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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Let G be a compact, connected Lie group acting on a compact,
connected symplectic manifold (M, w) in a Hamiltonian fashion
with momentum map pu: M — g*.
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Let G be a compact, connected Lie group acting on a compact,
connected symplectic manifold (M, w) in a Hamiltonian fashion
with momentum map p: M — g*. The map p is equivariant with
respect to the coadjoint action of G on g*.
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Non-abelian Hamiltonian actions Introduction

The invariant momentum map
Multiplicity free manifolds

Let G be a compact, connected Lie group acting on a compact,
connected symplectic manifold (M, w) in a Hamiltonian fashion
with momentum map p: M — g*. The map p is equivariant with
respect to the coadjoint action of G on g*.
e G abelian: u(G-p)= G- u(p) = p(p), w(M) is convex
(Atiyah, Guillemin, Sternberg).
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Non-abelian Hamiltonian actions Introduction

The invariant momentum map
Multiplicity free manifolds

Let G be a compact, connected Lie group acting on a compact,
connected symplectic manifold (M, w) in a Hamiltonian fashion
with momentum map p: M — g*. The map p is equivariant with
respect to the coadjoint action of G on g*.
e G abelian: u(G-p)= G- u(p) = p(p), w(M) is convex
(Atiyah, Guillemin, Sternberg).
@ G non-abelian: (G - p) = G - p(p) # p(p),
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Non-abelian Hamiltonian actions Introduction

The invariant momentum map
Multiplicity free manifolds

Let G be a compact, connected Lie group acting on a compact,
connected symplectic manifold (M, w) in a Hamiltonian fashion
with momentum map p: M — g*. The map p is equivariant with
respect to the coadjoint action of G on g*.
e G abelian: u(G-p)= G- u(p) = p(p), w(M) is convex
(Atiyah, Guillemin, Sternberg).
@ G non-abelian: u(G - p) = G - pu(p) # u(p), (M) is not
convex in general.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Fix a maximal torus T C G and a Weyl chamber t, C t*. Then
for all x € g*, we have G- x Nty = {pt.}.

Nikolas Wardenski Multiplicity free U(2)-manifolds



Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Fix a maximal torus T C G and a Weyl chamber t, C t*. Then
for all x € g*, we have G - x Nty = {pt.}. This gives a natural
map 7: g* — t,,
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Fix a maximal torus T C G and a Weyl chamber t, C t*. Then
for all x € g*, we have G - x Nty = {pt.}. This gives a natural
map 7: g* — t4, and we call the composition

s

m: M5 g5ty

the invariant momentum map.

Nikolas Wardenski Multiplicity free U(2)-manifolds



Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Fix a maximal torus T C G and a Weyl chamber t, C t*. Then
for all x € g*, we have G - x Nty = {pt.}. This gives a natural
map 7: g* — t4, and we call the composition

s

m: M5 g5ty

the invariant momentum map.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Fix a maximal torus T C G and a Weyl chamber t, C t*. Then
for all x € g*, we have G - x Nty = {pt.}. This gives a natural
map 7: g* — t4, and we call the composition

m: M5 g5ty

the invariant momentum map.

@ m(G - p) = m(p).
@ P := m(M), the 'invariant momentum polytope’, is a convex
polytope (Kirwan).
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map
Multiplicity free manifolds

Definition

We call M multiplicity free if m: M/G — P is a bijection (and
thus a homeomorphism).
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Definition
We call M multiplicity free if m: M/G — P is a bijection (and

thus a homeomorphism).
Equivalently: m~1(x) is one and only one G-orbit for all x € P.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map
Multiplicity free manifolds

Definition

We call M multiplicity free if m: M/G — P is a bijection (and
thus a homeomorphism).
Equivalently: m~1(x) is one and only one G-orbit for all x € P.

If G is abelian, then M is multiplicity free if and only if it is toric.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map
Multiplicity free manifolds

Definition

We call M multiplicity free if m: M/G — P is a bijection (and
thus a homeomorphism).
Equivalently: m~1(x) is one and only one G-orbit for all x € P.

If G is abelian, then M is multiplicity free if and only if it is toric.
There is a generalization of Delzant’s theorem to the non-abelian
setting,
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map
Multiplicity free manifolds

Definition

We call M multiplicity free if m: M/G — P is a bijection (and
thus a homeomorphism).
Equivalently: m~1(x) is one and only one G-orbit for all x € P.

If G is abelian, then M is multiplicity free if and only if it is toric.
There is a generalization of Delzant’s theorem to the non-abelian
setting, conjectured by Delzant and proven by Knop, building on
important work of Luna, Camus and Losev in smooth affine
spherical varieties.
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Non-abelian Hamiltonian actions Introduction

The invariant momentum map
Multiplicity free manifolds

Up to equivariant symplectomorphism, any multiplicity free
manifold M is uniquely determined by its principal isotropy type
and its invariant momentum polytope P.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Up to equivariant symplectomorphism, any multiplicity free
manifold M is uniquely determined by its principal isotropy type
and its invariant momentum polytope P.

