If 2(∇gNV J)2 = −k2 id for all
unit length V ∈ V then there exists a local submersion π : N → Ň where
Ň admits a quaternionic Kähler structure locally defined by

I1 = π∗ ◦ J ◦ s∗,

I2 =

√
2

k
π∗ ◦ (JV TN ) ◦ s∗, I3 =

√
2

k
π∗ ◦ (V TN ) ◦ s∗,

where s : Ň → N is a section of π.



Proof

The canonical submersion theorem guarantees π : N → Ň .

Check that I1, I2, I3 locally define a quaternionic structure on Ň .

Now use ∇TNT = ∇TNJ = 0 and ∇gŇX Y = π∗(∇TN

X
Y ) to compute

(∇gŇX I1)Y = ∇gŇX (I1Y )− I1(∇gŇX Y )

= π∗(∇T
N

X
(π∗(J(s∗Y )))− J(∇T

N

X
Y )))

But: (π∗(J(s∗Y ))) = J(s∗Y ) only along the image of s
 Cannot take the covariant derivative in direction of X
 Set X̂ = X − s∗X ∈ V and compute ∇X̂I1 individually

. . . = π∗((∇T
N

s∗XJ)(s∗Y ) + (X̂ TN )(J(s∗Y ))− J(X̂ TN )(s∗Y ))

= 2π∗((JX̂ TN )(s∗Y ))

Analogous for I2, I3.



Thank You for your Attention!