There is also a result for when a convex polytope P C t4 is the
momentum image of a multiplicity free manifold M with a certain
principal isotropy type.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Up to equivariant symplectomorphism, any multiplicity free
manifold M is uniquely determined by its principal isotropy type
and its invariant momentum polytope P.

There is also a result for when a convex polytope P C t4 is the
momentum image of a multiplicity free manifold M with a certain
principal isotropy type. Vaguely speaking, this is so if and only if a
small neighborhood of every vertex in P can be realized as such.
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Non-abelian Hamiltonian actions Introduction
The invariant momentum map

Multiplicity free manifolds

Up to equivariant symplectomorphism, any multiplicity free
manifold M is uniquely determined by its principal isotropy type
and its invariant momentum polytope P.

There is also a result for when a convex polytope P C t4 is the
momentum image of a multiplicity free manifold M with a certain
principal isotropy type. Vaguely speaking, this is so if and only if a
small neighborhood of every vertex in P can be realized as such.
This local description is deeply linked to the theory of smooth
affine spherical varieties.
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Multiplicity free U(2)-manifolds

Now let G = U(2), T C U(2) the standard maximal torus,
a =1 — &3, where e1 = (1,0) and 3 = (0, 1) the simple root and
t; the corresponding Weyl chamber.
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Multiplicity free U(2)-manifolds

The local existence of multiplicity free U(2)-manifolds can be
determined using work of Pezzini and Van Steirteghem about
smooth affine spherical varieties.
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Multiplicity free U(2)-manifolds

The local existence of multiplicity free U(2)-manifolds can be
determined using work of Pezzini and Van Steirteghem about
smooth affine spherical varieties.

Theorem (Goertsches, Van Steirteghem, W.)

A triangle P C t, of dimension 2 is the invariant momentum
polytope of a multiplicity free U(2)-manifold with trivial principal
isotropy group if and only if
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Multiplicity free U(2)-manifolds

The local existence of multiplicity free U(2)-manifolds can be
determined using work of Pezzini and Van Steirteghem about
smooth affine spherical varieties.

Theorem (Goertsches, Van Steirteghem, W.)

A triangle P C t, of dimension 2 is the invariant momentum
polytope of a multiplicity free U(2)-manifold with trivial principal
isotropy group if and only if

@ P is Delzant.
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Multiplicity free U(2)-manifolds

The local existence of multiplicity free U(2)-manifolds can be
determined using work of Pezzini and Van Steirteghem about
smooth affine spherical varieties.

Theorem (Goertsches, Van Steirteghem, W.)

A triangle P C t, of dimension 2 is the invariant momentum
polytope of a multiplicity free U(2)-manifold with trivial principal
isotropy group if and only if

@ P is Delzant.

@ If a is a vertex of P on the Weyl wall, then the edges adjacent
to a have the directions:

V.
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Multiplicity free U(2)-manifolds

{e1+e2,e1+ k(e1 +e2)} and {—(e1 +€2), —e2 + k(e1 + £2)}
for any k € 7.

Pt 52
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Multiplicity free U(2)-manifolds

{e1+e2,e1+ k(e1 +e2)} and {—(e1 +€2), —e2 + k(e1 + £2)}
for any k € 7.
lbt.
L. X
P3 with standard Kihler form, U(2) acting linearly.
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Multiplicity free U(2)-manifolds

SO(5)/[S0(2) x SO(3)].
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Multiplicity free U(2)-manifolds

Up to reflection at Re, {«, jou + e1} for some j € N.
52 ," 52
52
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Multiplicity free U(2)-manifolds

Up to reflection at Re, {«, jou + e1} for some j € N.

U(2) x 7 P(C2 @ C_j,) with certain projective Kihler form.

52
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Multiplicity free U(2)-manifolds

If P does not intersect the Weyl wall, then
M =TU(2) x1 P(C & C,, & C,,) with a projective Kahler form.

’ az

52
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Multiplicity free U(2)-manifolds

.~ 52 S? s? .

s? s?
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Multiplicity free U(2)-manifolds

Moreover, there are only four diffeomorphism types occuring:
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Multiplicity free U(2)-manifolds

Moreover, there are only four diffeomorphism types occuring:
o P3.
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Multiplicity free U(2)-manifolds

Moreover, there are only four diffeomorphism types occuring:
o P3.
e SO(5)/[SO(2) x SO(3)].
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Multiplicity free U(2)-manifolds

Moreover, there are only four diffeomorphism types occuring:
o P3.
e SO(5)/[SO(2) x SO(3)].
o P! x P2.
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Multiplicity free U(2)-manifolds

Moreover, there are only four diffeomorphism types occuring:
o P3.
e SO(5)/[SO(2) x SO(3)].
o P! x P2.
o P (Opy_1) ® Opr(g) ® Op1(q)) (a certain projectivized
P2-bundle over P!).
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Multiplicity free U(2)-manifolds

M = P! x P2 if and only if a; + a» — b1 — by is a multiple of 3,
where a1 = aie1 + bien, ap = aseq + boes.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

Question: Given a multiplicity free U(2)-manifold M with trivial
principal isotropy group, when does there exist a compatible,
invariant complex structure?
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U(2)-invariant Kahler structures

T-invariant Kahler structures

Invariant Kahler structures

Question: Given a multiplicity free U(2)-manifold M with trivial
principal isotropy group, when does there exist a compatible,
invariant complex structure?

There is previous work of Woodward on this for the group SO(5),
but with different techniques.
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U(2)-invariant Kahler structures

T-invariant Kahler structures

Invariant Kahler structures

Question: Given a multiplicity free U(2)-manifold M with trivial
principal isotropy group, when does there exist a compatible,
invariant complex structure?

There is previous work of Woodward on this for the group SO(5),
but with different techniques.

Theorem (G., V.S., W.)

If P does not intersect the Weyl wall at exactly one point, then M
admits a compatible, invariant complex structure.
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U(2)-invariant Kahler structures

T-invariant Kahler structures

Invariant Kahler structures

Question: Given a multiplicity free U(2)-manifold M with trivial
principal isotropy group, when does there exist a compatible,
invariant complex structure?

There is previous work of Woodward on this for the group SO(5),
but with different techniques.

Theorem (G., V.S., W.)

If P does not intersect the Weyl wall at exactly one point, then M
admits a compatible, invariant complex structure. In fact, the
U(2)-action extends to a Hamiltonian U(2) x S'-action.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

Theorem (G., V.S., W.)

If P does intersect the Weyl wall at exactly one point a, then M
admits a compatible, invariant complex structure if and only if
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U(2)-invariant Kahler structures

T-invariant Kahler structures

Invariant Kahler structures

Theorem (G., V.S., W.)

If P does intersect the Weyl wall at exactly one point a, then M
admits a compatible, invariant complex structure if and only if
every positive edge of P contains a.
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f . T-invariant Kahler structures
Invariant Kahler structures

Theorem (G., V.S., W.)

If P does intersect the Weyl wall at exactly one point a, then M
admits a compatible, invariant complex structure if and only if
every positive edge of P contains a.
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U(2)-invariant Kahler structures

T-invariant Kahler structures

Invariant Kahler structures

Theorem (G., V.S., W.)

If P does intersect the Weyl wall at exactly one point a, then M
admits a compatible, invariant complex structure if and only if
every positive edge of P contains a.

Using results of Martens and Thaddeus about partial compatibility
results of local symplectic cutting and Kahler structures. []
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

This discrepancy is encoded in the momentum image of the
T-action.
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f . T-invariant Kahler structures
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This discrepancy is encoded in the momentum image of the
T-action.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

This discrepancy is encoded in the momentum images of the
T-action.

Circles are images of T-fixpoints, lines are images of T-invariant
2-spheres.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

For any two lines /; and / emerging from a circle, there is a convex
polytope extending /; and / and whose edges are lines ("M
satisfies the extension criterion’).
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T-invariant Kahler structures

Invariant Kahler structures




U(2)-invariant Kahler structures
T-invariant Kahler structures

Invariant Kahler structures
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

For the lines /; and /, there is no convex polytope extending /;
and h and whose edges are lines.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

For the lines /; and k, there is no convex polytope extending /
and / and whose edges are lines.

By the 'extension criterion’ of Tolman, this can not happen if the
symplectic form is a T-invariant Kahler form.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

Using this, we were able to prove

If P does intersect the Weyl wall at exactly one point a, then the
following are equivalent:
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U(2)-invariant Kahler structures

f . T-invariant er structures
Invariant Kahler structures

Using this, we were able to prove

If P does intersect the Weyl wall at exactly one point a, then the
following are equivalent:

@ M admits a U(2)-invariant, compatible complex structure.
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U(2)-invariant Kahler structures

f . T-invariant er structures
Invariant Kahler structures

Using this, we were able to prove

If P does intersect the Weyl wall at exactly one point a, then the
following are equivalent:

@ M admits a U(2)-invariant, compatible complex structure.

@ Every positive edge of P contains a.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

Using this, we were able to prove

If P does intersect the Weyl wall at exactly one point a, then the
following are equivalent:

@ M admits a U(2)-invariant, compatible complex structure.
@ Every positive edge of P contains a.
© MT is mapped to the boundary of the T-momentum image.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

Using this, we were able to prove

If P does intersect the Weyl wall at exactly one point a, then the
following are equivalent:

@ M admits a U(2)-invariant, compatible complex structure.
@ Every positive edge of P contains a.
© MT is mapped to the boundary of the T-momentum image.

Q M satisfies the extension criterion.
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U(2)-invariant Kahler structures

f . T-invariant Kahler structures
Invariant Kahler structures

Using this, we were able to prove

If P does intersect the Weyl wall at exactly one point a, then the
following are equivalent:

@ M admits a U(2)-invariant, compatible complex structure.
@ Every positive edge of P contains a.
© MT is mapped to the boundary of the T-momentum image.

Q M satisfies the extension criterion.

© M admits a T-invariant, compatible complex structure.
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